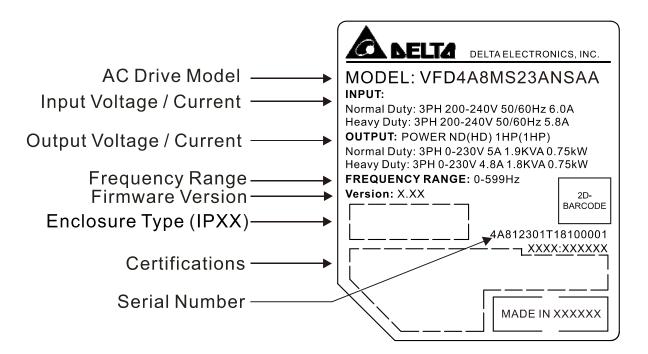
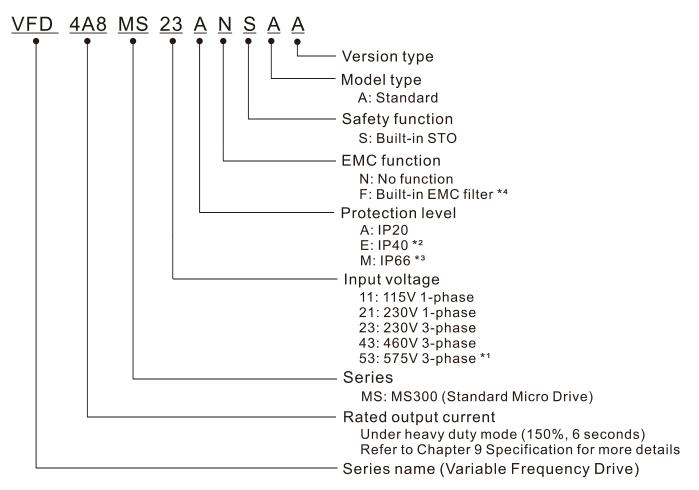
Chapter 1 Introduction


- 1-1 Nameplate Information
- 1-2 Model Name
- 1-3 Serial Number
- 1-4 Apply After Service by Mobile Device
- 1-5 RFI Jumper

Chapter 1 Introduction | MS300


After receiving the AC motor drive, check for the following:

- 1. Inspect the unit after unpacking to ensure that it was not damaged during shipment. Make sure that the part number printed on the package matches the part number indicated on the nameplate.
- 2. Make sure that the mains voltage is within the range indicated on the nameplate. Install the AC motor drive according to the instructions in this manual.
- 3. Before applying power, make sure that all devices, including mains power, motor, control board and digital keypad, are connected correctly.
- 4. When wiring the AC motor drive, make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals "U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
- 5. When power is applied, use the digital keypad (KPMS-LE01) to select the language and set parameters. When executing a trial run, begin with a low speed and then gradually increase the speed to the desired speed.

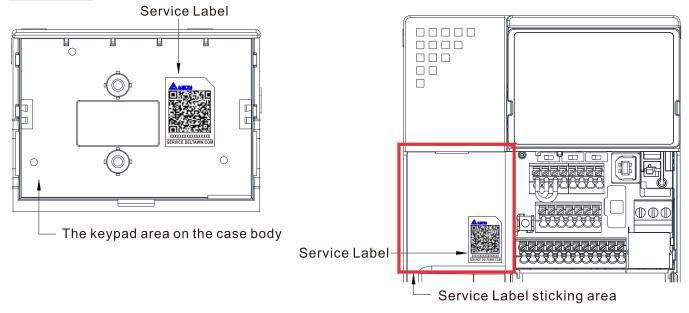
1-1 Nameplate Information

1-2 Model Name

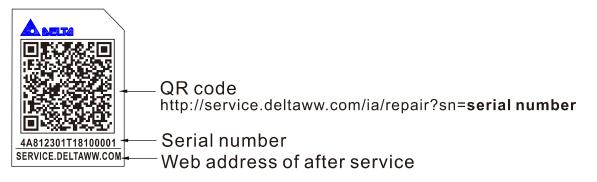
- ^{*1.} For IP20 models only.
- ^{*2.} Not applicable for models of 575V input voltage.
- ^{*3.} Not applicable for models of 115V and 575V input voltage.
- ^{*4.} For 230V input voltage (one-phase) and 460V input voltage (three-phase) models only.

1-3 Serial Number

Chapter 1 Introduction | MS300


1-4 Apply After Service by Mobile Device

1-4-1 Location of Service Link Label


Service link label (Service Label) is pasted on the area as the drawing below shows.

Frame A, B

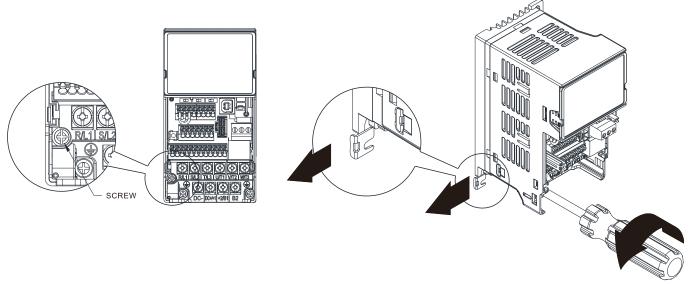
Frame C–F

1-4-2 Service Link Label

Scan QR Code to request service

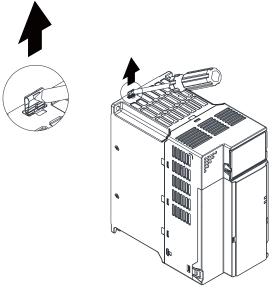
- 1. Find the QR code sticker (as shown above).
- 2. Use a smartphone to run a QR Code reader APP.
- 3. Point your camera at the QR Code. Hold your camera steady until the QR code comes into focus.
- 4. Access the Delta After Service website.
- 5. Fill your information into the column marked with an orange star.
- 6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find the QR Code?


- 1. Open a web browser on your computer or smartphone.
- 2. Enter https://service.deltaww.com/ia/repair in browser address bar and press the Enter key.
- 3. Fill your information into the columns marked with an orange star.
- 4. Enter the CAPTCHA and click "Submit" to complete the application.

1-5 RFI Jumper

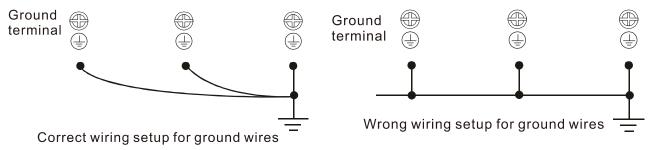
- 1 The drive contains Varistors / MOVs that are connected from phase to phase and from phase to ground to prevent the drive from unexpected stop or damage caused by mains surges or voltage spikes. Because the Varistors / MOVs from phase to ground are connected to ground with the RFI jumper, removing the RFI jumper disables the protection.
- In models with a built-in EMC filter, the RFI jumper connects the filer capacitors to ground to form a return path for high frequency noise in order to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter. Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filters can trigger the RCD. Removing the RFI jumper helps, but the EMC performance of each drive is no longer guaranteed.


Frame A–F Screw Torque: 4–6 kg-cm / [3.5–5.2 lb-in.] / [0.39–0.59 Nm]

Loosen the screw and remove the RFI jumper (as shown below). Tighten the screw again after you remove the RFI jumper.

Frame B–F (model with built-in EMC filter)

Remove the RFI jumper with a slotted screwdriver (as shown below).


Chapter 1 Introduction | MS300

Isolating main power from ground:

When the power distribution system for the drive is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI jumper. Removing the RFI jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

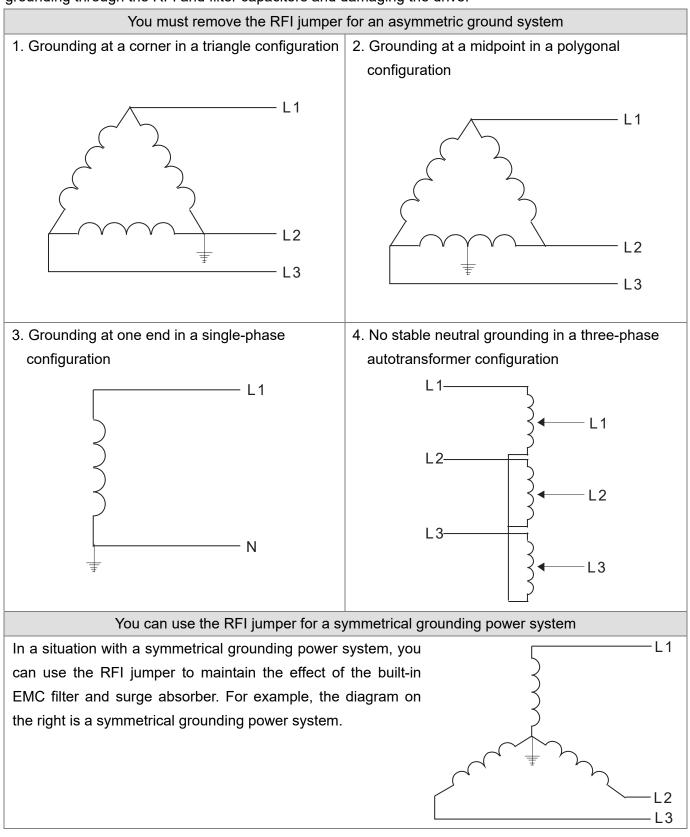
Important points regarding ground connection

- ☑ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the motor and drive during installation.
- \blacksquare The diameter of the grounding cables must comply with the local safety regulations.
- \blacksquare You must connect the shielded cable to the motor drive's ground to meet safety regulations.
- \square Only use the shielded cable as the ground for equipment when the aforementioned points are met.
- ☑ When installing multiple drives, do not connect the grounds of the drives in series but connect each drive to ground. The following pictures show the correct and wrong ways to connect the grounds.

Pay particular attention to the following points:

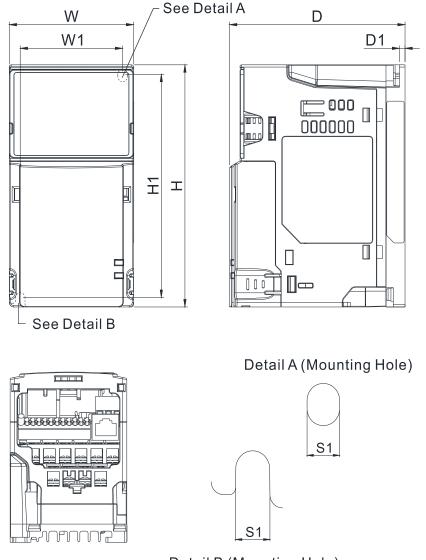
- \square Do not remove the RFI jumper while the power is on.
- Removing the RFI jumper also cuts the capacitor conductivity of the surge absorber to ground and the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
- ☑ Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
- ☑ Remove the RFI jumper when conducting high voltage tests. When conducting a high voltage test to the entire facility, disconnect the mains power and the motor if the leakage current is too high.

Floating Ground System (IT Systems)


A floating ground system is also called an IT system, an ungrounded system, or a high impedance/ resistance (greater than 30 Ω) grounded system.

- ☑ Remove the RFI jumper to disconnect the ground cable from the internal filter capacitor and surge absorber.
- ☑ Do not install an external RFI/EMC filter. The external EMC filter passes through a filter capacitor and connects power input to the ground. This is very dangerous and damages the motor drive.
- ☑ In situations where EMC is required, use an EMC filter specifically for IT system if necessary. Disconnecting the ground cable from the filter prevents damage to the motor drive but compliance with EMC is no longer guaranteed.
- In situations where EMC is required, check for excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression.
 If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase shielding.

Asymmetric Ground System (Corner Grounded TN Systems)


Caution: Do not remove the RFI jumper while power to the input terminal of the drive is ON.

In the following four situations, you must remove the RFI jumper. This is to prevent the system from grounding through the RFI and filter capacitors and damaging the drive.

2-1 Frame A

- A1: VFD1A6MS11ANSAA; VFD1A6MS11ENSAA; VFD1A6MS21ANSAA; VFD1A6MS21ENSAA; VFD1A6MS23ANSAA; VFD1A6MS23ENSAA
- A2: VFD2A8MS23ANSAA; VFD2A8MS23ENSAA
- A3: VFD2A5MS11ANSAA; VFD2A5MS11ENSAA; VFD2A8MS21ANSAA; VFD2A8MS21ENSAA
- A4: VFD1A5MS43ANSAA; VFD1A5MS43ENSAA
- A5: VFD4A8MS23ANSAA; VFD4A8MS23ENSAA; VFD2A7MS43ANSAA; VFD2A7MS43ENSAA; VFD1A7MS53ANSAA

Detail B (Mounting Hole)

Frame	W	Н	D	W1	H1	D1	S1
A1	68.0 [2.68]	128.0 [5.04]	96.0 [3.78]	56.0 [2.20]	118.0 [4.65]	3.0 [0.12]	5.2 [0.20]
A2	68.0 [2.68]	128.0 [5.04]	110.0 [4.33]	56.0 [2.20]	118.0 [4.65]	3.0 [0.12]	5.2 [0.20]
A3	68.0 [2.68]	128.0 [5.04]	125.0 [4.92]	56.0 [2.20]	118.0 [4.65]	3.0 [0.12]	5.2 [0.20]
A4	68.0 [2.68]	128.0 [5.04]	129.0 [5.08]	56.0 [2.20]	118.0 [4.65]	3.0 [0.12]	5.2 [0.20]
A5	68.0 [2.68]	128.0 [5.04]	143.0 [5.63]	56.0 [2.20]	118.0 [4.65]	3.0 [0.12]	5.2 [0.20]

Unit: mm [inch]

3-2 Airflow and Power Dissipation

Frame	Airflow Rate	e for Cooling	Power Dissipation for AC Motor Drive				
Traine	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: m ³ / hr)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	Total (Unit: W)	
	VFD1A6MS11ANSAA VFD1A6MS11ENSAA			8.0	10.0	18.0	
	VFD2A5MS11ANSAA VFD2A5MS11ENSAA			14.2	13.1	27.3	
	VFD1A6MS21ANSAA VFD1A6MS21ENSAA			8.0	10.3	18.3	
	VFD2A8MS21ANSAA VFD2A8MS21ENSAA			16.3	14.5	30.8	
А	VFD1A6MS23ANSAA VFD1A6MS23ENSAA	0.0	0.0	8.6	10.0	18.6	
	VFD2A8MS23ANSAA VFD2A8MS23ENSAA			16.5	12.6	29.1	
-	VFD4A8MS23ANSAA VFD4A8MS23ENSAA			31.0	13.2	44.2	
	VFD1A5MS43ANSAA VFD1A5MS43ENSAA			17.6	11.1	28.7	
	VFD2A7MS43ANSAA VFD2A7MS43ENSAA			30.5	17.8	48.3	
	VFD1A7MS53ANSAA			23.5	12.5	36	
	VFD1A6MS21AFSAA	0.0	0.0	8.0	10.3	18.3	
	VFD2A8MS21AFSAA	10.0	16.99	16.3	14.5	30.8	
	VFD4A8MS21ANSAA VFD4A8MS21ENSAA	0.0	0.0	29.1	20.1	49.2	
	VFD4A8MS21AFSAA			29.1	20.1	49.2	
В	VFD7A5MS23ANSAA VFD7A5MS23ENSAA			50.1	24.2	74.3	
	VFD1A5MS43AFSAA			17.6	11.1	28.7	
	VFD2A7MS43AFSAA	10.0	16.99	30.5	17.8	48.3	
	VFD4A2MS43ANSAA VFD4A2MS43ENSAA VFD4A2MS43AFSAA			45.9	21.7	67.6	
	VFD3A0MS53ANSAA			38.1	19	57.1	
	VFD4A8MS11ANSAA VFD4A8MS11ENSAA			29.1	23.9	53.0	
	VFD7A5MS21ANSAA VFD7A5MS21ENSAA VFD7A5MS21AFSAA			46.5	31.0	77.5	
С	VFD11AMS21ANSAA VFD11AMS21ENSAA VFD11AMS21AFSAA	16.0	27.2	70.0	35	105	
	VFD11AMS23ANSAA VFD11AMS23ENSAA			76.0	30.7	106.7	
	VFD17AMS23ANSAA VFD17AMS23ENSAA]		108.2	40.1	148.3	

Frame A

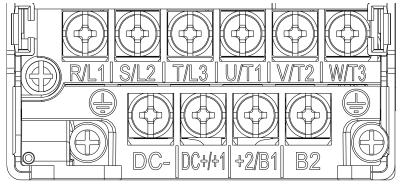


Figure 5-8

- If you install at Ta 50°C above environment, use copper wires that have a voltage rating of 600 V and are temperature resistant to 90°C or above.
- If you install at Ta 50°C environment, use copper wires that have a voltage rating of 600 V and are temperature resistant to 75°C or 90°C.
- For VFD2A5MS11ANSAA and VFD2A5MS11ENSAA models: If you install at Ta 40°C above environment, use copper wires that have a voltage rating of 600 V and are temperature resistant to 90°C or above.
- To be UL installation compliant, you must use copper wires when installing. The wire gauge is based on a temperature resistance of 75°C, in accordance with UL requirements and recommendations.
 Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2			Grounding Terminals			
Models	Max. Wire Gauge	Min. Wire Gauge	Screw Size & Torque (±10%)	Max. Wire Gauge	Min. Wire Gauge	Screw Size & Torque (±10%)	
VFD1A6MS11ANSAA							
VFD1A6MS11ENSAA		2.5 mm ²					
VFD2A5MS11ANSAA		[14 AWG]					
VFD2A5MS11ENSAA							
VFD1A6MS21ANSAA		1.5 mm ²					
VFD1A6MS21ENSAA		[16 AWG]					
VFD2A8MS21ANSAA		2.5 mm ²					
VFD2A8MS21ENSAA		[14 AWG]		2.5 mm ² [14 AWG]		M3.5 9 kg-cm [7.8 lb-in.]	
VFD1A6MS23ANSAA		2.5 mm ² [4 AWG] 0.75 mm ² [18 AWG]	M3.5		2.5 mm ² [14 AWG]		
VFD1A6MS23ENSAA	-		9 kg-cm [7.8 lb-in.]				
VFD2A8MS23ANSAA	[117.010]		[0.88 Nm]	[,]	[,]	[0.88 Nm]	
VFD2A8MS23ENSAA							
VFD4A8MS23ANSAA		1.5 mm ²					
VFD4A8MS23ENSAA		[16 AWG]					
VFD1A5MS43ANSAA							
VFD1A5MS43ENSAA		0.75					
VFD2A7MS43ANSAA		0.75 mm ² [18 AWG]					
VFD2A7MS43ENSAA		[107.00]					
VFD1A7MS53ANSAA							

7-2 Magnetic Contactor / Air Circuit Breaker and Non-fuse Circuit Breaker

Magnetic Contactor (MC) and Air Circuit Breaker (ACB)

It is recommended the surrounding temperature for MC should be $\ge 60^{\circ}$ C and that for ACB should be $\ge 50^{\circ}$ C. In the meanwhile, consider temperature derating for components with ON / OFF switch in accordance with the ambient temperature of the on-site distribution panel.

115V Models

Frame	Model	Heavy Duty	Heavy Duty	MC/ACB Selection
Traine	Wodel	Output Current [A]	Input Current [A]	[A]
A	VFD1A6MS11ANSAA	6	1.6	11
A	VFD2A5MS11ANSAA	9.4	2.5	18
С	VFD4A8MS11ANSAA	18	4.8	32

Table 7-2-1

230V Models

Frame	Model	Heavy Duty	Heavy Duty	MC/ACB Selection	
Flame	WOUEI	Output Current [A]	Input Current [A]	[A]	
	VFD1A6MS21ANSAA	5.1	1.6	9	
	VFD2A8MS21ANSAA	7.3	2.8	13	
А	VFD1A6MS23ANSAA	1.9	1.6	9	
	VFD2A8MS23ANSAA	3.4	2.8	9	
	VFD4A8MS23ANSAA	5.8	4.8	11	
	VFD1A6MS21AFSAA	5.1	1.6	9	
	VFD2A8MS21AFSAA	7.3	2.8	13	
В	VFD4A8MS21AFSAA	10.8	4.8	18	
	VFD4A8MS21ANSAA	10.8	4.8	18	
	VFD7A5MS23ANSAA	9	7.5	18	
	VFD7A5MS21ANSAA	16.5	7.5	32	
	VFD11AMS21ANSAA	24.2	11	40	
С	VFD7A5MS21AFSAA	16.5	7.5	32	
C	VFD11AMS21AFSAA	24.2	11	40	
	VFD11AMS23ANSAA	13.2	11	22	
	VFD17AMS23ANSAA	20.4	17	32	
D	VFD25AMS23ANSAA	30	25	55	
F	VFD33AMS23ANSAA	39.6	33	65	
E	VFD49AMS23ANSAA	58.8	49	105	
F	VFD65AMS23ANSAA	78	65	130	

Table 7-2-2

Non-fuse Circuit Breaker

Comply with the UL standard: Per UL 508, paragraph 45.8.4, part a.

The rated current of the non-fuse circuit breaker should be 1.6–2.6 times the drive's rated input current. The recommended current values are shown in the table below. Compare the time characteristics of the non-fuse circuit breaker with those of the drive's overheated protection to ensure that there is no tripping.

Model	Voltage / One-phase (Three-phase)	Breaker Rated Input Recommended Current [A]
VFD1A6MS11ANSAA VFD1A6MS11ENSAA		20
VFD2A5MS11ANSAA VFD2A5MS11ENSAA	115V / One-phase	25
VFD4A8MS11ANSAA VFD4A8MS11ENSAA		50
VFD1A6MS21ANSAA VFD1A6MS21ENSAA VFD1A6MS21AFSAA		15
VFD2A8MS21ANSAA VFD2A8MS21ENSAA VFD2A8MS21AFSAA		20
VFD4A8MS21ANSAA VFD4A8MS21ENSAA VFD4A8MS21AFSAA	230V / One-phase	30
VFD7A5MS21ANSAA VFD7A5MS21ENSAA VFD7A5MS21AFSAA		45
VFD11AMS21ANSAA VFD11AMS21ENSAA VFD11AMS21AFSAA		70
VFD1A6MS23ANSAA VFD1A6MS23ENSAA		15
VFD2A8MS23ANSAA VFD2A8MS23ENSAA		15
VFD4A8MS23ANSAA VFD4A8MS23ENSAA		15
VFD7A5MS23ANSAA VFD7A5MS23ENSAA		25
VFD11AMS23ANSAA VFD11AMS23ENSAA		40
VFD17AMS23ANSAA VFD17AMS23ENSAA	- 230V / Three-phase	60
VFD25AMS23ANSAA VFD25AMS23ENSAA		63
VFD33AMS23ANSAA VFD33AMS23ENSAA		90
VFD49AMS23ANSAA VFD49AMS23ENSAA		125
VFD65AMS23ANSAA VFD65AMS23ENSAA		160

7-3 Fuse Specification Chart

- \square Fuse specifications lower than the table below are allowed.
- ☑ For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. Use UL classified fuses to fulfill this requirement.
- ☑ For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. Use UL classified fuses to fulfill this requirement.

Model	Voltage / One-phase (Three-phase)	Branch Circuit Fuses Output [A]			
VFD1A6MS11ANSAA		7.2			
VFD1A6MS11ENSAA		Class T JJS-10 600 V _{AC}			
VFD2A5MS11ANSAA	115V / One-phase	10.8			
VFD2A5MS11ENSAA		Class T JJS-10 600 V _{AC}			
VFD4A8MS11ANSAA		22			
VFD4A8MS11ENSAA		Class T JJS-25 600 V _{AC}			
VFD1A6MS21ANSAA		7.2			
VFD1A6MS21ENSAA		Class T JJS-10 600 V _{AC}			
VFD1A6MS21AFSAA	-	Class 1 333-10 000 VAC			
VFD2A8MS21ANSAA		12.8			
VFD2A8MS21ENSAA VFD2A8MS21AFSAA		Class T JJS-15 600 V _{AC}			
VFD2A6MIS2TAFSAA VFD4A8MS21ANSAA	-				
VFD4A8MS21ANSAA VFD4A8MS21ENSAA	230V / One-phase	20			
VFD4A8MS21AFSAA		Class T JJS-20 600 V _{AC}			
VFD7A5MS21ANSAA		34			
VFD7A5MS21ENSAA	-				
VFD7A5MS21AFSAA		Class T JJS-35 600 V _{AC}			
VFD11AMS21ANSAA		50			
VFD11AMS21ENSAA	-				
VFD11AMS21AFSAA		Class T JJS-50 600 V _{AC}			
VFD1A6MS23ANSAA		7.2			
VFD1A6MS23ENSAA		Class T JJS-10 600 V _{AC}			
VFD2A8MS23ANSAA		12.8			
VFD2A8MS23ENSAA		Class T JJS-15 600 V _{AC}			
VFD4A8MS23ANSAA	-	20			
VFD4A8MS23ENSAA	4 4	Class T JJS-20 600 V _{AC}			
VFD7A5MS23ANSAA		32			
VFD7A5MS23ENSAA	-	Class T JJS-35 600 V _{AC}			
VFD11AMS23ANSAA	-	50			
VFD11AMS23ENSAA	230V / Three-phase	Class T JJS-50 600 V _{AC}			
VFD17AMS23ANSAA VFD17AMS23ENSAA	-	78 Class T JJS-80 600 V _{AC}			
	-	59.4			
VFD25AMS23ANSAA VFD25AMS23ENSAA	-	Class T JJS-60 600 V _{AC}			
VFD25AMS23ENSAA VFD33AMS23ANSAA		79.2			
VFD33AMS23ENSAA VFD33AMS23ENSAA		Class T JJS-80 600 V _{AC}			
VFD49AMS23ANSAA		112.2			
VFD49AMS23ANSAA VFD49AMS23ENSAA		Class T JJS-110 600 V _{AC}			
VFD65AMS23ANSAA	1 F	151.8			
VFD65AMS23ENSAA		Class T JJS-150 600 V _{AC}			

DC Reactor

A DC reactor can also increase line impedance, improve the power factor, reduce input current, increase system power, and reduce interference generated from the motor drive. A DC reactor stabilizes the DC bus voltage. Compared with an AC input reactor, a DC reactor is in smaller size, lower price, and lower voltage drop (lower power dissipation).

Install a DC reactor between terminals +1 and +2. Remove the jumper, as shown in the figure below, before installing a DC reactor.

Note: 115V models have no DC choke.

Input: one-phase / three-phase power

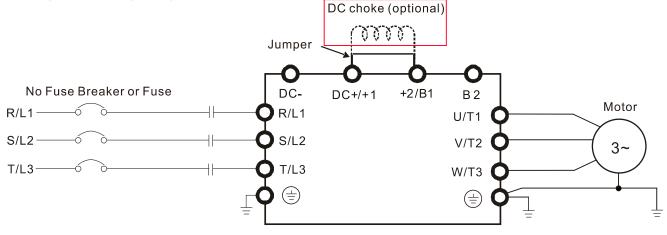


Figure 7-4-3

Applicable Reactors

115V, 50-60 Hz / One-phase - Normal Duty

Model	Rated Current [Arms]	Saturation Current [Arms]	Input / DC Reactor [mH]	Input / DC Reactor Delta Part #	Output Reactor [mH]	Output Reactor Delta Part #
VFD1A6MS11ANSAA VFD1A6MS11ENSAA	1.8	2.7	3.66	DR008D0366	2.54	DR005L0254
VFD2A5MS11ANSAA VFD2A5MS11ENSAA	2.7	4.05	2.66	DR011D0266	2.54	DR005L0254
VFD4A8MS11ANSAA VFD4A8MS11ENSAA	5.5	8.25	1.17	DR025D0117	1.59	DR008L0159

Table 7-4-1

115V, 50-60 Hz / One-phase - Heavy Duty

Model	Rated Current [Arms]	Saturation Current [Arms]	Input / DC Reactor [mH]	Input / DC Reactor Delta Part #	Output Reactor [mH]	Output Reactor Delta Part #
VFD1A6MS11ANSAA VFD1A6MS11ENSAA	1.6	3.2	3.66	DR008D0366	2.54	DR005L0254
VFD2A5MS11ANSAA VFD2A5MS11ENSAA	2.5	5	2.66	DR011D0266	2.54	DR005L0254
VFD4A8MS11ANSAA VFD4A8MS11ENSAA	5	9.6	1.17	DR025D0117	2.54	DR005L0254

Table 7-4-2

The Motor Cable Length

1. Consequence of leakage current on the motor

If the cable length is too long, the stray capacitance between cables increases and may cause leakage current. In this case, It activates the over-current protection, increases leakage current, or may affect the current display. The worst case is that it may damage the AC motor drive. If more than one motor is connected to one AC motor drive, the total wiring length should be the sum of the wiring length from AC motor drive to each motor.

For the 460V models AC motor drive, when you install an overload thermal relay between the drive and the motor to protect the motor from overheating, the connecting cable must be shorter than 50 m; however, an overload thermal relay malfunction may still occur. To prevent the malfunction, install an output reactor (optional) to the drive or lower the carrier frequency setting (see Pr.00-17 Carrier Frequency).

2. Consequence of the surge voltage on the motor

When a motor is driven by a PWM-type AC motor drive, the motor terminals experience surge voltages (dv/dt) due to power transistor conversion of AC motor drive. When the motor cable is very long (especially for the 460V models), surge voltages (dv/dt) may damage the motor insulation and bearing. To prevent this, follow these rules:

- a. Use a motor with enhanced insulation.
- b. Reduce the cable length between the AC motor drive and motor to suggested values.
- c. Connect an output reactor (optional) to the output terminals of the AC motor drive.

Refer to the following tables for the suggested motor shielded cable length. For drive models < 480V, use a motor with a rated voltage $\leq 500 \text{ V}_{AC}$ and an insulation level $\geq 1.35 \text{ kV}_{p-p}$ in accordance with IEC 60034-17. For the 575V drive model, use a motor with a rated voltage $\leq 600 \text{ V}_{AC}$ and an insulation level $\geq 1.79 \text{ kV}_{p-p}$ in accordance with IEC 60034-25.

110V One-phase	Normal Duty	Without an AC	Output Reactor	With an AC O	utput Reactor
Drive Model	Rated Current	Shielded Cable	Non-shielded		Non-shielded
	[Arms]	[meter]	Cable [meter]	Cable [meter]	Cable [meter]
VFD1A6MS11ANSAA VFD1A6MS11ENSAA	1.8				
VFD2A5MS11ANSAA VFD2A5MS11ENSAA	2.7	50	75	75	115
VFD4A8MS11ANSAA VFD4A8MS11ENSAA	5.5				

Table 7-4-26

	Normal Duty	Without an AC	Output Reactor	With an AC C	utput Reactor
230V One-phase Drive Model	Rated Current	Shielded Cable	Non-shielded		Non-shielded
	[Arms]	[meter]	Cable [meter]	Cable [meter]	Cable [meter]
VFD1A6MS21ANSAA VFD1A6MS21ENSAA VFD1A6MS21AFSAA	1.8	50	75	75	115
VFD2A8MS21ANSAA VFD2A8MS21ENSAA VFD2A8MS21AFSAA	3.2	50	75	75	115

7-6 EMC Filter

Use EMC filters to enhance the EMC performance for the environment and machines and to comply with EMC regulations, further reducing EMC problems. If you purchase a motor drive without a built-in EMC filter, it is recommended that you select the EMC filters as shown below. For some motor drive models, you need to work with zero phase reactors to be compliant with EMC regulations. Refer to the table and figure below for the recommended model, setting method, and maximum motor cable length of the EMC filter and zero phase reactor.

							Em	ducte issio um N		E	adiate missio mum N	n
-	Motor Drive	Input			nended Model of hase Reactors	(Cable C1	e Len	-	Cal	ole Len C2	gth
Frame	Model #	Current (A)	Filter Model #	Zero Filase Reactors			30 m	I	C2 100 m		100 m	
						Pos	sition	to in	stall a z	zero phase reactor		
				DELTA	VAC®	*1	*2	*3	N/A	*1	*2	*3
Α	VFD1A6MS11ANSAA	6.8	EMF11AM21A	RF008X00A	T60006L2040W453				NA			
А	VFD1A6MS21ANSAA	3.8	EMF11AM21A	RF008X00A	T60006L2040W453		1	1	NA		~	1
А	VFD2A8MS21ANSAA	6.7	EMF11AM21A	RF008X00A	T60006L2040W453		1	1	NA		1	1
А	VFD1A6MS23ANSAA	2.2	EMF10AM23A	RF008X00A	T60006L2040W453		1	1	NA		1	1
А	VFD2A8MS23ANSAA	3.8	EMF10AM23A	RF008X00A	T60006L2040W453		1	1	NA		~	1
А	VFD4A8MS23ANSAA	6	EMF10AM23A	RF008X00A	T60006L2040W453		1	1	NA		~	1
А	VFD1A5MS43ANSAA	2.5	EMF6A0M43A	RF008X00A	T60006L2040W453			1	NA			1
А	VFD2A7MS43ANSAA	4.2	EMF6A0M43A	RF008X00A	T60006L2040W453			1	NA			1
А	VFD1A7MS53ANSAA	2.4	EMF6A0M63B	RF008X00A	T60006L2040W453				NA*			
А	VFD2A5MS11ANSAA	10.1	EMF11AM21A	RF008X00A	T60006L2040W453				NA			
В	VFD4A8MS21ANSAA	10.5	EMF11AM21A	RF008X00A	T60006L2040W453		1	1	NA		1	1
В	VFD7A5MS23ANSAA	9.6	EMF10AM23A	RF008X00A	T60006L2040W453		1	1	NA		1	1
В	VFD3A0MS53ANSAA	4.2	EMF6A0M63B	RF008X00A	T60006L2040W453				NA*			
В	VFD4A2MS43ANSAA	6.4	EMF6A0M43A	RF008X00A	T60006L2040W453			1	NA			1
С	VFD4A8MS11ANSAA	20.6	EMF27AM21B	RF008X00A	T60006L2040W453				NA			
C	VFD7A5MS21ANSAA	17.9	EMF27AM21B	RF008X00A	T60006L2040W453			1	NA			1
C	VFD11AMS21ANSAA	26.3	EMF27AM21B	RF008X00A	T60006L2040W453			1	NA			1
C	VFD11AMS23ANSAA	15	EMF24AM23B	RF008X00A	T60006L2040W453		1	1	NA		1	1
C	VFD17AMS23ANSAA	23.4	EMF24AM23B	RF008X00A	T60006L2040W453		1	1	NA		1	1
C	VFD5A5MS43ANSAA	7.2	EMF12AM43B	RF008X00A	T60006L2040W453				NA			
С	VFD4A2MS53ANSAA	5.8	EMF16AM63B	RF008X00A	T60006L2040W453				NA*			
С	VFD6A6MS53ANSAA	9.3	EMF16AM63B	RF008X00A	T60006L2040W453				NA			
С	VFD7A3MS43ANSAA	8.9	EMF12AM43B	RF008X00A	T60006L2040W453		1	1	NA		1	1
С	VFD9A0MS43ANSAA	11.6	EMF12AM43B	RF008X00A	T60006L2040W453		1	1	NA		1	1
D	VFD25AMS23ANSAA	32.4	EMF33AM23B	RF008X00A	I	1	1		NA	1	1	
D	VFD13AMS43ANSAA		EMF23AM43B		T60006L2050W565	1	1	1	NA	· ·	1	1
D	VFD9A9MS53ANSAA	13.4	EMF16AM63B	RF008X00A	T60006L2040W453	-			N/A			
D	VFD9A9MS53ANSAA	17.5	EMF16AM63B	RF008X00A	T60006L2040W453				N/A			
D	VFD17AMS43ANSAA		EMF23AM43B	RF008X00A	T60006L2050W565	1	1	1	NA	1	1	1
E	VFD33AMS23ANSAA		B84143D0075R127	RF008X00A	T60006L2050W565		· /	· ·	NA		· ·	· ·
E	VFD49AMS23ANSAA	61.2	B84143D0075R127	RF008X00A	T60006L2050W565		▼ ✓	▼ ✓	NA		▼ ✓	✓ ✓
E	VFD25AMS43ANSAA	30.8	B84143D0050R127	RF008X00A	T60006L2050W565		•	•	NA		•	
E	VFD32AMS43ANSAA		B84143D0050R127	RF008X00A	T60006L2050W565		1	1	NA		1	1
F	VFD65AMS23ANSAA		B84143D0090R127	RF008X00A	T60006L2050W565		• •	v √	NA		v ✓	✓ ✓
F	VFD38AMS43ANSAA	45.7	B84143D0090R127	RF008X00A	T60006L2050W565		✓ ✓	✓ ✓	NA		✓ ✓	✓ ✓
F	VFD45AMS43ANSAA		B84143D0075R127	RF008X00A	T60006L2050W565		✓ ✓		NA		v ✓	✓ ✓
		55.5	504140500751(127		1000002200000000	I		, v			v	

Note 1: It is not necessary to add a zero phase reactor for passing the C2 conducted emission test. Table 7-6-1

The maximum motor cable length of the conducted emission C2 class for VFD1A7MS53ANSAA, VFD3A0MS53ANSAA and VFD4A2MS53ANSAA is 75 m, others are 100 m.