Technical data

General

		MC1...	MC2...
Rated thermal current Ith $\theta \leq 60^{\circ}(1)$	(A)	20	20
Rated operational current le ${ }^{(2)}$ ($3 \times 440 \mathrm{~V}, 50 / 60 \mathrm{~Hz}, \mathrm{AC}-3$)	(A)	9	12
Maximum number of poles		4	4
Rated insulation voltage Ui	(V)	750	750
Rated operational voltage Ue	(V)	690	690

(1) Insulated terminal type B 2.8×0.8 with wire $1 \mathrm{~mm}^{2}$: $l e=8 A$, design DIN 46247
(2) Max. operational current AC3, 3 -phase $\leq 440 \mathrm{~V}$, according to IEC 947-4-1

Conformity to standards

IEC/EN 60947-1 CSA C22.2/14 SEV 10254
IEC/EN 60947-4-1
CENELEC HD 419 JIS C8325
IEC/EN 60947-5-1
EN 50003
EN 50005
VDE 0660
NFC 63110
BS 4794
EN 50012

Approvals

CULus	NEMKO	SEMKO
SETI	DEMKO	RINA
IMQ		
Lloyd's Register	Bureau Veritas	CE

Ambient conditions

Storage temperature	$-55^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Operation temperature	$-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Altitude	up to 3000 m
	from 3000 up to 4000 m
	nominal values
	from 4000 up to 5000 m

Climatic resistance

Cold (72h)
Cry heat (96h)
Temperature
Temperature
Relative humidity
Humid heat (56h)
Temperature
Relative humidity

Shock resistance (IEC 68-2-27)
$\left.\begin{array}{l}\text { Continuously closed (at 0.8Us) } \\ \text { Admissible acceleration } \\ \text { Admpulse duration }\end{array}\right)$

Vibration resistance (IEC 68-2-6)

Continuously closed lat 0.8Us)	
Admissible acceleration	15g
Sweep between	$10-200 \mathrm{~Hz}$
Continuously opened (no voltage)	
Admissible acceleration	$5 \mathrm{~g}(\mathrm{AC})-35 \mathrm{~g}(\mathrm{DC})$
Sweep between	$10-200 \mathrm{~Hz}$

Mounting positions

Terminal capacity

Terminal with M 3.5 screw		Tightening torque
(with pozidrive head and safety flange)		$0.8 \mathrm{Nm}-7 \mathrm{Lb} / \mathrm{in}$
Solid wire	mm^{2}	0.75 to $2 \times 2 \mathrm{w}$.
Flexible wire without terminal	mm^{2}	0.75 to $2.5 \times 2 \mathrm{w}$.
Flexible wire without terminal with cap		0.75 to $2.5 \times 1 \mathrm{w}$.
	mm^{2}	0.75 to $1 \times 2 \mathrm{w}$.
Ring terminal		$0.8 \mathrm{Nm}-7 \mathrm{Lb} / \mathrm{in}$
Faston terminal 2.8-2 insulated terminals	mm^{2}	$1 \times 2 \mathrm{w}$.
Terminal for printed circuit (\% of PCB hole)		1.8 mm
Ring terminal cap		7.8 mm
Fork terminal cap		6.5 mm

Control circuit

		MC_A...	MC_C...	MC_I...	MC_K...	MC_C...W
Rated insulation voltage (Ui)	(V)	750	750	750	750	750
Standard voltages (Us)						
$50 \mathrm{~Hz}(\mathrm{~V})$		$24 . . .690$	-	-	-	-
$60 \mathrm{~Hz}(\mathrm{~V})$		$6 \ldots 600$	-	-	-	-
DC	(V)	-	6 ... 440	24	24	$12 . . .440$
Operating voltages limits						
Operating ${ }^{11)}$	xUs	$0.8 . . .1 .1$	$0.8 . . .1 .1$	$0.8 \ldots 1.25$	$0.7 \ldots 1.25$	$0.7 \ldots 1.3$
Drop-out	xUs	$0.35 \ldots 0.55$	0.15 ... 0.4	$0.15 \ldots 0.3$	0.15 ... 0.35	$0.15 \ldots 0.3$
Operating voltages limits with coil $50 / 60 \mathrm{~Hz}$						
Operating	xUs	$0.8 . . .1 .1$	-	-	-	-
Drop-out	xUs	$0.35 \ldots 0.55$	-	-	-	-
Consumption						
50 or 60 Hz - monofrequency coil						
Pick-up	(VA)	26	-	-	-	-
Seal	(VA)	4	-	-	-	-
$50 / 60 \mathrm{~Hz}$ - bifrequency coil						
Pick-up	(VA)	32	-	-	-	-
Seal	(VA)	6	-	-	-	-
DC	(W)	-	3	1.2	2	4
Power factor						
Magnetic circuit open	$(\cos \varphi)$	0.8	-	-	-	-
Magnetic circuit closed	$(\cos \varphi)$	0.35	-	-	-	-
Power dissipation	(W)	1.4	3	1.2	2	4
Opening and closing times						
Values between $\pm \%$ Us	\%	+10 ...-20	+10 ...-20	+25 ...30	+25 ...-30	+30 ...-30
Time on energisation NO	(ms)	$6 . .13$	$22 . .36$	$30 . . .70$	$20 . . .50$	$17 . . .28$
Time on de-energisation NC	(ms)	8... 16	9... 12	$9 . .16$	9... 16	$9 \ldots 12$
Time on energisation NC	(ms)	5 ... 11	$18 . . .27$	$20 . . .45$	$18 . . .35$	$12 . . .25$
Time on de-energisation NO	(ms)	6 ... 13	$5 . . .7$	5... 9	5...9	$5 . . .7$
Values at Us						
Time on excitation NO	(ms)	7... 12	$24 . . .27$	$25 . . .45$	$25 . . .40$	$11 . . .23$
Time on desexcitation NC	(ms)	8... 16	$9 . . .11$	9... 16	$9 . .16$	$9 . . .11$
Time on excitation NC	(ms)	$6 . .10$	$20 . . .26$	$25 . . .35$	$20 . .30$	$15 . . .21$
Time on desexcitation NO	(ms)	$6 . .13$	5... 8	5...9	$5 \ldots 8$	5... 8
Maximum time without voltage	(ms)	3	3	3	3	3
Mechanical endurance						
Monofrequency coil	10^{6} ops.	>15	-	-	-	-
Bifrequency coil	$10^{6} \mathrm{ops}$.	>10	-	-	-	-
DC	10^{6} ops.	-	10	10	10	10
Maximum rate						
No load Monofrequency coil	ops./h	9000	-	-	-	-
Bifrequency coil	ops./h	3600	-	-	-	-
DC	ops./h	-	9000	9000	9000	9000
$\mathrm{AC1}$ and $\mathrm{AC3}$ lat rated power)	ops./h	1200	1200	1200	1200	1200
AC4 (at rated power)	ops./h	300	300	300	300	300

Main circuit (poles)

		MC1...	MC2...
Rated insulation voltage (Ui) (acc. IEC 947-4)	(V)	750	750
Rated thermal current (lth) $\theta \leq 60^{\circ}(1)$	(A)	20	20
Frequency limits	(Hz)	0... 400	0... 400
Making capacity (r.m.s.) Ue $\leq 690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	160	160
Breaking capacity (r.m.s.) Ue $\leq 440 \mathrm{~V}$	(A)	106	106
$\mathrm{Ue}=500 \mathrm{~V}$	(A)	90	90
$\mathrm{Ue}=690 \mathrm{~V}$	(A)	80	90
Short-time current			
0.3 sec .	(A)	470	470
1 sec .	(A)	250	250
5 sec .	(A)	125	125
10 sec .	(A)	95	95
30 sec .	(A)	70	70
1 min .	(A)	50	50
3 min .	(A)	40	40
Recovery time	min.	10	10
Protec. against short-circuits (IEC 947-4). w/o TOR			
Coordination type "1" gL/gG	(A)	32	32
Coordination type "2" gL/gG	(A)	20	20
w/o welding contacts $\mathrm{gL} / \mathrm{gG}$	(A)	16	16
Circuit breaker rating (curve G CEE 19.1)		20	20
Impedance per pole	$(\mathrm{m} \Omega)$	1.5	1.5
Power dissipation per pole			
AC1	(W)	0.6	0.6
AC3	(W)	0.128	0.228
Insulation resistance			
Between adjacent poles	(MS)	>10	>10
Between pole and earth	$(\mathrm{M} \Omega$)	>10	>10
Between input and output	$(\mathrm{M} \Omega$)	>10	> 10
Guaranteed no overlap between NO and NC contacts			
Space	(mm)	1	1
Time	(ms)	>2	>2

(1) Insulated terminal type B 2.8×0.8 with wire $1 \mathrm{~mm}^{2}$ le $=8 \mathrm{~A}$
acc. to DIN 46247

Electrical endurance
Category AC1

Category AC3

Category AC4

Internal auxiliary contacts

| MC1 / MC2 | | |
| :---: | :---: | :---: | :---: | :---: |
| Rated insulation voltage (Ui) IEC $60947-5$ | (V) | 750 |
| Rated thermal current (Ith) $\theta \leq 60^{\circ} C^{(1)}$ | | |\quad (A) 16

(1) Insulated terminal type B 2.8×0.8 with wire $1 \mathrm{~mm}^{2} \mathrm{Ie}=8 \mathrm{~A} \mathrm{acc}$. with DIN 46247

AC characteristics

DC characteristics

DC Inductive circuit. DC-13 L/R $\leq 15 \mathrm{~ms}$ Electrical endurance $10^{6} \mathrm{ops}$.

DC Inductive circuit. DC-13 L/R $\leq 1 \mathrm{~ms}$ Electrical endurance $10^{6} \mathrm{ops}$.

DłDP |Dગ!uપวə1

Instantaneous auxiliary contact blocks

MACN..., MACL..

Rated insulation voltage (Ui) acc. IEC 60947-1 (V) 750
Rated thermal current (Ith) $\theta \leq 60^{\circ}{ }^{(11)}$
(A) 10

Making capacity (r.m.s.) according with IEC/EN 60947-5-1

AC-15	$\mathrm{Ue} \leq 220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	73
	$\mathrm{Ue}=380 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	38
	$\mathrm{Ue}=690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	22
DC-13	Ue $\leq 100 \mathrm{~V}$ DC	(A)	2.6
$\mathrm{L} / \mathrm{R}=100 \mathrm{~ms}$	$\mathrm{Ue}=220 \mathrm{~V}$ DC	(A)	1
	$\mathrm{Ue}=440 \mathrm{~V}$ DC	(A)	0.6

Breaking capacity (r.m.s.) acc. IEC/EN 60947-5-1

AC-15	Ue $\leq 220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	73
	$\mathrm{Ue}=380 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	38
	$\mathrm{Ue}=690 \mathrm{~V} 50 / 60 \mathrm{~Hz}$	(A)	22
DC-13	Ue $\leq 100 \mathrm{~V}$ DC	(A)	2
LR $=100 \mathrm{~ms}$	$\mathrm{Ue}=220 \mathrm{~V}$ DC	(A)	0,8
	$\mathrm{Ue}=440 \mathrm{~V}$ DC	(A)	0.4

73
38
22
2
0.8
0.4

AC-15	according to IEC 60947	120V-6A
		230V-6A
		400V-4A
		500V-1A
		600V-1A
	according to UL, CSA	A600
DC-13	according to IEC 60947	24V-4A
		48V-2A
		110V-0.7A
		220V-0.3A
		440V-0.1A
	according to UL, CSA	Q600
Minimum operational power (operational safety)		$5 \mathrm{~mA}, 17 \mathrm{~V}$

Short-circuit protection
(A) 10
(max. class gl fuse) w/o welding
Insulation resistance

$$
\begin{array}{lll}
\text { Between adjacent contacts } & (\mathrm{M} \Omega) & >10 \\
\text { Between contacts an earth } & (\mathrm{M} \Omega) & >10 \\
\text { Between input and output } & (\mathrm{M} \Omega) & >10
\end{array}
$$

Guaranteed no overlap between NO and NC contacts

AC characteristics

DC characteristics

DC Inductive circuit. DC-13 L/R $\leq 100 \mathrm{~ms}$ Electrical endurance $10^{6} \mathrm{ops}$.

DC Inductive circuit. DC-13 L/R $\leq 15 \mathrm{~ms}$ Electrical endurance $10^{6} \mathrm{ops}$.

(1) 1 pole in series (2) 2 poles in series (3) 3 poles in series

DC Inductive circuit. DC-13 L/R $\leq 1 \mathrm{~ms}$ Electrical endurance $10^{6} \mathrm{ops}$.

Electronic timer block

Contact sequence

	Main contact (NO) 1	Main contact (NC) b	Auxiliary contact (NO)	Auxiliary contact (NC)
Three-pole minicontactor				
MC...310...	$\begin{array}{\|l\|l} \hline 0 & 2 \\ \hline & 3.5 \\ \hline & \\ \hline \end{array}$		$\begin{array}{\|l\|l} 0 & 2.33 .5 \\ \hline & \\ \hline \end{array}$	
MC...301...	$\begin{array}{\|l\|l} 0 & 2 \\ \hline \end{array}$			$0 \quad 1.2$
Four-pole minicontactor				
MC...400...	$\begin{array}{l\|l\|} \hline 0 & 2 \\ \hline & 3.5 \\ \hline & \\ \hline \end{array}$			
MC...B00...		$\begin{array}{r\|rr} 0 & 1.2 & 3.5 \\ \hline & & \\ \hline \end{array}$		
MC...A00...		$\begin{array}{\|c\|c\|} 0 & 1.2 \\ \hline & 3.5 \\ \hline & \\ \hline \end{array}$		
Auxiliary contact block				
MAC...			$\begin{array}{\|l\|l\|} \hline 0 & 2.13 .5 \\ \hline & \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 0 & 1 \end{array} 3.50 .$
MAR...			$\begin{aligned} & 0 \quad 2.13 .5 \\ & \hline \\ & \hline \end{aligned}$	0 1$\quad 3.5$

Series M

Terminal numbering in accordance with EN 50012

	Final structure of the contactor	Auxiliary contactors			Possible basic contactors + Auxiliary contact blocks to be added
		Combination Description	$\left.\right\|_{\text {NO }} ^{1}$	$\left.\right\|_{\mathrm{NC}} ^{4}$	
Without auxiliary contact blocks					
		01E	0	1	MC_A301A...
		10E	1	0	MC_A310A...
Auxiliary contact blocks front mounted with two or four contacts					
		11 E	1	1	MC_A310A... + MACN211A
		21 E	2	1	MC_A310A... + MACN211A
		12E	1	2	MC_A310A... + MACN202A
		31 E	3	1	MC_A310A... + MACN431A
		41 E	4	1	MC_A310A... + MACN431A
		22 E	2	2	MC_A310A... + MACN422A
		32 E	3	2	MC_A310A... + MACN422A
		13E	1	3	$\begin{aligned} & \text { MC_A310A... } \\ & + \text { MACN413A } \end{aligned}$
		23 E	2	3	MC_A310A... + MACN413A
Auxiliary contact blocks lateral mounted with one contact					
		11E	1	1	MC_A310A... + MACL101A
		21E	2	1	$\begin{aligned} & \text { MC_A310A... } \\ & + \text { MACL101A + MACL110A } \end{aligned}$
		12E	1	2	MC_A310A... + MACL101A + MACL101A

Wiring diagrams

Basic three-pole contactors. (EN 50012)

Instantaneous auxiliary contact
blocks. (EN 50012)

MACL110A	MACL101A _	MACN211A
MACN202A	MACN431A	MACN422A_

MACN413A

Instantaneous auxiliary contact blocks. (EN 50005)

Base four-pole contactors. (en 50005)

Instantaneous auxiliary contact blocks. (EN 50005)

MARL110A	MARL101A	MARL110A_S
MARL101A_S	MARN220A_	MARN211A
MARN202A	MARN440A	MARN431A

MARN422A_

53	61	71	83
NO	NC	NC	NO
54	62	72	84

MARN404A

Voltage suppressor block

