CERTIFICATE OF COMPLIANCE

Certificate Number 20161207-E208033
Report Reference E208033-20010717
Issue Date 2016-DECEMBER-07

Issued to: TYCO ELECTRONICS CORP
2901 FULLING MILL RD
MIDDLETOWN PA 17057-3170

This is to certify that representative samples of

COMPONENT - SWITCHES, INDUSTRIAL CONTROL "See Addendum Page"

Have been investigated by UL in accordance with the Standard(s) indicated on this Certificate.

Only those products bearing the UL Certification Mark should be considered as being covered by UL's Certification and Follow-Up Service.

The UL Recognized Component Mark generally consists of the manufacturer's identification and catalog number, model number or other product designation as specified under "Marking" for the particular Recognition as published in the appropriate UL Directory. As a supplementary means of identifying products that have been produced under UL's Component Recognition Program, UL's Recognized Component Mark: ㄴI, may be used in conjunction with the required Recognized Marks. The Recognized Component Mark is required when specified in the UL Directory preceding the recognitions or under "Markings" for the individual recognitions.

Recognized components are incomplete in certain constructional features or restricted in performance capabilities and are intended for use as components of complete equipment submitted for investigation rather than for direct separate installation in the field. The final acceptance of the component is dependent upon its installation and use in complete equipment submitted to UL LLC.

Look for the UL Certification Mark on the product.

Bruce Mahrenholz, Director North American Certification Program
UL LLC
Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please
contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/

CERTIFICATE OF COMPLIANCE

Certificate Number 20161207-E208033
Report Reference E208033-20010717
Issue Date 2016-DECEMBER-07

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements.

Component - USR, CNR, Switches, Industrial Control, Contactor, Models EV200, LEV200, and LEV100, followed by an alpha numeric code of five digits, may be followed by two numbers.

EVC followed by 135 , followed by four digit alphanumeric code, may be followed by two numbers, followed by A or B.

Component - USR, CNR, Switches, Industrial Control, Contactor, Models IHV100 and IHV200, followed by an alpha numeric code of five digits, may be followed by two numbers.

Note: IHV100 Series is same as LEV100 Series except model names and Nomenclature. IHV200 Series is same as EV200 Series except model names and Nomenclature.

Bruce Mahrenholz, Director North American Certification Program
UL LLC
Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/

File E208033
Project 01SC07010

Issued: July 17, 2001
Revised: February 7, 2006

REPORT

ON

COMPONENT - SWITCHES, INDUSTRIAL CONTROL

Tyco Electronics
Kilovac Corp., Div. Of
Carpenteria, California

Copyright © 2001 Underwriters Laboratories Inc.
Underwriters Laboratories Inc. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety.

Underwriters Laboratories Inc. authorizes the above-named company to reproduce that portion of this Report consisting of this Cover Page through Page 3.

File E208033 Vol. 1 Sec. 4 Page 1 Issued: 2001-07-17 and Report Revised: 2016-12-30

DESCRIPTION

PRODUCT COVERED:

Component - USR, CNR, Switches, Industrial Control, Contactor, Models EV200, LEV200, and LEV100, followed by an alpha numeric code of five digits, may be followed by two numbers.

EVC followed by 135, followed by four digit alphanumeric code, may be followed by two numbers, followed by A or B.

Component - USR, CNR, Switches, Industrial Control, Contactor, Models IHV100 and IHV200, followed by an alpha numeric code of five digits, may be followed by two numbers.

Note: IHV100 Series is same as LEV100 Series except model names and Nomenclature.

IHV200 Series is same as EV200 Series except model names and
Nomenclature.

GENERAL:

These devices are open-type, single-pole, single-throw, normally open High Voltage DC relays intended for use in industrial applications with specific make/break characteristics. They are not intended for general use. The contact compartment is completely sealed, and filled with Nitrogen, Sulfur Hexafluoride (SF6) or other gas to decrease the effects of arcing and oxidation on the contacts. The relays are provided with a solid state economizer circuit for more efficient coil operation. In addition, the relay might be provided with optional auxiliary contacts.

RATINGS for LEV200 and EV200 Series (Rated for maximum ambient of $85^{\circ} \mathrm{C}$):


```
File E208033 Vol. 1 Sec. 4 Page 2 Issued: 2001-07-17
                                and Report Revised: 2016-12-30
RATINGS for LEV100A Series (Rated for maximum ambient of 75 ' C):
Contacts-Continuous : 100 A, 30 V dc
Normal Make/Normal Break: 100 A, 400 V dc, }6000\mathrm{ cycles, 0.18 s on, 1 s off
    50 A, 400 V dc, 50000 cycles, 0.185 s on, 1 s off
Abnormal Make/Break : 200 A, 400 V dc, 500 cycles, 0.225 s on, 1 s off
Abnormal Break : 1000A, 400 V dc, 5 cycles, 0.05 s on, 60 s off
Coil : 12 Vdc, 24 Vdc, 48 Vdc
    See nomenclature, for additional voltage ratings.
RATINGS for LEV100H, LEV100G, LEV100K Series (Rated for maximum ambient of
40 ' C):
Contacts-Continuous : 100 A, 400 V dc
Normal Make/Normal Break: 50 A, 400 V dc, }6000\mathrm{ cycles, 0.18 s on, 1 s off
Coil : 12 Vdc, 24 Vdc, 48 Vdc
Auxiliary Contacts : 125Vac, 24Vdc, 3A, resistive
```

| File E208033 Vol. 1Sec. 4
 and Report | Page 3 | Issued: 2001-07-17
 Revised: |
| :---: | :---: | :---: | :---: |
| | | 2016-12-30 |

RATINGS for EVC135 Series (Rated for maximum ambient of $75^{\circ} \mathrm{C}$):
EVC135 with Suffix A - Ceramic magnets

Contacts-continuous:	100 A, 30 V dc
Normal Make/break:	100 A, 400 V dc, 6000 cycles, 0.18 s on, 1 s off 50 A, 400 V dc, 50000 cycles, 0.185 s on, 1 s off
Abnormal Make/break:	200 A, 400 V dc, 500 cycles, 0.225 s on, 1 s off
Abnormal break:	1000A, 400 V dc, 5 cycles, 0.05 s on, 60 s off
Coil	12 VDC $(15.3 \mathrm{Ohms})$ 12 VDC $(26 \mathrm{Ohms})$ 12VDC $(3.8$ Ohms $)$ 24VDC $(96 \mathrm{Ohms})$

EVC135 with Suffix B - Neodymium magnets

Contacts-continuous:	100 A, 30 V dc
Normal Make/break:	100 A, 400 V dc, 6000 cycles, 0.18 s on, 1 s off $50 \mathrm{~A}, 400 \mathrm{~V}$ dc, 50000 cycles, 0.185 s on, 1 s off
Abnormal Make/break:	200 A, 400 V dc, 500 cycles, 0.225 s on, 1 s off 90A, 600VDC, 50 cycles, 1 s on, 9 s off
Abnormal break:	1000A, 400 V dc, 5 cycles, 0.05 s on, 60 s off
Coil	$\begin{array}{ll} \hline 12 \mathrm{VDC} & (15.3 \mathrm{Ohms}) \\ 12 \mathrm{VDC} & (26 \mathrm{Ohms}) \\ 12 \mathrm{VDC} & (3.8 \mathrm{Ohms}) \\ \text { 24VDC } & (96 \mathrm{Ohms}) \\ \hline \end{array}$

File E208033	Vol. 1	Sec. 4	Page 4	Issued:	2001-07-17
		nd Report		Revise	2016-12-3

NOMENCLATURE:

Other letters and numbers - Define alternate nominal voltages with the same functional coil characteristics.
5. Coil Wire Lead Length
$A=390 \mathrm{~mm}\left(15.3^{\prime \prime}\right)$
$B=152 \mathrm{~mm}\left(6^{\prime \prime}\right)$
D = Wires routed to coil connector attached to relay.
$F=600 \mathrm{~mm}\left(23.6^{\prime \prime}\right)$
$\mathrm{G}=900 \mathrm{~mm}\left(35.4^{\prime \prime}\right)$
H $=1200 \mathrm{~mm}$ (47")
$J=1500 \mathrm{~mm}$ (59")
$\mathrm{N}=\mathrm{No}$ Coil wires. Alternate connection indicated next.
Other Letters and numbers - Define alternate wire lengths
6. Coil Terminal Connector

A $=$ Threaded Studs
B = Yazaki 7282-558-10 male (or equivalent)
C = Molex Mini-Fit JR, 2 CKT, female 18-24 (or equivalent).
$\mathrm{E}=\mathrm{D}$ Plug attached to housing
F = D Plug on flying lead
$\mathrm{N}=\mathrm{No}$ connector
Other letters and numbers - Define alternate connector configurations.
7. Mounting and Power Terminals
$A=$ Bottom Mount, with Male threaded power terminals M8x1.25, 16.5 mm length
B = Bottom Mount, with Female threaded power terminals $\frac{1 / 4-20,0.40 " ~}{\text { " }}$ minimum depth
C = Bottom Mount, Plug in power terminals
$D=$ Bottom Mount, Female threaded power terminals M6 X $1,10 \mathrm{~mm}$ minimum depth.
F = Side Mount, with Male threaded power terminals M8x1.25, 16.5 mm length.
Other letters and numbers - Define alternate mounting and power
terminal connections for the 200A series contactors.
8. Customer Special Designator.

01 thru 99 may be used to identify a customer specific product.

```
File E208033
Vol. 1
Sec. 4
Page 6
Issued: 2001-07-17
and Report
Revised: 2017-01-05
```

*

NOMENCLATURE :

IHV	200	A	D	A	N	A	01
1	2	3	4	5	6	7	8
1.	Series	Designation.					
2.	Current	Rating.					
	$200=200 \mathrm{~A}$						

3. Form

A = Normally Open
H = Normally Open with SPST-NO Aux. Contacts
$J=$ Normally Open with SPST-NC Aux Contacts
K = Normally Open with SPDT Aux Contacts
L = Normally Open with two Aux contacts, SPST-NO, and SPST-NC
Other letters and numbers - allowed if main contacts are "Normally
Open" and up to two auxiliary contacts are included.
4. Coil Voltage

A = 12-24 V dc using PWM economizer attached.
$\mathrm{D}=48-72 \mathrm{~V}$ dc using PWM economizer attached.
F $=15 \mathrm{~V}$ dc. Economizer not required
$\mathrm{H}=36 \mathrm{~V}$ dc. Economizer not required
$J=72 \mathrm{~V}$ dc using PWM economizer attached.
$1=$ Same as 'A' with no economizer circuit provided (see Conditions Of Acceptability)
2 = Same as ' D^{\prime} with no economizer circuit provided(see Conditions Of Acceptability)
3 = Same as ' J ' with no economizer circuit provided(see Conditions Of Acceptability)
$4=12 \mathrm{~V}$ dc. Economizer not required
$5=24 \mathrm{~V}$ dc. Economizer not required
$6=48 \mathrm{~V}$ dc. Economizer not required

Other letters and numbers - Define alternate nominal voltages with the same functional coil characteristics.
5. Coil Wire Lead Length
$A=390 \mathrm{~mm}\left(15.3^{\prime \prime}\right)$
$B=152 \mathrm{~mm}\left(6^{\prime \prime}\right)$
D = Wires routed to coil connector attached to relay.
$F=600 \mathrm{~mm}\left(23.6^{\prime \prime}\right)$
$\mathrm{G}=900 \mathrm{~mm}\left(35.4^{\prime \prime}\right)$
$\mathrm{H}=1200 \mathrm{~mm}\left(47^{\prime \prime}\right)$
$J=1500 \mathrm{~mm}\left(59^{\prime \prime}\right)$
$\mathrm{N}=\mathrm{No}$ Coil wires. Alternate connection indicated next.
Other Letters and numbers - Define alternate wire lengths
6. Coil Terminal Connector
$\mathrm{A}=$ Threaded Studs
B = Yazaki 7282-558-10 male (or equivalent)
C = Molex Mini-Fit JR, 2 CKT, female 18-24 (or equivalent).
$E=D$ Plug attached to housing
F = D Plug on flying lead
$\mathrm{N}=\mathrm{No}$ connector
Other letters and numbers - Define alternate connector configurations.
7. Mounting and Power Terminals
$A=$ Bottom Mount, with Male threaded power terminals M8x1.25, 16.5 mm length
$B=$ Bottom Mount, with Female threaded power terminals $\frac{1 / 4}{4}-20,0.40^{\prime \prime}$ minimum depth
C = Bottom Mount, Plug in power terminals
$D=$ Bottom Mount, Female threaded power terminals M6 X 1 , 10 mm minimum depth.
F = Side Mount, with Male threaded power terminals M8x1.25, 16.5 mm length.
Other letters and numbers - Define alternate mounting and power terminal connections for the 200A series contactors.
8. Customer Special Designator.

01 thru 99 may be used to identify a customer specific product.

File E208033	Vol. 1	Sec. 4	Page 8	Issued:	2001-07-17
		and Report		Revised:	2016-12-30

NOMENCLATURE:

LEV	100	A	6	A	N	G	01
1	2	3	4	5	6	7	8

1. Series Designation.
2. Current Rating.
$100=100 \mathrm{~A}$
3. Form

A = Normally Open
H = Normally Open with SPST-NO Aux. Contacts
G = Normally Open +1 SPST N/C aux contact
K = Normally Open + 1 SPDT aux contact
4. Coil Voltage
$4=12 \mathrm{~V}$ dc.
$5=24 \mathrm{~V} \mathrm{dc}$.
$6=48 \mathrm{~V}$ dc.
5. Coil Wire Lead Length
$A=390 \mathrm{~mm}\left(15.3^{\prime \prime}\right)$
$B=6$ inchs (152.4 mm)
$C=10$ inches (254 mm)
6. Coil Terminal Connector
$\mathrm{N}=\mathrm{No}$ connector
7. Mounting and Power Terminals
$\mathrm{G}=$ Bottom Mount, Female threaded power terminals, M5 x . 8 , 10 mm minimum depth.
H = Side Mount, Female threaded power terminals, M5 x . 8 , 10 mm minimum depth.
8. Customer Special Designator.

Blank - not defined
01 thru 99 may be used to identify a customer specific product.

File E208033 Vol. 1	Sec. 4		
and Report		\quad Page 9 \quad	Issued: 2001-07-17
---:			
Revised: $2016-12-30$			

NOMENCLATURE:

EVC	135	-	4	B	N	G	-	xx	A
1	2		3	4	5	6		7	8

1. $\mathrm{EVC}=$ Series Designator
2. $135=100 \mathrm{~A}$ Continuous Current
3. Coil Voltage
$4=12 \mathrm{VDC}$ (15.3 Ohms Coil)
5 = 12VDC (26 Ohms Coil)
$6=12 \mathrm{VDC}$ (3.8 Ohms Coil)
7 = 24VDC (96 Ohms Coil)
4. Coil Wire Length:
$A=15$ inches (380 mm)
$B=8$ inches (150 mm)
5. Coil Termination:
$\mathrm{N}=$ None
C = Customer Specified Connector
6. Mounting and Power Terminals:
$\mathrm{G}=$ Bottom Mount (2 x \#8) M5 x 10
$\mathrm{H}=$ Side Mount (2 x \#8) M5 x 10
7. Customer Special Designator:

Blank - not defined
01 thru 99 may be used to identify a customer specific product.
8. Magnet Designator
$\mathrm{A}=$ Ceramic
B = Neodymium
*

File E208033	Vol. 1	Sec. 4	Page 10	Issued:	2001-07-17
		Report		ev	2016

NOMENCLATURE:

4. Coil Voltage
$4=12 \mathrm{~V} \mathrm{dc}$.
$5=24 \mathrm{~V} \mathrm{dc}$.
$6=48 \mathrm{~V}$ dc.
5. Coil Wire Lead Length
$A=390 \mathrm{~mm}\left(15.3^{\prime \prime}\right)$
$B=6$ inchs (152.4 mm)
$C=10$ inches (254 mm)
Other Letters and numbers - Define alternate wire lengths
6. Coil Terminal Connector
$\mathrm{N}=\mathrm{No}$ connector
D $=$ Connector on flying lead
Other letters and numbers - Define alternate connector configurations.
7. Mounting and Power Terminals

```
    G = Bottom Mount, Female threaded power terminals, M5 x . 8, 10mm
        minimum depth.
    H = Side Mount, Female threaded power terminals, M5 x . 8, 10mm minimum
        depth.
```

8. Customer Special Designator.

Blank - not defined
01 thru 99 may be used to identify a customer specific product.

ENGINEERING CONSIDERATIONS (NOT FOR FIELD REPRESENTATIVE'S USE):

Use - For use only in complete equipment where the acceptability of the combination has been determined by Underwriters Laboratories, Inc.

This component has been judged on the basis of the required spacings in the Standard for Industrial Control Equipment, UL 508, Seventeenth Edition, Table 36.1, Column A, which would cover the device itself if submitted for unrestricted Listing.

Conditions of Acceptability -

1. Open-Type devices are to be mounted in complete enclosures of adequate strength and thickness, with acceptable spacings being provided.
2. These devices are suitable for factory wiring only.
3. Temperature testing was conducted at the maximum current rating (200 A) for the LEV and EV 200 Series using parallel No. 2/O AWG conductors connected to the contact terminals by crimp ring lugs inside an enclosure measuring 150% of relay dimensions. The ambient was $85^{\circ} \mathrm{C}$. Consideration should be given to a repeat of the Temperature Test should the end installation have a smaller enclosure, or if smaller wiring is used (by ratio at lower amperage). The temperature on the housing should not exceed $130^{\circ} \mathrm{C}$.

Testing was additionally completed at 350 A in a $50^{\circ} \mathrm{C}$ ambient using No. 500 Kcmil AWG conductors connected to the contact terminals by crimp ring lugs inside an enclosure measuring 150% of relay dimensions. Consideration shall be given to a repeat of the Temperature Test should the end installation have a smaller enclosure or if smaller wiring is used (by ratio at lower amperage). The temperature on the Cover near terminals or on the Base shshall not exceed $130^{\circ} \mathrm{C}$.
4. For Model no. LEV100A, all testing was conducted with a single No. 4 AWG conductor. For the temperature test the conductors were connected to each of the contact terminals using crimp type ring lugs. The relay was placed in an enclosure measuring 11 by 9 by 5 inches, and brought to maximum ambient of $75^{\circ} \mathrm{C}$ in a heated chamber. Consideration should be given to repeat the temperature and overload/endurance tests in the endproduct device should the enclosure be smaller, or if a smaller wire gauge is used. The temperature of the housing should not exceed $130^{\circ} \mathrm{C}$.
5. These devices have been evaluated for specific Make/Break characteristics as requested by the manufacturer. They are not intended for general industrial applications. The Test Record should be reviewed to determine whether these devices are suitable for use in the end-product application without additional testing.
6. When the component breakdown test was conducted on the coil economizer between the 5 V and 12 V traces, the contacts closed and remained closed carrying 200 A continuously. The contacts opened when the coil voltage was removed. The end product shall have provision to open the contacts by removing the power to the coil, in case if shorting occurs in the coil economizer circuit.
7. Models not provided with economizer circuits for the coils shall be supplied by a current source driver circuit with the following maximum parameters:
a. Model with coil suffix "1": 2.5Amps - 4.1Amps peak, max 110 ms peak time. Maximum 0.75 Amps continuous steady state current.
b. Model with coil suffix "2": 1.0Amps - 1.2Amps peak, max 110 ms peak time. Maximum 0.25Amps continuous steady state current.
C. Model with coil suffix "3": 0.48Amps - 0.63Amps peak, max 110 ms peak time. Maximum 0.140Amps continuous steady state current.
9. When the component breakdown test was conducted on the coil rectifier outputs, the contacts opened and remained open. The device was rendered inoperative.
10. LEV200 and EV200 Series models were tested at 1000 VDC, 350 A for carry current only. The relays were not evaluated for load switching (make/break current). Testing is required for use at this rating if switching a load.
11. Models LEV100H(G) (K) were tested in an enclosure measuring 11 by 9 by 5 inches.

