Electrical Sector Solutions

E:T•N

Powering Business Worldwide

Volume 1 -Residential and Light Commercial

Volume 2-Commercial Distribution

Volume 3-Power Distribution and Control Assemblies

Volume 4-Circuit Protection

Volume 5-Motor Control and Protection

Volume 6-Solid-State Motor Control

Tab 1-Reduced Voltage Motor Starters
V6-T1-1
Tab 2-Adjustable Frequency Drives
V6-T2-1
Appendix 1-Eaton Terms \& Conditions
V6-A1-1
Appendix 2-Catalog Parent Number Index
V6-A2-1
Appendix 3-Alphabetical Product Index
V6-A3-1

Volume 7-Logic Control, Operator Interface and Connectivity Solutions

Dimensions, Weights and Ratings

Dimensions, weights and ratings given in this catalog are approximate and should not be used for construction purposes. Drawings containing exact dimensions are available upon request. All listed product specifications and ratings are subject to change without notice. Photographs are representative of production units.

Terms and Conditions

All prices and discounts are subject to change without notice. When price changes occur, they are published in the Eaton Corporation Price and Availability Digest (PAD). All orders accepted by Eaton's electrical sector are subject to the general terms and conditions as set forth in Appendix 1 -Eaton Terms \& Conditions.

Technical and Descriptive Publications

This catalog contains brief technical data for proper selection of products. Further information is available in the form of technical information publications and illustrated brochures. If additional product information is required, contact your local Eaton Products Distributor, call 1-800-525-2000 or visit our Web site at www.eaton.com.

Compliance with Nuclear Regulation 10 CFR 21

Eaton products are sold as commercial grade products not intended for application in facilities or activities licensed by the United States Nuclear Regulatory Commission for atomic purposes, under 10 CFR 21. Further certification will be required for use of these products in a safety-related application in any nuclear facility licensed by the U.S. Nuclear Regulatory Commission.

WARNING

The installation and use of Eaton products should be in accordance with the provisions of the U.S. National Electrical Code ${ }^{\circledR}$ and/or other local codes or industry standards that are pertinent to the particular end use. Installation or use not in accordance with these codes and standards could be hazardous to personnel and/or equipment.

These catalog pages do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Eaton Products Distributor or Sales Office. The contents of this catalog shall not become part of or modify any prior or existing agreement, commitment or relationship. The sales contract contains the entire obligation of Eaton's electrical sector. The warranty contained in the contract between the parties is the sole warranty of Eaton. Any statements contained herein do not create new warranties or modify the existing warranty.

Powering Business Worldwide

Eaton Corporation is a global leader in power distribution, power quality, control and automation, and monitoring products.

At Eaton, we believe a reliable, efficient and safe power system is the foundation of every successful enterprise. Through innovative technologies, cutting-edge products and our highly skilled services team, we empower businesses around the world to achieve a powerful advantage.

In addition, Eaton is committed to creating and maintaining powerful customer relationships built on a foundation of excellence. From the products we manufacture to our dedicated customer service and support, we know what's important to you.

Solutions

Eaton takes the complexity out of power systems management with a holistic and strategic approach, leveraging our industry-leading technology, solutions and services. We focus on the following three areas in all we do:

- Reliability_maintain the appropriate level of power continuity without disruption or unexpected downtime
- Efficiency-minimize energy usage, operating costs, equipment footprint and environmental impact
- Safety—identify and mitigate electrical hazards to protect what you value most

Using the Eaton Catalog Library

As we grow, it becomes increasingly difficult to include all products in one or two comprehensive catalogs. Knowing that each user has their specific needs, we have created a library of catalogs for our products that when complete, will contain 14 volumes. Since the volumes will continuously be a work in progress and updated, each volume will stand alone. Refer to our volume directory, MZ08100001E, for a quick glance of where to look for the products you need. The 14 volumes include:

- Volume 1-Residential and Light Commercial (CA08100002E)
- Volume 2-Commercia Distribution (CA08100003E)
- Volume 3-Power Distribution and Control Assemblies (CA08100004E)
- Volume 4-Circuit Protection (CA08100005E)
- Volume 5-Motor Control and Protection
(CA08100006E)
- Volume 6-Solid-State Motor Control (CA08100007E)
- Volume 7-Logic Control, Operator Interface and Connectivity Solutions (CA08100008E)
- Volume 8-Sensing Solutions (CA08100010E)
- Volume 9—Original Equipment Manufacturer (CA08100011E)
- Volume 10-Enclosed Control (CA08100012E)
- Volume 11-Vehicle and Commercial Controls (CA08100013E)
- Volume 12—Aftermarket, Renewal Parts and Life Extension Solutions (CA08105001E)
- Volume 13-Counters Timers and Tachometers (CA08100015E)—Available in electronic format only
- Volume 14—Fuses (CA08100016E)—Available in electronic format only

These volumes are not all-inclusive of every product, but they are meant to be an overview of our product lines. For our full range of product solutions and additional product information, consult Eaton.com/electrical and other catalogs and product guides in our literature library. These references include:

- The Consulting Application Guide (CA08104001E)
- The Eaton Power Quality

Product Guide (COR01FYA)

If you don't have the volume that contains the product or information that you are looking for, not to worry. You can access every volume of the catalog library at Eaton.com/electrical in the Literature Library.

By installing our Automatic Tab Updater (ATU), you can be sure you always have the most recent version of each volume and tab.

Icons

Green Leaf

Eaton Green Solutions are products, systems or solutions that represent Eaton benchmarks for environmental performance. The green leaf symbol is our promise that the solution has been reviewed and documented as offering exceptional, industry-leading environmental benefits to customers, consumers and our communities. Though all of Eaton's products and solutions are designed to meet or exceed applicable government standards related to protecting the environment, our products with the Green Leaf designation further provide "exceptional environmental benefit".

Learn Online

When you see the Learn Online icon, go to Eaton.com/electrical and search for the product or training page. There you will find 100 -level training courses, podcasts, webcasts or games and puzzles to learn more.

Drawings Online

When you see the Drawings Online icon, go to Eaton.com/electrical and find the products page. There you will find a tab that includes helpful product drawings and illustrations.

Contact Us

If you need additional help, you can find contact information under the Customer Care heading of Eaton.com/electrical.

S611 Soft Starters

S811 Soft Starters

1.1 Solid-State Controllers
Product Overview V6-T1-2
Type S701, Soft Start Controllers V6-T1-3
Type S701, Soft Start Controllers with Auxiliary Contact V6-T1-9
Type S701, Soft Start Controllers with Brake V6-T1-12
Type S511, Semiconductor Reversing Contactors V6-T1-15
DS6 Soft Start Controllers V6-T1-19
DS7 Soft Start Controllers V6-T1-28
1.2 Solid-State Starters
Product Overview V6-T1-38
Type S611, Solid-State Soft Starters V6-T1-39
Type S801, Soft Starters V6-T1-56
Type S811, Soft Starters with DIM V6-T1-84

Reduced Voltage Motor Starters

Soft Start Controllers

Product Overview

Type S701

The S701 device is a reduced voltage soft start controller designed to control acceleration and deceleration of three-phase motors. The S701 provides the user with the ability to adjust initial torque, ramp up and down time, and also select kick start for high inertial loads.

Semiconductor

Reversing Contactor

The S511 device is a semiconductor reversing contactor designed to switch three-phase motors forward and reverse. Unicore electronics and thermal design ensures high switching capacity and long lifetime.

Type S701 with Auxiliary Contact

The S701 device is a reduced voltage soft start controller designed to control acceleration and deceleration of three-phase motors. With the auxiliary contact, it is possible to control an external bypass to reduce heating and increase acceleration and deceleration times.

The unit provides the user with the ability to adjust initial torque, ramp up and down time and also select kick start for high inertia loads.

DS6

Eaton's DS6 line of reduced voltage solid-state soft start controllers is very compact, multi-functional, easy to install, and easy to commission. Designed to control the acceleration and deceleration of three-phase motors, the device is available for current ranges from 40 to 180 amperes.

Contents

DescriptionSoft Start Controllers
Type S701, Soft Start Controllers V6-T1-3
Type S701, Soft Start Controllers with Auxiliary Contact V6-T1-9
Type S701, Soft Start Controllers with Brake V6-T1-12
Type S511, Semiconductor
Reversing Contactors V6-T1-15
DS6 Soft Start Controllers V6-T1-19
DS7 Soft Start Controllers V6-T1-28

Type S701 with Brake

The S701 soft start controller with DC injection brake is designed to control acceleration and deceleration of three-phase motors. Brake current is adjustable from $0-50 A$ DC. The ramp-up feature is adjustable from $0.5-10$ seconds. Torque adjustment is adjustable with or without break loose (kick start) function.

DS7

Eaton's DS7 line of reduced voltage solid-state soft start controllers is very compact, multi-functional, easy to install, and easy to commission. Designed to control the acceleration and deceleration of three-phase motors, the device is available for current ranges from 4-32A in four frame sizes.

Type S701, Soft Start Controllers

Product Description

The S701 device is a reduced voltage soft start controller designed to control acceleration and deceleration of three-phase motors. The S701 provides the user with the ability to adjust initial torque, ramp up and down time, and also select kick start for high inertial loads.

Application Description

The S701 line of soft start controllers is specifically designed to be a low cost option for soft starting small (15 hp and down) three-phase motors. The S701 unit controls current on two of three motor phases to control the torque being applied to the motor, allowing for smooth starting of a motor. The S701 is designed to be used with a manual motor starter or a full voltage starter. These devices provide the necessary overload protection for the motor and also provide line isolation for the motor. Shortcircuit protection can be provided by fuses or circuit breakers.

Contents

Description Page
Type S701, Soft Start Controllers
Standards and Certifications V6-T1-4
Catalog Number Selection V6-T1-4
Product Selection V6-T1-4
Technical Data and Specifications V6-T1-5
Dimensions V6-T1-8
Type S701, Soft Start Controllers with
V6-T1-9
Type S701, Soft Start Controllers with Brake V6-T1-12
Type S511, SemiconductorV6-T1-15
DS6 Soft Start Controllers V6-T1-19
DS7 Soft Start Controllers V6-T1-28

Features

- Rated operational voltage up to 600 Vac
- Control voltage range from 24-480 Vac/Vdc
- Adjustable ramp times (0.5-10 seconds)
- Adjustable initial torque control (0-85\%)
- Kick start feature
- Soft stop (0.5-10 seconds)

Benefits

- Reduced wear on belts, gears, chains, clutches, shafts and bearings
- Allows for controlling the inrush current to the motor
- Reduced water-hammer in pumping applications
- Less shock to product on conveyor lines and material handling gear
- Unlimited number of START/STOP operations per hour
- IP20 finger protection
- Fractional to 15 hp motors at 480 V (20 hp at 600 V)

\square

Standards and Certifications

- IEC 947 compliant
- EN 60947-4-2
- CE marked
- CSA certified
- UL listed (E108212)
- cUL listed

Catalog Number Selection

S701 Soft Starters

Product Selection

Soft Start Controllers

S701E25N3S

Max. Current	Line Voltage	Control Voltage (Vac/Vdc)	Three-Phase Motor kW Rating (50 Hz) hp Rating (60 Hz)											
			230 V	380-400V	440 V		1.15 SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	$\begin{aligned} & 575 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	Catalog Number
3.5	208-240	24-240	7.5	N/A	N/A	1	1	1	1	N/A	N/A	N/A	N/A	S701C03N3S
3.5	380-415	24-300	N/A	1.1	N/A	N/A	N/A	N/A	N/A	1-1/2	1-1/2	N/A	N/A	S701D03N3S
3.5	440-480	24-300	N/A	N/A	1.5	N/A	N/A	N/A	N/A	2	2	N/A	N/A	S701E03N3S
3.5	500-600	24-300	N/A	2	2	S701G03N3S								
15	208-240	24-240	4	N/A	N/A	3	3	3	3	N/A	N/A	N/A	N/A	S701C15N3S
15	380-480	24-300	N/A	5.5	7.5	N/A	N/A	N/A	N/A	10	7-1/2	N/A	N/A	S701E15N3S
15	500-600	24-300	N/A	10	10	S701G15N3S								
25	208-240	24-240	7.5	N/A	N/A	5	5	7-1/2	5	N/A	N/A	N/A	N/A	S701C25N3S
25	380-480	24-300	N/A	11	12.5	N/A	N/A	N/A	N/A	15	15	N/A	N/A	S701E25N3S
25	500-600	24-300	N/A	20	20	S701G25N3S								

Technical Data and Specifications

Soft Starters-S701_03N3S

Description	S701C03N3S	S701D03N3S	S701E03N3S	S701G03N3S
Maximum current capacity	3.5	3.5	3.5	3.5
Trip Class				
10A	3.5	3.5	3.5	3.5
10	3.5	3.5	3.5	3.5
20	2.8	2.8	2.8	2.8
30	2.1	2.1	2.1	2.1
Electrical Characteristics				
Line voltage (Vac)	208-240	380-415	440-480	500-600
Operating frequency (Hz)	50/60	50/60	50/60	50/60
Leakage current	5 mAAC max.	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.
Minimum operational current	50 mA	50 mA	50 mA	50 mA
Control voltage (Vac/Vdc)	24-240	24-300	24-300	24-300
Pickup voltage max.	$20.4 \mathrm{Vac} / \mathrm{Vdc}$			
Dropout voltage min.	$5 \mathrm{Vac} / \mathrm{Vdc}$			
Max. control current for no operation	1 mA	1 mA	1 mA	1 mA
Response time max.	70 ms	70 ms	70 ms	70 ms
Control Characteristics				
Ramp time (secs)	0.5-10	0.5-10	0.5-10	0.5-10
Ramp settings (\% LRT)	85\%	85\%	85\%	85\%
Kick start settings (\% LRT)	85\%	85\%	85\%	85\%
Soft stop (secs)	0.5-10	0.5-10	0.5-10	0.5-10
Environment Characteristics				
Temperature-operating (no derating)	-30° to $40^{\circ} \mathrm{C}$			
Current rating $50^{\circ} \mathrm{C}$	N/A	N/A	N/A	N/A
Limited duty cycle $50^{\circ} \mathrm{C}$	N/A	N/A	N/A	N/A
Current rating $60^{\circ} \mathrm{C}$	N/A	N/A	N/A	N/A
Limited duty cycle $60^{\circ} \mathrm{C}$	N/A	N/A	N/A	N/A
Temperature-storage	-30° to $80^{\circ} \mathrm{C}$			
Altitude (meters)-no derating	2000	2000	2000	2000
Humidity	95\% noncondensing	95\% noncondensing	95\% noncondensing	95\% noncondensing
Operating position (no derating)	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$
Impulse withstand voltage IEC 947-4-1	4000 V	4000 V	4000 V	4000 V
Rated insulation voltage (Ui)	660 V	660 V	660 V	660 V
Installation category	III	III	III	III
Vibration	IEC 68-2-6 5g 10-150 Hz			
Power dissipation for intermittent operation	4 W/A x duty cycle			
Power dissipation for continuous operation	4 W/A x duty cycle	4 W/A x duty cycle	$4 \mathrm{~W} / \mathrm{A} x$ duty cycle	4 W/A x duty cycle
Cooling method	Natural convection	Natural convection	Natural convection	Natural convection
Degree of protection	IP20	IP20	IP20	IP20
Pollution degree	3	3	3	3
Agency approvals	UL, cUL, CE	UL, cUL, CE	UL, cUL, CE	UL, cUL, CE

Reduced Voltage Motor Starters

Solid-State Controllers

Soft Starters-S701_15N3S

Description	S701C15N3S	S701E15N3S	S701G15N3S
Maximum current capacity	15	15	15
Trip Class			
10A	15	15	15
10	15	15	15
20	12	12	12
30	10	10	10
Electrical Characteristics			
Line voltage (Vac)	208-240	380-480	500-600
Operating frequency (Hz)	50/60	50/60	50/60
Leakage current	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	5 mAAC max.
Minimum operational current	50 mA	50 mA	50 mA
Control voltage (Vac/Vdc)	24-240	24-480	24-480
Pickup voltage max.	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$
Dropout voltage min.	$5 \mathrm{Vac} / \mathrm{Vdc}$	$5 \mathrm{Vac} / \mathrm{Vdc}$	$5 \mathrm{Vac} / \mathrm{Vdc}$
Max. control current for no operation	1 mA	1 mA	1 mA
Response time max.	70 ms	70 ms	70 ms
Control Characteristics			
Ramp time (secs)	0.5-10	0.5-10	0.5-10
Ramp settings (\% LRT)	85\%	85\%	85\%
Kick start settings (\% LRT)	85\%	85\%	85\%
Soft stop (secs)	0.5-10	0.5-10	0.5-10
Environment Characteristics			
Temperature-operating (no derating)	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$
Current rating $50^{\circ} \mathrm{C}$	12.5A	12.5A	12.5A
Limited duty cycle $50^{\circ} \mathrm{C}$	15A on-time max. 15 min. duty cycle max. 0.8	15A on-time max. 15 min. duty cycle max. 0.8	15A on-time max. 15 min. duty cycle max. 0.8
Current rating $60^{\circ} \mathrm{C}$	10A	10A	10A
Limited duty cycle $60^{\circ} \mathrm{C}$	15A on-time max. 15 min. duty cycle max. 0.65	15A on-time max 15 min. duty cycle max. 0.65	15A on-time max. 15 min. duty cycle max. 0.65
Temperature-storage	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$
Altitude (meters)-no derating	2000	2000	2000
Humidity	95\% noncondensing	95\% noncondensing	95\% noncondensing
Operating position (no derating)	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$
Impulse withstand voltage IEC 947-4-1	4000 V	4000 V	4000 V
Rated insulation voltage (Ui)	660 V	660 V	660 V
Installation category	III	III	III
Vibration	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz
Power dissipation for intermittent operation	2 W/A x duty cycle	2 W/A x duty cycle	2 W/A x duty cycle
Power dissipation for continuous operation	$2 \mathrm{~W} / \mathrm{A}$	$2 \mathrm{~W} / \mathrm{A}$	$2 \mathrm{~W} / \mathrm{A}$
Cooling method	Natural convection	Natural convection	Natural convection
Degree of protection	IP20	IP20	IP20
Pollution degree	3	3	3
Agency approvals	UL, CSA, CE	UL, CSA, CE	UL, CSA, CE

Soft Starters-S701_25N3S

Description	S701C25N3S	S701E25N3S	S701G25N3S
Maximum current capacity	25	25	25
Trip Class			
10A	25	25	25
10	25	25	25
20	20	20	20
30	15	15	15
Electrical Characteristics			
Line voltage (Vac)	208-240	380-480	500-600
Operating frequency (Hz)	50/60	50/60	50/60
Leakage current	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.
Minimum operational current	50 mA	50 mA	50 mA
Control voltage (Vac/Vdc)	24-240	24-300	24-300
Pickup voltage max.	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$
Dropout voltage min.	$5 \mathrm{Vac} / \mathrm{Vdc}$	$5 \mathrm{Vac} / \mathrm{Vdc}$	$5 \mathrm{Vac} / \mathrm{Vdc}$
Max. control current for no operation	1 mA	1 mA	1 mA
Response time max.	70 ms	70 ms	70 ms
Control Characteristics			
Ramp time (secs)	0.5-10	0.5-10	0.5-10
Ramp settings (\% LRT)	85\%	85\%	85\%
Kick start settings (\% LRT)	85\%	85\%	85\%
Soft stop (secs)	0.5-10	0.5-10	0.5-10
Environment Characteristics			
Temperature-operating (no derating)	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$
Current rating $50^{\circ} \mathrm{C}$	20 A	20A	20A
Limited duty cycle $50^{\circ} \mathrm{C}$	25A on-time max. 15 min. duty cycle max. 0.8	25A on-time max. 15 min. duty cycle max. 0.8	25A on-time max. 15 min. duty cycle max. 0.8
Current rating $60^{\circ} \mathrm{C}$	17A	17A	17A
Limited duty cycle $60^{\circ} \mathrm{C}$	25A on-time max. 15 min. duty cycle max. 0.65	25A on-time max. 15 min. duty cycle max. 0.65	25A on-time max. 15 min. duty cycle max. 0.65
Temperature-storage	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$
Altitude (meters)-no derating	2000	2000	2000
Humidity	95\% noncondensing	95\% noncondensing	95\% noncondensing
Operating position (no derating)	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$
Impulse withstand voltage IEC 947-4-1	4000 V	4000 V	4000 V
Rated insulation voltage (Ui)	660 V	660 V	660 V
Installation category	III	III	III
Vibration	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz
Power dissipation for intermittent operation	2 W/A x duty cycle	2 W/A x duty cycle	2 W/A x duty cycle
Power dissipation for continuous operation	2 W/A	2W/A	2 W/A
Cooling method	Natural convection	Natural convection	Natural convection
Degree of protection	IP20	IP20	IP20
Pollution degree	3	3	3
Agency approvals	UL, CSA, CE	UL, CSA, CE	UL, CSA, CE

Reduced Voltage Motor Starters

Solid-State Controllers

Dimensions

Approximate Dimensions in Inches (mm)
Soft Starters-S701...N3S

Catalog Number	W	H	D	Weight in Lbs (kg)
S701C03N3S	$0.89(22.5)$	$3.94(100)$	$5.01(127)$	$0.6(270)$
S701D03N3S	$0.89(22.5)$	$3.94(100)$	$5.01(127)$	$0.6(270)$
S701E03N3S	$0.89(22.5)$	$3.94(100)$	$5.01(127)$	$0.6(270)$
S701G03N3S	$0.89(22.5)$	$3.94(100)$	$5.01(127)$	$0.6(270)$
S701C15N3S	$1.77(45)$	$3.94(100)$	$5.04(128)$	$1.52(690)$
S701E15N3S	$1.77(45)$	$3.94(100)$	$5.04(128)$	$1.52(690)$
S701G15N3S	$1.77(45)$	$3.94(100)$	$5.04(128)$	$1.52(690)$
S701C25N3S	$3.54(90)$	$3.94(100)$	$5.04(128)$	$2.53(1150)$
S701E25N3S	$3.54(90)$	$3.94(100)$	$5.04(128)$	$2.53(1150)$
S701G25N3S	$3.54(90)$	$3.94(100)$	$5.04(128$.	$2.53(1150)$

Type S701, Soft Start Controllers with Auxiliary Contact

Contents

Type S701, Soft Start Controllers with Auxiliary Contact

Product Description

The S701 device is a reduced voltage soft start controller designed to control acceleration and deceleration of three-phase motors. With the auxiliary contact, it is possible to control an external bypass to reduce heating and increase acceleration and deceleration times.
The unit provides the user with the ability to adjust initial torque, ramp up and down time and also select kick start for high inertia loads.

Application Description

The S701 line of soft start controllers is specifically designed to be a low cost option for soft starting small (15 hp and down) three-phase motors. The auxiliary contact is designed to work in conjunction with an across-the-line contactor. The purpose of the contactor is to provide a parallel current path once the soft starter has brought the motor up to speed. Once the soft start controller reaches end of ramp, the auxiliary contact will close and send a signal to close the bypass contactor, thus providing a low impedance path for the current to the motor. The S701 unit controls current on two of three motor phases to control the torque being applied to the motor, allowing for smooth starting of a motor. The S701 is designed to be used with a manual motor protector or a full voltage starter. These devices provide the necessary overload protection for the motor and also provide line isolation for the motor. Short-circuit protection can be provided by fuses or circuit breakers.

Features

- Rated operational voltage up to 600 Vac
- Control voltage range from 24-300 Vac/Vdc
- Adjustable ramp times (0.5-20 seconds)
- Adjustable initial torque control (0-85\%)
- Kick start feature

Standards and Certifications

- IEC 947 compliant
- EN 60947-4-2
- CE marked
- UL listed (E108212)
- cUL listed

$C \in \underbrace{\text { (H) }}_{\text {Lited }}$ (LIL)

 (0-85\% adjustment)- Kick start for 200 ms
- Soft stop (0.5-20 seconds)
- IP20 finger protection
- Available up to 30A (with Bypass installed)
- Auxiliary contact for up-to-speed indication

Benefits

- Reduced wear on belts, gears, chains, clutches, shafts and bearings
- Bypass option allows for greater current capacity in the unit
- Bypass option helps to reduce heat in the enclosure
- Allows for controlling the inrush current to the motor
- Reduced water-hammer in pumping applications
- Less shock to product on conveyor lines and material handling gear

Solid-State Controllers

Product Selection

For S701 catalog number selection, see Page V6-T1-5.

Soft Start Controllers with Auxiliary Contact

			Three kW R	Phase Moto ting (50 Hz)		hp Ra								
Max. Current	Line Voltage	Voltage (Vac/Vdc)	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	$\begin{aligned} & 575 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	Catalog Number
Ratings without Bypass														
25	208-240	24-240	5.5	N/A	N/A	5	5	7-1/2	5	N/A	N/A	N/A	N/A	S701C25N3BP
25	380-480	24-300	N/A	12.5	12.5	N/A	N/A	N/A	N/A	15	15	N/A	N/A	S701E25N3BP
25	500-600	24-300	N/A	20	20	S701G25N3BP								
Ratings with Bypass														
30	208-240	24-240	7.5	N/A	N/A	7-1/2	7-1/2	10	7-1/2	N/A	N/A	N/A	N/A	S701C25N3BP
30	380-480	24-300	N/A	15	15	N/A	N/A	N/A	N/A	20	15	N/A	N/A	S701E25N3BP
30	500-600	24-300	N/A	25	20	S701G25N3BP								

Technical Data and Specifications

Soft Starters with Auxiliary Contact-S701_25N3BP

Description	S701C25N3BP	S701E25N3BP	S701G25N3BP
Maximum current capacity with bypass (without bypass)	$30(25)$	$30(25)$	$30(25)$
Trip Class	$30(25)$	$30(25)$	$30(25)$
10 A	$30(25)$	$30(25)$	$30(25)$
10	$24(20)$	$24(20)$	$24(20)$
20	$19.5(15)$	$19.5(15)$	$19.5(15)$
30			$580-480$
Electrical Characteristics	$208-240$	$50 / 60$	$50 / 60$
Line voltage (Vac)	$50 / 60$	5 mA AC max.	$50 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.
Operating frequency (Hz)	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	50 mA	
Leakage current	50 mA	$24-300$	$24-300$
Minimum operational current	$24-240$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$
Control voltage (Vac/Vdc)	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$5 \mathrm{Vac} / \mathrm{Vdc}$	
Pickup voltage max.	$5 \mathrm{Vac} / \mathrm{Vdc}$	1 mA	
Dropout voltage min.	1 mA	1 mA	70 ms
Max. control current for no operation	70 ms	70 ms	
Response time max.			

Soft Starters with Auxiliary Contact-S701_25N3BP, continued

Description	S701C25N3BP	S701E25N3BP	S701G25N3BP
Control Characteristics			
Ramp time (secs)	0.5-20	0.5-20	0.5-20
Ramp settings (\% LRT)	85\%	85\%	85\%
Kick start settings (\% LRT)	85\%	85\%	85\%
Soft stop (secs)	0.5-20	0.5-20	0.5-20
Environmental Characteristics			
Temperature-operating (no derating)	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$
Current rating $50^{\circ} \mathrm{C}$	20A	20A	20A
Limited duty cycle $50^{\circ} \mathrm{C}$	25A on-time max. 15 min . duty cycle max. 0.8	25 A on-time max. 15 min. duty cycle max. 0.8	25A on-time max. 15 min. duty cycle max. 0.8
Current rating $60^{\circ} \mathrm{C}$	17A	17A	17A
Limited duty cycle $60^{\circ} \mathrm{C}$	25A on-time max. 15 min. duty cycle max. 0.65	25A on-time max. 15 min. duty cycle max. 0.65	25A on-time max. 15 min. duty cycle max. 0.65
Temperature-storage	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$
Altitude (meters)-no derating	2000	2000	2000
Humidity	95\% noncondensing	95\% noncondensing	95\% noncondensing
Operating position (no derating)	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$
Impulse withstand voltage IEC 947-4-1	4000 V	4000 V	4000V
Rated insulation voltage (Ui)	660 V	660 V	660 V
Installation category	III	III	III
Vibration	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz
Power dissipation for continuous operation	2 W/A without bypass	2 W/A without bypass	2 W/A without bypass
Power dissipation with semiconductor bypassed	5 W/A max. with bypass	5 W/A max. with bypass	5 W/A max. with bypass
Cooling method	Natural convection	Natural convection	Natural convection
Degree of protection	IP20	IP20	IP20
Pollution degree	3	3	3
Agency approvals	UL, cUL, CE	UL, cUL, CE	UL, cUL, CE

Dimensions

Approximate Dimensions in Inches (mm)
Soft Starters with Auxiliary Contact-S701_25N3BP

Catalog Number	W	H	D	Weight in Lbs (kg)
S701C25N3BP	$3.54(89.9)$	$3.94(100.1)$	$5.04(128.0)$	$2.53(1150)$
S701E25N3BP	$3.54(89.9)$	$3.94(100.1)$	$5.04(128.0)$	$2.53(1150)$
S701G25N3BP	$3.54(89.9)$	$3.94(100.1)$	$5.04(128.0)$	$2.53(1150)$

Reduced Voltage Motor Starters
Solid-State Controllers

Type S701, Soft Start Controllers with Brake

Contents

Description	Page
Type S701, Soft Start Controllers	V6-T1-3

Type S701, Soft Start Controllers with Brake

Product Description

The S701 soft start controller with DC injection brake is designed to control acceleration and deceleration of three-phase motors. Brake current is adjustable from 0-50A DC. The ramp-up feature is adjustable from $0.5-10$ seconds. Torque adjustment is adjustable with or without break loose (kick start) function.

Application Description

The S701 line of soft start controllers is specifically designed to be a low cost option for soft starting small (15 hp and down) three-phase motors. The braking option is a DC injection system, allowing for fast stopping of a three-phase motor. The S701 unit controls current on two of the three phases to control the torque being applied to the motor, allowing for smooth starting of a motor. The S701 is designed to be used with a manual motor starter or a full voltage starter. These devices provide the necessary overload protection for the motor and also provide line isolation for the motor. Short-circuit protection can be provided by fuses or circuit breakers.

Features

- Rated operational voltage up to 480 Vac
- Control voltage range from 24-300 Vac/Vdc
- Adjustable ramp times (0.5-20 seconds)
- Adjustable initial torque control (0-85\%)
- Kick start feature (0-85\% adjustment)
- Kick start for 200 ms
- IP20 finger protection
- Braking control adjustable from 0-50A DC
- Slow speed: 7.5% or 10% of nominal speed

Benefits

- Reduced wear on bolts, gears, chains, clutches, shafts and bearings
- Braking option allows for quick stopping of loads
- Brake control can help eliminate expensive mechanical brakes
- Allows for controlling the inrush current to the motor
- Reduced water-hammer in pumping applications
- Less shock to product on conveyor lines and material handling gear

Standards and Certifications

- IEC 947 compliant
- EN 60947-4-2
- CE marked
- UL listed (E108212)
- cUL listed

Product Selection

For S701 catalog number selection, see Page V6-T1-5.

S701E25B3S	Soft Start Controllers with Brake												
	Max. Current	Line Voltage	Control Voltage (Vac/Vdc)	Three-Phase Motor kW Rating (50 Hz)			hp Rating						
-0.e.0.0.				230V	380-400V	440V		1.15 SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15 SF	Catalog Number
	25	208-240	24-240	5.5	N/A	N/A	5	5	7-1/2	5	N/A	N/A	S701C25B3S
	25	380-480	24-300	N/A	12.5	12.5	N/A	N/A	N/A	N/A	15	15	S701E25B3S

Technical Data and Specifications

Soft Starters with Brake-S701_25B3S

Description	S701C25B3S	S701E25B3S
Maximum current capacity	25	25
Trip Class	25	25
10 A	25	25
10	20	20
20	15	15
30	$208-240$	
Electrical Characteristics	$50 / 60$	$380-480$
Line voltage (Vac)	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$50 / 60$
Operating frequency (Hz)	1 A	$5 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.
Leakage current	$24-240$	1 A
Minimum operational current	$20.4 \mathrm{Vac} / \mathrm{Vdc}$	$24-300$
Control voltage (Vac/Vdc)	$5 \mathrm{Vac} / \mathrm{Vdc}$	$20.4 \mathrm{Vac} / \mathrm{Vdc}$
Pickup voltage max.	1 mA	$5 \mathrm{Vac} / \mathrm{Vdc}$
Dropout voltage min.	100 ms	1 mA
Max. control current for no operation		100 ms
Response time max.	$0.5-10$	
Control Characteristics	85%	$0.5-10$
Ramp time (secs)	85%	85%
Ramp settings (\% LRT)	$0.5-10$	85%
Kick start settings (\% LRT)	$0-50 \mathrm{Vdc}$	$0.5-10$
Soft stop (secs)	$0-50 \mathrm{Vdc}$	
Brake current		

Reduced Voltage Motor Starters

Solid-State Controllers

Soft Starters with Brake-S701_25B3S, continued

Description	S701C25B3S	S701E25B3S
Environmental Characteristics	-30° to $40^{\circ} \mathrm{C}$	-30° to $40^{\circ} \mathrm{C}$
Temperature-operating	20 A	20 A
Current rating $50^{\circ} \mathrm{C}$	25 A on-time max.	25 A on-time max.
Limited duty cycle $50^{\circ} \mathrm{C}$	15 min. duty cycle max. 0.8	15 min. duty cycle max. 0.8
Current rating $60^{\circ} \mathrm{C}$	17 A	17 A
Limited duty cycle $60^{\circ} \mathrm{C}$	25 A on-time max.	25 A on-time max.
Temperature-storage	15 min. duty cycle max. 0.65	15 min. duty cycle max. 0.65
Altitude (meters)-no derating	-30° to $80^{\circ} \mathrm{C}$	-30° to $80^{\circ} \mathrm{C}$
Humidity	2000	2000
Operating position	95% noncondensing	95% noncondensing
Impulse withstand voltage IEC 947-4-1	Vertical $\pm 0^{\circ}$	Vertical $\pm 0^{\circ}$
Rated insulation voltage (Ui)	4000 V	4000 V
Installation category	660 V	660 V
Vibration	III	III
Power dissipation for intermittent operation	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz
Power dissipation for continuous operation	$2 \mathrm{~W} / \mathrm{A} \times$ duty cycle	$2 \mathrm{~W} / \mathrm{A}$ x duty cycle
Cooling method	$2 \mathrm{~W} / \mathrm{A}$	$2 \mathrm{~W} / \mathrm{A}$
Degree of protection	Natural convection	Natural convection
Pollution degree	IP20	IP20
Agency approvals	3	3
	ULL, cUL, CE	UL, cUL, CE

Dimensions

Approximate Dimensions in Inches (mm)
Soft Starters with Brake-S701_25B3S

Catalog Number	W	H	D	Weight in Lbs (kg)
S701C25B3S	$3.54(89.9)$	$3.94(100.1)$	$5.04(128.0)$	$2.53(1150)$
S701E25B3S	$3.54(89.9)$	$3.94(100.1)$	$5.04(128.0)$	$2.53(1150)$

Contents		
Description		Page
		V6-T1-3
Type S701, Soft Start Controllers with Auxiliary Contact		V6-T1-9
Type S701, Soft Start Controllers with Brake		V6-T1-12
Type S511, Semiconductor Reversing Contactors		
Product Selection		V6-T1-16
Technical Data and Specifications		V6-T1-16
Dimensions		V6-T1-17
DS6 Soft Start Controllers DS7 Soft Start Controllers		V6-T1-19
		V6-T1-28
Features - Rated operational voltage up to 480 Vac - Control voltage ranges of $5-24 \mathrm{Vdc}$ and 24-240 Vac/Ndc - Unlimited number of START/STOP operations per hour - IP20 finger protection - AC-3 current rating of 10 A - AC-4 current rating of 8 A	Standards and Certifications	
	- IEC 947	
	- CE mar - CSA ce	
	- UL liste C	(U)
Benefits		
- Extremely high switching rates possible		
- Very long life expectancy and no contacts or movable parts to replace		
- Compact design (45 mm wide) leads to significant panel savings		

Solid-State Controllers

Product Selection

Reversing Solid-State Contactors

Technical Data and Specifications

Description	S511E10N3D	S511E10N3S
Maximum current capacity	10	10
Trip Class		
10A	10	10
10	10	10
20	8	8
30	6.5	6.5
Electrical Characteristics		
Line Voltage (Vac)	208-480	208-480
Operating frequency (Hz)	50/60	50/60
Control voltage	$5-24 \mathrm{Vdc}$	$24-240 \mathrm{Vac} / \mathrm{Vdc}$
Pickup voltage max.	4.25 Vdc	$20.4 \mathrm{Vac} / \mathrm{Vdc}$
Dropout voltage min.	1.5 Vdc	7.2 Vac/Vdc
Max. control voltage	26.4 Vdc	$253 \mathrm{Vac} / \mathrm{Vdc}$
Response time max.	1/2 cycle	1 cycle
Interlock time max.	80 ms	150 ms
Control Characteristics		
Operation current AC-3	10	10
Operation current AC-4	8	8
Duty cycle	Continuous operation	Continuous operation
Leakage current	$1 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.	$1 \mathrm{~mA} \mathrm{AC} \mathrm{max}$.
Minimum operation current	10 mA AC	10 mA AC
Environmental Characteristics		
Temperature-operating	0° to $60^{\circ} \mathrm{C}$	0° to $60^{\circ} \mathrm{C}$
Temperature-storage	-20° to $80^{\circ} \mathrm{C}$	-20° to $80^{\circ} \mathrm{C}$
Altitude (meters)	2000	2000
Humidity	95\% noncondensing	95\% noncondensing
Operating position	Vertical $\pm 30^{\circ}$	Vertical $\pm 30^{\circ}$
Impulse withstand voltage IEC 947-4-1	4000 V	4000 V
Rated insulation voltage (Ui)	660 V	660 V
Installation category	III	III
Vibration	IEC 68-2-6 5g 10-150 Hz	IEC 68-2-6 5g 10-150 Hz
Power dissipation for intermittent operation	2.2 W/A x duty cycle	2.2 W/A x duty cycle
Power dissipation for continuous operation	2.2 W/A	2.2 W/A
Cooling method	Natural convection	Natural convection
Degree of protection	IP20	IP20
Pollution degree	3	3
Agency approvals	UL, CSA, CE	UL, CSA, CE

Mounting Instructions

IMPORTANT: The controller is designed for vertical mounting in free air. If the controller is mounted horizontally, the load current must be reduced to 50% of rated current.

Recommended Mounting Distances

Dimensions

Approximate Dimensions in Inches (mm)
Semiconductor Reversing Contactors-S511E10N3_

Catalog Number	W	H	D	Weight in Lbs (kg)
S511E10N3D	$1.77(45.0)$	$3.94(100.1)$	$5.04(128.0)$	$1.52(690)$
S511E10N3S	$1.77(45.0)$	$3.94(100.1)$	$5.04(128.0)$	$1.52(690)$

Also refer to dimension drawings on Page V6-T1-18.

Cable Requirements and Sizing

$75^{\circ} \mathrm{C}$	$\overline{\text { AWG }\left(\mathrm{mm}^{2}\right)}$	AWG (mm^{2})
$\square \square$	$\begin{aligned} & 18-12 \\ & (0.75-4) \end{aligned}$	$\begin{aligned} & 20-16 \\ & (0.5-1.5) \end{aligned}$
"	$\begin{aligned} & 2-18 \\ & (2 \times 1) \end{aligned}$	$\begin{aligned} & 2 \times 20-18 \\ & (2 \times 0.5-0.75) \end{aligned}$
\square	$\begin{aligned} & 18-10 \\ & (0.75-4) \end{aligned}$	$\begin{aligned} & 20-16 \\ & (0.5-1.5) \end{aligned}$
	$\begin{aligned} & 2 \times 18-14 \\ & (2 \times 0.75-2.5) \end{aligned}$	$\begin{aligned} & 2 \times 20-16 \\ & (2 \times 0.5-1.5) \end{aligned}$
\square	$\begin{aligned} & 18-10 \\ & (0.75-4) \end{aligned}$	$\begin{aligned} & 20-16 \\ & (0.5-1.5) \end{aligned}$
呢	$\begin{aligned} & 2 \times 18-16 \\ & (0.75-6) \end{aligned}$	$\begin{aligned} & 2 \times 20-16 \\ & (2 \times 0.5-1.5) \end{aligned}$
\hat{N}	Posidrive 1 4.4 in-lb. max. 0.5 Nm max.)	N/A
$\therefore \uparrow \mathbb{D}$	4 mm 4.4 in-lb max. (0.5 Nm max.)	$\begin{aligned} & 3 \mathrm{~mm} \\ & 3.5 \mathrm{in} \text {-Ib max. } \\ & (0.4 \mathrm{Nm} \text { max.) } \end{aligned}$

1
Approximate Dimensions in Inches (mm)

22.5 mm Frame

90 mm Frame

45 mm Frame

DS6 Soft Start Controllers

Contents

Description	Page
Type S701, Soft Start Controllers	V6-T1-3
Type S701, Soft Start Controllers with Auxiliary Contact	V6-T1-9
Type S701, Soft Start Controllers with Brake	V6-T1-12
Type S511, Semiconductor Reversing Contactors	V6-T1-15
DS6 Soft Start Controllers	
Features and Benefits	V6-T1-20
Standards and Certifications	V6-T1-20
Instructional Leaflets	V6-T1-20
Product Selection	V6-T1-21
Technical Data and Specifications	V6-T1-23
Dimensions	V6-T1-27
DS7 Soft Start Controllers	V6-T1-28

Type S701, Soft Start Controllers V6-T1-3
Type S701, Soft Start Controllers with
Auxiliary Contact
V6-T1-9
Type S701, Soft Start Controllers with Brake V6-T1-12
Type S511, Semiconductor
Reversing Contactors
sand Benefits

V6-T1-20
V6-T1-21

V6-T1-27

DS6 Soft Start Controllers

Product Description

Eaton's DS6 line of reduced voltage solid-state soft start controllers is very compact, multi-functional, easy to install, and easy to commission. Designed to control the acceleration and deceleration of three-phase motors, the device is available for current ranges from 40 to 180 amperes.

Application Description

With its small size, it can easily fit in place of existing soft starters, wye-delta starters, or across-the-line NEMA ${ }^{\circledR}$ and IEC starters. This feature allows easy upgrades to existing systems. The product is designed to be wired in the three-phase line feeding the three motor input leads as is done for normal across-theline starting. The starter uses silicon controlled rectifiers (SCRs) to ramp the voltage to the motor, providing smooth acceleration and deceleration of the load. After the motor is started, the internal run bypass contactor closes, resulting in the motor running directly across-the-line. Internal run bypass significantly reduces the heat generated as compared to non-bypass starters. The soft stop option allows for a ramp stop time that may be longer than the coast-to-stop time.
An external over-load protection is needed.

Operation

Voltage Ramp Start

This start method provides a voltage ramp to the motor, resulting in a constant torque increase. This most commonly used form of soft start mode allows you to set the initial voltage value and
 the duration of the ramp to full voltage conditions.
Bypass contactor(s) close after ramp time has elapsed.

- Adjustable initial voltage 30-92\% of full voltage
- Adjustable ramp time 1-30 seconds

Soft Stop

Allows for a controlled stopping of load. Used when a stop-time that is greater than the coast-to-stop time is desired. Often used with high friction loads where a sudden stop may cause system or product damage. Setting the soft stop time to a value of 0 turns off this feature.

- Soft stop time = 0-30 seconds

Solid-State Controllers

Features and Benefits

- Run bypass mode greatly reduces internal heating created by the power dissipation across the SCRs. The bypass contactor directly connects the motor to the line and improves system efficiency by reducing internal power losses
- Less heat minimizes enclosure size and cooling requirements, and maximizes the life of all devices in the enclosure
- LED displays device status and provides fault indication
- Variable ramp times and voltage control (torque control) settings provide unlimited starting configurations, allowing for maximum application flexibility
- Soft stop control suits applications where an abrupt stop of the load is not acceptable. Soft acceleration and deceleration reduces wear on belts, gears, chains, clutches, shafts, and bearings
- Minimizes the peak inrush current's stress on the power system
- Manages peak starting torque to diminish mechanical system wear and damage
- 24 Vdc control module enhances personnel and equipment safety

Protective Features

- There are two auxiliary
relays-
- First relay is a TOR relay which closes when the TOR is achieved (internal bypass relays close)
- The second relay is a RUN relay which closes when the RUN signal is initiated and opens when RUN signal is removed. It remains closed during stop ramp time, if set to a value greater than 0 . The RUN relay will also open if a fault occurs
- Mains connectionThe mains connection is monitored for an open condition and/or undervoltage
- Motor connectionThe motor connection is monitored for an open condition
- SCR faults-SCR performance is monitored during the ramp cycle for proper operation
- Heat sink over/under temperature-High ambient temperatures, extended ramp times, and high duty cycle conditions may cause the DS6 to exceed its thermal rating. When temperature goes under $-5^{\circ} \mathrm{C}$, unit will trip as well. The DS6 is equipped with sensors that monitor the temperature of the device. The soft starter will trip in over/under temperature conditions, preventing device failure
- Bypass relay-The DS6 can detect if the bypass relay fails to close after the ramp start or opens while the motor is running. The DS6 will trip on a bypass dropout fault if either of these conditions occur. The device does not start when bypass relay is closed and start signal is applied
- 24 Vdc low voltageIf the control voltage falls below 20 Vdc at any time during operation, the unit will fault

Standards and Certifications

- IEC 60947-4-2
- EN 60947-4-2
- UL listed (E251034)
- CSA certified
- CE marked
- C-Tick

(HL) © C (

Instructional Leaflets

- Instruction Leaflet IL03901001E

Product Selection

DS6 Soft Start Horsepower Ratings

Please refer to Application Note AP03900001E for additional information on proper size selection.

DS6 25-75 hp Model	DS6 Soft Start Controllers-Horsepower Ratings 10 Second Ramp, 1 Start per Hour, 300% Current Limit at $40^{\circ} \mathrm{C}$								
		Motor Power (hp)				Maximum			
	Rated Current (A)		230V	460V	Allowable Breaker Size	Allowable Fuse Size	Recommended XTOB Overload	Recommended C440 Overload	Catalog Number
	40	10	10	30	HFD3150L	150A Class RK5	XTOBO40DC1 ${ }^{2}$	C440A1A045SAX	DS6-34DSX041N0-N
.	52	15	20	40	HFD3200L	200A Class RK5	XTOB057DC1 ${ }^{2}$	C440B1A100SAX	DS6-34DSX055N0-N
$\bigcirc \quad 0$	65	20	25	50	HJD3250	200A Class RK5	XTOB065DC1 ${ }^{2}$	C440B1A100SAX	DS6-34DSX068N0-N
Q	77	25	30	60	HKD3300	300A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX081N0-N
	96	30	30	75	HKD3350	350A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX099N0-N
	124	40	50	100	HKD3400	500A Class RK5	XTOB125GC1S	C440A1A005SAX ©	DS6-34DSX134N0-N
	156	50	60	125	HLD3450	500A Class RK5	XTOB160LC1 ${ }^{(3)}$	C440A1A005SAX © ${ }^{(4)}$	DS6-34DSX161N0-N
	180	60	75	150	HLD3500	500A Class RK5	XTOB220LC1 ${ }^{(3)}$	C440A1A005SAX ${ }^{(4)}$	DS6-34DSX196N0-N

DS6 100-150 hp Model

10 Second Ramp, 1 Start per Hour, 400% Current Limit at $40^{\circ} \mathrm{C}$

Rated Current (A)	Motor Power (hp)			Maximum Allowable Breaker Size ${ }^{\text {(1) }}$	Maximum Allowable Fuse Size	Recommended XTOB Overload	Recommended C440 Overload	Catalog Number
	200V	230 V	460 V					
27	7.5	10	20	HFD3150L	150A Class RK5	XTOB040DC1	C440A1A045SAX	DS6-34DSX041N0-N
34	10	10	30	HFD3200L	200A Class RK5	XTOB040DC1	C440A1A045SAX	DS6-34DSX055N0-N
40	15	15	30	HJD3250	200A Class RK5	XTOB057DC1 ${ }^{(2)}$	C440A1A045SAX	DS6-34DSX068N0-N
52	15	20	40	HKD3300	300A Class RK5	XTOB057DC1 ${ }^{(2)}$	C440B1A100SAX	DS6-34DSX081N0-N
65	20	25	50	HKD3350	350A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX099N0-N
80	30	30	75	HKD3350	500A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX134N0-N
96	30	40	75	HLD3450	500A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX161N0-N
124	40	50	100	HLD3500	500A Class RK5	XTOB150GC1S	C440A1A005SAX © ${ }^{(4)}$	DS6-34DSX196N0-N

Notes
(1) Maximum values may be higher than allowed per NEC ${ }^{\circledR} 430.52$ and UL 508A 31.1.
(2) XTOBXDIND Panel Mounting Adapter must be used with this overload.
${ }^{3}$ (3) XTOBXTLL line and load lugs must be used with this overload.
(4) ZEB-XCT300 current transformer must be used with this overload.

Solid-State Controllers

DS6 Soft Start kW Ratings

Please refer to Application Note AP03900001E for additional information on proper size selection.

DS6 Soft Start Controllers-kW Ratings According to IEC 60947-4-210 Second Ramp, 1 Start per Hour, 300% Current Limit at $40^{\circ} \mathrm{C}$

Rated Current (A)	Motor Power (kW)		Maximum Allowable Breaker Size ${ }^{\text {(1) }}$	Maximum Allowable Fuse Size ${ }^{1}$	Recommended XTOB Overload	Recommended C440 Overload	Catalog Number
	230 V	400 V					
41	11	22	HFD3150L	150A Class RK5	XTOB057DC1 ${ }^{(2)}$	C440A1A045SAX	DS6-34DSX041N0-N
55	15	30	HFD3200L	200A Class RK5	XTOB057DC1 ${ }^{(2)}$	C440B1A100SAX	DS6-34DSX055N0-N
68	15	37	HJD3250	200A Class RK5	XTOBO70GC1 ${ }^{(2)}$	C440B1A100SAX	DS6-34DSX068N0-N
81	22	45	HKD3300	300A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX081N0-N
99	30	55	HKD3350	350A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX099N0-N
134	30	75	HKD3400	500A Class RK5	XTOB150GC1S	C440A1A005SAX ${ }^{4}$	DS6-34DSX134N0-N
160	45	90	HLD3450	500A Class RK5	XTOB160LC1 ${ }^{(3)}$	C440A1A005SAX ${ }^{4}$	DS6-34DSX161N0-N
196	55	110	HLD3500	500A Class RK5	XTOB220LC1 ${ }^{(3)}$	C440A1A005SAX ${ }^{4}$	DS6-34DSX196N0-N

DS6 100-150 hp Model

10 Second Ramp, 1 Start per Hour, 400% Current Limit at $40^{\circ} \mathrm{C}$

Rated Current (A)	Motor Power (kW)		Maximum Allowable Breaker Size ${ }^{1}$	Maximum Allowable Fuse Size ${ }^{1}$	Recommended XTOB Overload	Recommended C440 Overload	Catalog Number
	230V	400 V					
28.8	7.5	11	HFD3150L	150A Class RK5	XTOB040DC1	C440A1A045SAX	DS6-34DSX041N0-N
37.5	11	18.5	HFD3200L	200A Class RK5	XTOB040DC1	C440A1A045SAX	DS6-34DSX055N0-N
46	11	22	HJD3250	200A Class RK5	XT0B057DC1 ${ }^{(2)}$	C440B1A100SAX	DS6-34DSX068N0-N
56	15	30	HKD3300	300A Class RK5	XTOB065DC1 ${ }^{(2)}$	C440B1A100SAX	DS6-34DSX081N0-N
68	18.5	37	HKD3350	350A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX099N0-N
90	22	45	HKD3350	500A Class RK5	XTOB100GC1S	C440B1A100SAX	DS6-34DSX134N0-N
106	30	55	HLD3450	500A Class RK5	XTOB160LC1 ${ }^{(3)}$	C440A1A005SAX ${ }^{(4)}$	DS6-34DSX161N0-N
134	37	75	HLD3500	500A Class RK5	XTOB160LC1 ${ }^{(3)}$	C440A1A005SAX ${ }^{(4)}$	DS6-34DSX196NO-N

Considerations

1. Either XTOB, C306 or C440 series or equivalent overload protection devices may be selected.
2. Contactor is optional for normal applications. It is recommended for mains isolation.

Power Supply

Eaton's PSG and ELC power supplies are recommended as a compact and low-cost source for 24 Vdc power The light-weight, DIN rail mounted devices have a wide input voltage range, and robust screw terminals make these power supplies easy to install and use. These power supplies are available in 1A and 2A models.

Power Supply Selection

Description	Catalog Number
$85-264 \mathrm{~V}$ input and 24V output	ELC-PS01
$380-480 \mathrm{~V}$ input and 24V output	PSS25F
$100-240$ Vac input and 24 Vdc output	PSG60E
$380-480$ Vac input and 24 Vdc output	PSG60F

Notes

(1) Maximum values may be higher than allowed per NEC 430.52 and UL 508A 31.1.
(2) XTOBXDIND Panel Mounting Adapter must be used with this overload.
(3) XTOBXTLL line and load lugs must be used with this overload.
(4) ZEB-XCT300 current transformer must be used with this overload.

Technical Data and Specifications

DS6 Soft Start Controllers

Description	Unit	DS6-34DSX041N0-N	DS6-34DSX055N0-N	DS6-34DSX068NO-N	DS6-34DSX081N0-N
General					
Standards		IEC/EN 60947-4-2	IEC/EN 60947-4-2	IEC/EN 60947-4-2	IEC/EN 60947-4-2
Certifications		UL/CE/C-Tick/CSA	UL/CE/C-Tick/CSA	UL/CE/C-Tick/CSA	UL/CE/C-Tick/CSA
Ambient temperature (operation)	${ }^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$
Ambient temperature (storage)	${ }^{\circ} \mathrm{C}$	-25 to $+55^{\circ} \mathrm{C}$			
Altitude		$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m	$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m	0-1000m, above 1000 m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m	0-1000m, above 1000 m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m
Installation		Vertical	Vertical	Vertical	Vertical
Protection degree		IP 20	IP 20	IP 20	IP 20
Protection against contact		Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)
Overvoltage category/ pollution degree		II/2	11/2	II/2	II/2
Shock resistance		$8 \mathrm{~g} / 11 \mathrm{~ms}$			
Vibration resistance according to EN 60721-3-2		2M2	2M2	2M2	2M2
Dimensions in inches (mm) (W×HxD)		$\begin{aligned} & 3.66 \times 6.89 \times 5.47 \\ & (93.0 \times 175.0 \times 138.9) \end{aligned}$	$\begin{aligned} & 3.66 \times 6.89 \times 5.47 \\ & (93.0 \times 175.0 \times 138.9) \end{aligned}$	$\begin{aligned} & 3.66 \times 6.89 \times 5.47 \\ & (93.0 \times 175.0 \times 138.9) \end{aligned}$	$\begin{aligned} & 3.66 \times 6.89 \times 5.47 \\ & (93.0 \times 175.0 \times 138.9) \end{aligned}$
Weight in lbs (kg)		4.00 (1.8)	4.00 (1.8)	4.00 (1.8)	4.00 (1.8)
Main Circuit					
Rated operation voltage	V	200-460 Vac	200-460 Vac	200-460 Vac	200-460 Vac
Mains frequency	Hz	$50 / 60 \mathrm{~Hz}$			
Rated impulse withstand voltage	$\begin{aligned} & \mathrm{U}_{\text {impm }} 1.2 / \\ & 50 \mu \mathrm{~s} \end{aligned}$	4 kV	4 kV	4 kV	4 kV
Rated operation current	I_{e}	40	52	65	77
Motor Power Ratings					
200 V	hp	10	15	20	25
230 V	hp	10	20	25	30
460 V	hp	30	40	50	60
230 V	kW	11	15	15	22
400 V	kW	22	30	37	45
Overload cycle according to EN 60947-4-2		40A: AC53a; 3-5; 75-10	52A: AC53a; 3-5; 75-10	65A: AC53a; 3-5; 75-10	77A: AC53a; 3-5; 75-10

Reduced Voltage Motor Starters

Solid-State Controllers

DS6 Soft Start Controllers, continued

Description	Unit	DS6-34DSX041N0-N	DS6-34DSX055N0-N	DS6-34DSX068N0-N	DS6-34DSX081N0-N
Wire Specifications					
Power terminals (box terminals)					
Single conductor	AWG	12-2/0	12-2/0	12-2/0	12-2/0
Terminal torque	lb-in	53-80	53-80	53-80	53-80
Control-signals					
Single conductor	AWG	16 min .	16 min .	16 min .	16 min .
Terminal torque	lb-in	3.5	3.5	3.5	3.5
Powerpart					
Rated impulse withstand voltage	$\begin{aligned} & \mathrm{U}_{\text {imp }} 1.2 / \\ & 50 \mu \mathrm{~s} \end{aligned}$	4 kV	4 kV	4 kV	4 kV
Control Commands					
Supply voltage control board Nominal voltage	Vdc	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%
Nominal current ramp, TOR	mA	65	65	65	65
Current peak (closing shorting contactors)		$600 \mathrm{~mA} / 50 \mathrm{~ms}$			
Voltage to the control terminals (rated control voltage)					
DC driven		+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%
Input current at 24 Vdc	mA	14	14	14	14
Relay Outputs					
Number of relays		2 (TOR, ready)	2 (TOR, ready)	2 (TOR, ready)	2 (TOR, ready)
Maximum voltage	V	$250 \mathrm{Vac}, 60 \mathrm{Vdc}$			
Maximum current	A	3 mps , resistive	3 amps , resistive	3 amps , resistive	3 amps , resistive
Soft Start Functions					
Ramp times					
Start ramp	s	1-30	1-30	1-30	1-30
Stop ramp	s	0-30	0-30	0-30	0-30
Initial voltage \% line voltage		30-92\%	30-92\%	30-92\%	30-92\%

DS6 Soft Start Controllers, continued

Description	Unit	DS6-34DSX099N0-N	DS6-34DSX134N0-N	DS6-34DSX161N0-N	DS6-34DSX196N0-N
General					
Standards		IEC/EN 60947-4-2	IEC/EN 60947-4-2	IEC/EN 60947-4-2	IEC/EN 60947-4-2
Certifications/marking		UL/CE/C-Tick/CSA	UL/CE/C-Tick/CSA	UL/CE/C-Tick/CSA	UL/CE/C-Tick/CSA
Ambient temperature (operation)	${ }^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$
Ambient temperature (storage)	${ }^{\circ} \mathrm{C}$	-25 to $+55^{\circ} \mathrm{C}$			
Altitude		0-1000m, above 1000 m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m	0-1000m, above 1000m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m	0-1000m, above 1000 m de-rate linearly by 1% of rated current per 100m to a maximum of 2000 m	0-1000m, above 1000 m de-rate linearly by 1% of rated current per 100 m to a maximum of 2000 m
Installation		Vertical	Vertical	Vertical	Vertical
Protection degree		IP 20	P20	IP 20	IP 20
Protection against contact		Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)
Overvoltage category/ pollution degree		11/2	11/2	11/2	II/2
Shock resistance		$8 \mathrm{~g} / 11 \mathrm{~ms}$			
Vibration resistance according to EN 60721-3-2		2M2	2M2	2M2	2M2
Dimensions in inches (mm) ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		$\begin{aligned} & 3.66 \times 6.89 \times 5.47 \\ & (93.0 \times 175.0 \times 138.9) \end{aligned}$	$\begin{aligned} & 4.25 \times 8.46 \times 7.01 \\ & (108.0 \times 214.9 \times 178.1) \end{aligned}$	$\begin{aligned} & 4.25 \times 8.46 \times 7.01 \\ & (108.0 \times 214.9 \times 178.1) \end{aligned}$	$\begin{aligned} & 4.25 \times 8.46 \times 7.01 \\ & (108.0 \times 214.9 \times 178.1) \end{aligned}$
Weight in lbs (kg)		4.00 (1.8)	8.16 (3.7)	8.16 (3.7)	8.16 (3.7)
Main Circuit					
Rated operation voltage	V	200-460 Vac	200-460 Vac	200-460 Vac	200-460 Vac
Mains frequency	Hz	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz
Rated impulse withstand voltage	$\begin{aligned} & \mathrm{U}_{\text {imp }} 1.2 / \\ & 50 \mu \mathrm{~s} \end{aligned}$	4 kV	4 kV	4 kV	4 kV
Rated operation current	I_{e}	96	124	156	180
Motor Power Ratings					
200V	hp	30	40	50	60
230 V	hp	30	50	60	75
460 V	hp	75	100	125	150
230 V	kW	30	30	45	55
400 V	kW	55	75	90	110
Overload cycle according to EN 60947-4-2		96A: AC53a; 3-5; 75-10	124A: AC53a; 3-5; 75-10	156A: AC53a; 3-5; 75-10	180A: AC53a; 3-5; 75-10

Reduced Voltage Motor Starters

Solid-State Controllers

DS6 Soft Start Controllers, continued

Description	Unit	DS6-34DSX099N0-N	DS6-34DSX134NO-N	DS6-34DSX161N0-N	DS6-34DSX196N0-N
Wire Specifications					
Power terminals (box terminals)					
Single conductor	AWG	12-2/0	12 AWG-350 kcmil	12 AWG-350 kcmil	12 AWG-350 kcmil
Terminal torque	lb -in	53-80	44-123	44-123	44-123
Control-signals					
Single conductor	AWG	16 min .	16 min .	16 min .	16 min .
Terminal torque	lb -in	3.5	3.5	3.5	3.5
Powerpart					
Rated impulse withstand voltage	$\begin{aligned} & \mathrm{U}_{\mathrm{imp}} 1.2 / \\ & 50 \mu \mathrm{~s} \end{aligned}$	4 kV	4 kV	4 kV	4 kV
Control Commands					
Supply voltage control board U_{S}					+24 Vdc +10\%/-15\%
Nominal current ramp, TOR	mA	65	65	65	65
Current peak (closing shorting contactors)		$600 \mathrm{~mA} / 50 \mathrm{~ms}$			
Voltage to the control terminals (rated control voltage)					
DC driven		+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%	+24 Vdc +10\%/-15\%
Input current at 24 Vdc	mA	14	14	14	14
Relay Outputs					
Number of relays		2 (TOR, ready)	2 (TOR, ready)	2 (TOR, ready)	2 (TOR, ready)
Maximum voltage	V	$250 \mathrm{Vac}, 60 \mathrm{Vdc}$			
Maximum current	A	3 mpss , resistive	3 amps , resistive	3 amps , resistive	3 amps , resistive
Soft Start Functions					
Ramp times					
Start ramp	s	1-30	1-30	1-30	1-30
Stop ramp	s	0-30	0-30	0-30	0-30
Initial voltage \% line voltage		30-92\%	30-92\%	30-92\%	30-92\%

Dimensions

Approximate Dimensions in Inches (mm)

100-150 hp Models

DS7 Soft Start Controllers

Contents

Description	Page
Type S701, Soft Start Controllers	V6-T1-3
Type S701, Soft Start Controllers with Auxiliary Contact	V6-T1-9
Type S701, Soft Start Controllers with Brake	V6-T1-12
Type S511, Semiconductor Reversing Contactors	V6-T1-15
DS6 Soft Start Controllers	V6-T1-19
DS7 Soft Start Controllers	
Features and Benefits	V6-T1-29
Standards and Certifications	V6-T1-29
Instructional Leaflets	V6-T1-29
Product Selection	V6-T1-30
Technical Data and Specifications	V6-T1-33
Dimensions	V6-T1-37

Operation

Voltage Ramp Start

This start method provides a voltage ramp to the motor, resulting in a constant torque increase. This most commonly used form of soft start mode allows you to set the initial voltage value and the duration of the ramp to full voltage conditions.

- Adjustable initial voltage 30-92\% of full voltage (120/230 Vac control voltage)
- Adjustable initial voltage 30-100\% of full voltage (24 $\mathrm{Vac} / \mathrm{Vdc}$ control voltage)
- Adjustable ramp time 1-30 seconds
- Bypass relays close at the end the ramp time (TOR)

Soft Stop

Allows for a controlled stopping of load. Used when a stop-time that is greater than the coast-to-stop time is desired. Often used with high friction loads where a sudden stop may cause system or product damage. Setting the soft stop time to a value of 0 turns off this feature.

- Soft stop time = 0-30 seconds

$1=$ Coast to Stop (Speed)
$2=$ Soft Stop Ramp (Voltage)
$\mathbf{3}=$ Soft Stop Time

Auxiliary Contacts

Auxiliary contacts are provided to indicate soft start controller status.

Frame Size 1 (4A to 12A)One Relay

The auxiliary relay indicates when the soft starter is at Top-of-Ramp (TOR).

Frame Size 2 (16A to 32A)Two Relays

One auxiliary relay indicates when the soft starter is at Top-of-Ramp (TOR).
One auxiliary relay indicates that a RUN command is present, including start ramp, bypass, and stop ramp times.

Features and Benefits

- Run bypass mode greatly reduces internal heating created by the power dissipation across the SCRs. The bypass relay directly connects the motor to the line and improves system efficiency by reducing internal power losses
- Less heat minimizes enclosure size and cooling requirements, and maximizes the life of all devices in the enclosure
- LED displays device status and provides fault indication
- Variable ramp times and voltage control (torque control) settings provide unlimited starting configurations, allowing for maximum application flexibility
- Soft stop control suits applications where an abrupt stop of the load is not acceptable. Soft acceleration and deceleration reduces wear on belts, gears, chains, clutches, shafts, and bearings
- Minimizes the peak inrush current's stress on the power system. Peak starting torque can be managed to diminish mechanical system wear and damage.
- $24 \mathrm{Vac} /$ ddc control voltage enhances personnel and equipment safety. 120/230 Vac control voltage is also available
- Auxiliary relays indicate status of the soft start controllers
- The TOR relay is active until motor stop command is received and/or the soft start controller detects a fault condition
- RUN relay is active during the start ramp, bypass, and stop ramp

Protective Features

- Mains connection-The mains connection is monitored for a phase loss and/or undervoltage during ramp up
- Motor connection-The motor connection is monitored for an open condition during the ramp
- SCR faults-SCR performance is monitored during the ramp cycle for proper operation
- Heat sink over/under temperature-High ambient temperatures, extended ramp times, and high duty cycle conditions may cause the DS7 to exceed its thermal rating. When temperature goes under $5^{\circ} \mathrm{C}$, unit will trip as well. The DS7 is equipped with sensors that monitor the temperature of the device as well. The soft starter will trip in over/under temperature conditions, preventing device failure
- Warning is indicated for an over temperature condition for the next start
- Bypass relay
- The DS7 can detect if the bypass relay fails to close after the ramp start or opens while the motor is running
- The DS7 will also detect a condition whereas the bypass relay is closed when the RUN command is given
- The DS7 will trip on a bypass dropout fault if either of these conditions occur

Standards and Certifications

- IEC 60947-4-2
- EN 60947-4-2
- UL® listed
- CSA certified
- CE marked
- C-Tick

Instructional Leaflets

- Instruction Leaflet IL03901001E

Solid-State Controllers

Product Selection

DS7 Soft Start Horsepower Ratings

Please refer to Application Note AP03901006E for additional information on proper size selection.

DS7 Soft Start Controller-Frame 1	DS7 Soft Start Controllers-Horsepower Ratings10 Second Ramp, One Start per Hour, 300\% Current Limit at $40^{\circ} \mathrm{C}$ ©										
	Rated Current (A)	Motor 200 V	230v	(hp)	Maximum Allowable Breaker Size	Maximum Allowable Fuse Size	Recommended XTOB Overload (Direct Connect) ${ }^{2}$	Recommended XTOE Overload ${ }^{2}$	MMP (2)	Connection Kit to MMP	Catalog Number
	3.7	0.75	0.75	2	HFD3015	15A Class RK5	XTOB004BC1	XTOE005BCS	XTPR004BC1	ХTPAXTPCB	DS7-340SX004NO-N ${ }^{\text {© }}$
											DS7-342SX004NO-N ${ }^{\text {© }}$
	6.9	1.5	2	\bigcirc	HFD3015	15A Class RK5	XTOBOо6BC1 ${ }^{\text {(1) }}$	XTOEO20BCS	XTPR6P3BC1	ХTPAXTPCB	DS7-340SX007NO-N ${ }^{\text {(}}$
											DS7-342SX007NO-N ${ }^{\text {® }}$
	7.8	2	2	5	HFD3020	20A Class RK5	хТОВО10ВС1	XTOEO20BCS	XTPRO10BC1	ХТРАХТРСВ	DS7-340SX009N0-N ${ }^{\text {c }}$
											DS7-342SX009NO-N ${ }^{\text {® }}$
	11	3	3	7.5	HFD3030	20A Class RK5	XTOB012BC1	XTOEO20BCS	XTPR012BC1	ХTPAXTPCB	DS7-340SX012NO-N ${ }^{\text {© }}$
											DS7-342SX012NO-N ${ }^{\text {® }}$
	15.2	3	5	10	HFD3035	25A Class RK5	XTOB016CC1	XTOEO20CCS	XTPR016BC1	XTPAXTPCC	DS7-340SX016NO-N ${ }^{\text {(}}$
											DS7-342SX016NO-N ${ }^{\text {® }}$
	22	5	7.5	15	HFD3060	40A Class RK5	XTOB024CC1	XTOE045CCS	XTPR025BC1	XTPAXTPCC	DS7-340SX024NO-N ${ }^{\text {c }}$
											DS7-342SX024NO-N ${ }^{\text {© }}$
	32	7.5	10	20	HFD3070	50A Class RK5	хтовоз2СС1	XTOE045CCS	XTPR032BC1	XTPAXTPCC	DS7-340SX032NO-N ${ }^{\text {c }}$
											DS7-342SXO32NO-N ${ }^{\text {® }}$

DS7 Soft Start Controller-Frame 1

DS7 Soft Start Controllers-Horsepower Ratings -
10 Second Ramp, One Start per Hour, 400% Current Limit at $40^{\circ} \mathrm{C}$ (1)

Rated Current (A)	Motor Power (hp)			Maximum Allowable Breaker Size	Maximum Allowable Fuse Size	Recommended XTOB Overload (Direct Connect)	Recommended XTOE Overload	MMP ${ }^{2}{ }^{\text {2 }}$	Connection Kit to MMP	Catalog Number
	200 V	230 V	480V							
3	0.5	0.5	1.5	HFD3015	15A Class RK5	XTOB004BC1	XTOEO05BCS	XTPR004BC1	ХTPAXTPCB	DS7-340SX004NO-N ${ }^{4}$
										DS7-342SX004NO-N ${ }^{\text {5 }}$
4.8	1	1	3	HFD3015	15A Class RK5	ХТОВ006ВС1 1	XTOE020BCS	XTPR6P3BC1	XTPAXTPCB	DS7-340SX007NO-N ${ }^{4}$
										DS7-342SX007N0-N ${ }^{\text {5 }}$
6.9	1.5	2	3	HFD3020	20A Class RK5	XTOB006BC1	XTOEO20BCS	XTPR6P3BC1	XTPAXTPCB	DS7-340SX009NO-N ${ }^{(4)}$
										DS7-342SX009N0-N ${ }^{5}$
9	2	2	5	HFD3030	20A Class RK5	XTOB010BC1	XTOE020BCS	XTPR010BC1	XTPAXTPCB	DS7-340SX012NO-N ${ }^{\text {4 }}$
										DS7-342SX012NO-N ${ }^{\text {5 }}$
11	3	3	7.5	HFD3035	25A Class RK5	ХTOB016СС1	XTOE020CCS	XTPR016BC1	XTPAXTPCC	DS7-340SX016NO-N ${ }^{4}$
										DS7-342SX016NO-N ${ }^{\text {5 }}$
17.5	5	5	10	HFD3060	40A Class RK5	XTOB016CC1	XTOE045CCS	XTPR016BC1	XTPAXTPCC	DS7-340SX024NO-N ${ }^{(4)}$
										DS7-342SX024N0-N ${ }^{5}$
22	5	7.5	15	HFD3070	50A Class RK5	ХТОВ024СС1	XTOE045CCS	XTPR025BC1	XTPAXTPCC	DS7-340SX032NO-N ${ }^{\text {(4) }}$
										DS7-342SX032NO-N ${ }^{\text {5 }}$

Notes

(1) Actual motor FLAs vary. Verify these devices cover the motor specific FLA.
(2) Selections are based on motor FLA value at 480 V .
(3) Not to be used with 230V.
(4) $24 \mathrm{Vac} / \mathrm{Vdc}$ device.
(5) 120/230 Vac device

DS7 Soft Start kW Ratings

Please refer to Application Note AP03901006E for additional information on proper size selection.

$\begin{aligned} & \text { DS7 Soft Start } \\ & \text { Controller-Frame } 2 \end{aligned}$	DS7 Soft Start Controllers-kW Ratings According to IEC 60947-4-210 Second Ramp, One Start per Hour, 300\% Current Limit at $40^{\circ} \mathrm{C}$ (1)							MMP ${ }^{(2)}$	Connection Kit to MMP	Catalog Number
	Rated Current (A)	Motor 230V	ower (kW) 400V	Maximum Allowable Breaker Size	Maximum Allowable Fuse Size	Recommended XTOB Overload (Direct Connect)	Recommended XTOE Overload			
crever	3.8	0.75	1.5	HFD3015	15A Class RK5	XTOB004BC1	XTOE005BCS	XTPR004BC1	XTPAXTPCB	DS7-340SXOO4NO-N ${ }^{4}$
										DS7-342SX004NO-N (${ }^{\text {(}}$
	7	1.5	3	HFD3015	15A Class RK5	XTOB006BC1 ${ }^{1}$	XTOE020BCS	XTPR6P3BC1	XTPAXTPCB	DS7-340SX007NO-N ${ }^{4}$
(88)										DS7-342SX007N0-N (5)
	9	2.2	4	HFD3020	20A Class RK5	XTOB010BC1	XTOEO20BCS	XTPR010BC1	XTPAXTPCB	DS7-340SX009NO-N ${ }^{4}$
										DS7-342SX009NO-N ${ }^{\text {(})}$
-	12	3	5.5	HFD3030	20A Class RK5	XTOB012BC1	XTOEO20BCS	XTPR012BC1	XTPAXTPCB	DS7-340SX012NO-N ${ }^{4}$
										DS7-342SX012NO-N ${ }^{\text {5 }}$
	16	4	7.5	HFD3035	25A Class RK5	XTOB016CC1	XTOEO2OCCS	XTPR016BC1	XTPAXTPCC	DS7-340SX016NO-N ${ }^{4}$
										DS7-342SX016NO-N ${ }^{\text {5 }}$
	24	5.5	11	HFD3060	40A Class RK5	XTOB024CC1	XTOE045CCS	XTPR025BC1	XTPAXTPCC	DS7-340SX024NO-N ${ }^{4}$
										DS7-342SX024NO-N ${ }^{\text {® }}$
	32	7.5	15	HFD3070	50A Class RK5	XTOB032CC1	XTOE045CCS	XTPR032BC1	XTPAXTPCC	DS7-340SX032NO-N ${ }^{4}$
										DS7-342SX032NO-N ${ }^{\text {(})}$

DS7 Soft Start Controllers-kW Ratings According to IEC 60947-4-2-
10 Second Ramp, One Start per Hour, 400% Current Limit at $40^{\circ} \mathrm{C}$ (1)

Rated Current (A)	Motor Power (kW)		Maximum Allowable Breaker Size	Maximum Allowable Fuse Size	Recommended XTOB Overload (Direct Connect) ${ }^{(2)}$	Recommended XTOE Overload	MMP ${ }^{(2)}$	Connection Kit to MMP	Catalog Number
	230 V	400V							
2.5	0.33	1	HFD3015	15A Class RK5	XTOB004BC1	XTOE005BCS	XTPR004BC1	XTPAXTPCB	DS7-340SX004NO-N ${ }^{4}$
									DS7-342SX004NO-N ${ }^{\text {5 }}$
3.8	0.75	1.5	HFD3015	15A Class RK5	XTOB006BC1 ${ }^{(1)}$	XTOEO20BCS	XTPR6P3BC1	XTPAXTPCB	DS7-340SX007NO-N ${ }^{4}$
									DS7-342SX007NO-N ${ }^{\text {c }}$
7	1.5	3	HFD3020	20A Class RK5	XTOB006BC1	XTOEO20BCS	XTPR6P3BC1	XTPAXTPCB	DS7-340SX009NO-N ${ }^{4}$
									DS7-342SX009NO-N ${ }^{\text {® }}$
9	2.2	4	HFD3030	20A Class RK5	XTOB010BC1	XTOEO20BCS	XTPRO10BC1	XTPAXTPCB	DS7-340SX012NO-N ${ }^{4}$
									DS7-342SX012N0-N ${ }^{\text {5 }}$
12	3	5.5	HFD3035	25A Class RK5	XTOB016CC1	XTOEO20CCS	XTPR016BC1	XTPAXTPCC	DS7-340SX016NO-N ${ }^{4}$
									DS7-342SX016NO-N ${ }^{\text {® }}$
16	4	7.5	HFD3060	40A Class RK5	XTOB016CC1	XTOE045CCS	XTPR016BC1	XTPAXTPCC	DS7-340SX024NO-N ${ }^{4}$
									DS7-342SX024NO-N ${ }^{\text {® }}$
24	5.5	11	HFD3070	50A Class RK5	XTOB024CC1	XTOE045CCS	XTPR025BC1	XTPAXTPCC	DS7-340SX032NO-N ${ }^{4}$
									DS7-342SX032NO-N ${ }^{\text {5 }}$

Notes

(1) Actual motor FLAs vary. Verify these devices cover the motor specific FLA.
(2) Selections are based on motor FLA value at 480 V .
(3) Not to be used with 230 V .
(4) $24 \mathrm{Vac} / \mathrm{Vdc}$ device.
(5) 120/230 Vac device.

Solid-State Controllers

Considerations

1. Either XTOB or XTOE or equivalent overload protection devices may be selected. In addition, manual motor protectors-MMP series can also be considered.
2. Isolation contactor is required for mains isolation.

24 Vdc Control Power

Eaton's ELC power supplies are recommended as a compact and low-cost source for 24 Vdc power. The light-weight, DIN rail mounted devices have a wide input voltage range and robust screw terminals make these power supplies easy to install and use. These power supplies are available in 1 A and 2 A models.

AC Control Power

24,120 , or 230 volts AC may be used for control power in accordance with the model requirements.

DC Power Supply Selection

Description	Catalog Number
$85-264 \mathrm{~V}$ input and 24V output	ELC-PS01
$380-480 \mathrm{~V}$ input and 24V output	PSS25F

Technical Data and Specifications

DS7 Soft Start Controllers

Rated Control Circuit					
Voltage 24 Vac/Vdc Voltage 110/230 Vac	Unit	DS7-340SX004NO-N DS7-342SX004NO-N	DS7-340SX007NO-N DS7-342SX007NO-N	DS7-340SX009NO-N DS7-342SX009NO-N	DS7-340SX012NO-N DS7-342SX012NO-N
General					
Standards		IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22.2 No 14-05 CE marking	IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22.2 No 14-05 CE marking	IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22.2 No 14-05 CE marking	IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22.2 No 14-05 CE marking
Certifications/marking		UL/CE/CSA/C-Tick	UL/CE/CSA/C-Tick	UL/CE/CSA/C-Tick	UL/CE/CSA/C-Tick
Ambient temperature (operation)	${ }^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$
Ambient temperature (storage)	${ }^{\circ} \mathrm{C}$	-25 to $55^{\circ} \mathrm{C}$			
Altitude		$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000 m	$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000 m	$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000 m	$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000 m
Installation		Vertical	Vertical	Vertical	Vertical
Protection class		IP20	IP20	IP20	IP20
Protection class applies to the front and operator control and display elements. Protection type from all sides is IPOO.		With optional covers from the NZM range, protection type IP40 from all sides can be achieved	With optional covers from the NZM range, protection type IP40 from all sides can be achieved	With optional covers from the NZM range, protection type IP40 from all sides can be achieved	With optional covers from the NZM range, protection type IP40 from all sides can be achieved
Busbar tag shroud		Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)
Overvoltage category/ pollution degree		11/2	11/2	11/2	11/2
Shock resistance		$8 \mathrm{~g} / 11 \mathrm{~ms}$			
Vibration resistance according to EN 60721-3-2		2M2	2M2	2M2	2M2
Mean heat dissipation at rated duty cycle	W	0.2	0.35	0.35	0.6
Radio interference		B	B	B	B
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	mm	$45 \times 130 \times 95$			
	in	$1.77 \times 5.12 \times 3.74$			
Weight	kg	0.35	0.35	0.35	0.35
	lb	0.77	0.77	0.77	0.77
Main Circuit					
Rated operational voltage	V	230-460 Vac	230-460 Vac	230-460 Vac	230-460 Vac
Mains frequency	Hz	50/60 Hz	$50 / 60 \mathrm{~Hz}$	$50 / 60 \mathrm{~Hz}$	50/60 Hz
Rated operation current AC 53	I_{e}	4	7	9	12
Motor Power Ratings					
200 V	hp	0.75	1.5	2	3
230 V	hp	0.75	2	2	5
480 V	hp	2	3	5	10
230 V	kW	0.75	1.5	2.2	3
400 V	kW	1.5	3	4	5.5
Overload cycle according to EN 60947-4-2		4A: AC53a; 3-5; 75-10	7A: AC53a; 3-5; 75-10	9A: AC53a; 3-5; 75-10	12A: AC53a; 3-5; 75-10

Solid-State Controllers

DS7 Soft Start Controllers, continued

Rated Control Circuit					
Voltage 24 Vac/Vdc Voltage 110/230 Vac	Unit	DS7-340SX004NO-N DS7-342SX004NO-N	DS7-340SX007NO-N DS7-342SX007NO-N	DS7-340SX009NO-N DS7-342SX009NO-N	DS7-340SX012NO-N DS7-342SX012NO-N
Wire Specifications					
Power terminals					
Single conductor-solid or stranded	AWG	18-10	18-10	18-10	18-10
Terminal torque	lb-in	11	11	11	11
Control signals					
Single conductor-solid or stranded	AWG	18-10	18-10	18-10	18-10
Terminal torque	lb -in	11	11	11	11
Power Section					
Rated impulse withstand voltage	$\begin{aligned} & \hline \mathrm{U}_{\mathrm{imp}} \\ & 1.2 / 50 _\mathrm{s} \end{aligned}$	4 kV	4 kV	4 kV	4 kV
Rated insulation voltage		500	500	500	500
Control Commands-Vac/Vdc					
Supply voltage control board U_{s} nominal	Vdc	20.4-26.4	20.4-26.4	20.4-26.4	20.4-26.4
Current consumption at $24 \mathrm{Vac} / \mathrm{Vdc}$	mA	1.6	1.6	1.6	1.6
Pick-up voltage		+17.3-+27	+17.3-+27	+17.3-+27	+17.3-+27
Drop-out voltage		+3-0	+3-0	+3-0	+3-0
Relay Outputs					
Number of relays		1 (TOR)	1 (TOR)	1 (TOR)	1 (TOR)
Maximum voltage	Vac	250	250	250	250
Maximum current	A	1A	1A	1A	1A

Soft Start Functions

Ramp times					
Start ramp	s	1-30	1-30	1-30	1-30
Stop ramp	s	0-30	0-30	0-30	0-30
Initial voltage \% line voltage		30-100\%	30-100\%	30-100\%	30-100\%
Control Commands-Vac					
Supply voltage control board U_{s} nominal	Vac	102-253	102-253	102-253	102-253
Current consumption at $24 \mathrm{Vac} / \mathrm{Vdc}$	mA	4	4	4	4
Pick-up voltage	Vac	102-230	102-230	102-230	102-230
Drop-out voltage	Vac	0-28	0-28	0-28	0-28
Relay Outputs					
Number of relays		1 (TOR)	1 (TOR)	1 (TOR)	1 (TOR)
Maximum voltage	Vac	250	250	250	250
Maximum current	A	3A	3A	3A	3A

Soft Start Functions

Ramp times

Start ramp	s	$1-30$	$1-30$	$1-30$	$1-30$
Stop ramp	s	$0-30$	$0-30$	$0-30$	$0-30$
Initial voltage \% line voltage		$30-92 \%$	$30-92 \%$	$30-92 \%$	$30-92 \%$

DS7 Soft Start Controllers, continued

Rated Control Circuit				
Voltage $\mathbf{2 4}$ Vac/Vdc Voltage 110/230 Vac	Unit	DS7-340SX016NO-N DS7-342SX016NO-N	DS7-340SX024NO-N DS7-342SX024NO-N	DS7-340SX032NO-N DS7-342SX032N0-N
General				
Standards		IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22.2 No 14-05 CE marking	IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22.2 No 14-05 CE marking	IEC/EN 60947-4-2; GB14048.6; UL508; CSA-C22.2 No 0-M91; CSA-C22. 2 No 14-05 CE marking
Certifications/marking		UL/CE/CSA/C-Tick	UL/CE/CSA/C-Tick	UL/CE/CSA/C-Tick
Ambient temperature (operation)	${ }^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$	0 to $40^{\circ} \mathrm{C}$, above $40^{\circ} \mathrm{C}$ de-rate linearly by 1% of rated current per Celsius to $60^{\circ} \mathrm{C}$
Ambient temperature (storage)	${ }^{\circ} \mathrm{C}$	-25 to $55^{\circ} \mathrm{C}$	-25 to $55^{\circ} \mathrm{C}$	-25 to $55^{\circ} \mathrm{C}$
Altitude		$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000 m	$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000m	$0-1000 \mathrm{~m}$, above 1000 m de-rate linearly by 2.5% of rated current per 100 m to a maximum of 2000 m
Installation		Vertical	Vertical	Vertical
Protection class		IP20	IP20	IP20
Protection class applies to the front and operator control and display elements. Protection type from all sides is IPOO.		With optional covers from the NZM range, protection type IP40 from all sides can be achieved	With optional covers from the NZM range, protection type IP40 from all sides can be achieved	With optional covers from the NZM range, protection type IP40 from all sides can be achieved
Busbar tag shroud		Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)	Back of hand and finger-proof (from front face)
Overvoltage category/ pollution degree		11/2	II/2	11/2
Shock resistance		$8 \mathrm{~g} / 11 \mathrm{~ms}$	$8 \mathrm{~g} / 11 \mathrm{~ms}$	$8 \mathrm{~g} / 11 \mathrm{~ms}$
Vibration resistance according to EN 60721-3-2		2M2	2M2	2M2
Mean heat dissipation at rated duty cycle	W	0.8	1.1	1.5
Radio interference		B	B	B
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	mm	$45 \times 150 \times 118$	$45 \times 150 \times 118$	$45 \times 150 \times 118$
	in	$1.77 \times 5.12 \times 3.74$	$1.77 \times 5.12 \times 3.74$	$1.77 \times 5.12 \times 3.74$
Weight	kg	0.4	0.4	0.4
	lb	0.88	0.88	0.88
Main Circuit				
Rated operational voltage	V	230-460 Vac	230-460 Vac	230-460 Vac
Mains frequency	Hz	50/60 Hz	$50 / 60 \mathrm{~Hz}$	50/60 Hz
Rated operation current AC 53	I_{e}	16	24	32
Motor Power Ratings				
200 V	hp	3	5	10
230 V	hp	5	7.5	10
480 V	hp	10	15	25
230 V	kW	4	5.5	7.5
400 V	kW	7.5	11	15
Overload cycle according to EN 60947-4-2		16A: AC53a; 3-5; 75-10	24A: AC53a; 3-5; 75-10	32A: AC53a; 3-5; 75-10

Solid-State Controllers

DS7 Soft Start Controllers, continued

Rated Control Circuit				
Voltage 24 Vac/Vdc Voltage 110/230 Vac	Unit	DS7-340SX016NO-N DS7-342SX016NO-N	DS7-340SX024NO-N	$\begin{aligned} & \text { DS7-340SX032NO-N } \\ & \text { DS7-342SX032NO-N } \end{aligned}$
Wire Specifications				
Power terminals				
Single conductor—solid or stranded	AWG	18-6	18-6	18-6
Terminal torque	lb-in	11	11	11
Control Signals				
Single conductor—solid or stranded	AWG	18-10	18-10	18-10
Terminal torque	lb -in	11	11	11
Power Section				
Rated impulse withstand voltage	$\begin{aligned} & U_{\text {imp }} \\ & 1.2 / 50 _ \text {s } \end{aligned}$	4 kV	4 kV	4 kV
Rated insulation voltage		500	500	500
Control Commands-Vac/Vdc				
Supply voltage control board U_{S} nominal	Vdc	20.4-26.4	20.4-26.4	20.4-26.4
Current consumption at $24 \mathrm{Vac} / \mathrm{Vdc}$	mA	1.6	1.6	1.6
Pick-up voltage		+17.3-27	+17.3-+27	+17.3-+27
Drop-out voltage		+3-0	+3-0	+3-0
Relay Outputs				
Number of relays		2 (TOR, Ready)	2 (TOR, Ready)	2 (TOR, Ready)
Maximum voltage	Vac	250	250	250
Maximum current	A	1A	1A	1A
Soft Start Functions				
Ramp times				
Start ramp	s	1-30	1-30	1-30
Stop ramp	s	0-30	0-30	0-30
Initial voltage \% line voltage		30-100\%	30-100\%	30-100\%
Control Commands-Vac				
Supply voltage control board U_{S} nominal	Vac	102-253	102-253	102-253
Current consumption at 102-253 Vac	mA	4	4	4
Pick-up voltage	Vac	102-230	102-230	102-230
Drop-out voltage	Vac	0-28	0-28	0-28
Relay Outputs				
Number of relays		2 (TOR, Run)	2 (TOR, Run)	2 (TOR, Run)
Maximum voltage	Vac	250	250	250
Maximum current	A	3A	3A	3A
Soft Start Functions				
Ramp times				
Start ramp	s	1-30	1-30	1-30
Stop ramp	s	0-30	0-30	0-30
Initial voltage \% line voltage		30-92\%	30-92\%	30-92\%

Dimensions

Approximate Dimensions in Inches (mm)
Frame Size 1

Frame Size 2

Contents

Description

Page
Solid-State Starters
Type S611, Solid-State Soft Starters
V6-T1-39
Type S801, Soft Starters
V6-T1-56
Type S811, Soft Starters with DIM V6-T1-84

Product Overview

Type S611

The S611 soft starter is a powerful combination of performance capability, application flexibility, and the industry's best user interface experience.

Designed to control acceleration and deceleration of three-phase motors, the line is available for current ranges from 26A through 414A applications.

The S611 has integrated bypass and overload protection. The S611 is available as a component for panel mounting or in enclosed control-NEMA type $1,12,3 R, 4,4 \mathrm{X}$.

Type S801

Eaton's S801 line of reduced voltage soft starters is very compact, multi-functional, easy to install and easy to program. Designed to control acceleration and deceleration of three-phase motors, the line is available for current ranges from 11A all the way through 1000A applications, and is suitable for mounting in motor control centers or in enclosed control (NEMA 1, 4, $4 X$ and 12) applications.

Type S811

Eaton's S811 offers all the popular features of the S801, and adds enhanced functionality with the new DIM (Digital Interface Module), communications, metering, monitoring and diagnostics capabilities.
Eaton's Line of S811 reduced voltage soft starters is very compact, multi-functional, easy to install and easy to set operating parameters. Designed to control the acceleration and deceleration of three-phase motors up to 690 V , the line is available from 11-1000A.

The S811 is designed to be a complete package combining the silicon controlled rectifiers (SCRs), bypass contactor and overload in one, very compact unit. The S811 is available as a component for panel mounting, in motor control centers or in enclosed control (NEMA Type 1, 3R, 4, 4X, 7/9 and 12).

Type S611, Solid-State Soft Starter

Type S611, Solid-State Soft Starters

Product Description

Eaton revolutionized the reduced voltage control marketplace with its advanced feature set and user-friendly user interface module to enhance system performance and reduce commissioning times. The S611 adds enhanced functionality with network communications, metering, monitoring and diagnostics capabilities.
The Eaton line of S611 reduced voltage soft starters is multi-functional, easy to install and easy to program. Designed to control the acceleration and deceleration of three-phase motors up to 600 V , the line is available from 26 amps through 414 amps.

The S611 is designed to be a complete package combining the SCRs, bypass contactor and overload in one unit.

Application Description

Designed to control the acceleration and deceleration of three-phase motors, the S611 soft starter uses Silicon Controlled Rectifiers (SCRs) to control the voltage to soft start and soft stop the motor. After the motor is started, internal run bypass contactors close, resulting in the motor running directly across-the-line. The built-in solid-state overload protects the motor from overload conditions with sophisticated algorithms that model true motor heating, resulting in better motor protection and fewer nuisance trips. Advanced protective and diagnostic features reduce downtime.

A voltage ramp start or current limit start is available. Kick start is available in either starting mode. The soft stop option allows for a ramp stop time that is longer than the coast to stop time. The pump control option provides a smooth transition for starting and stopping a motor and eliminating the "waterhammer" effect that can damage pipes, valves and pumps.

Contents

Description

Page

Type S611, Solid-State Soft Starters
Communications .

V6-T1-40

Operation. V6-T1-41
Features and Benefits . V6-T1-44
Standards and Certifications V6-T1-47
Catalog Number Selection V6-T1-47
Product Selection V6-T1-48
Accessories. V6-T1-49
Replacement Parts V6-T1-50
Technical Data and Specifications V6-T1-51
Dimensions V6-T1-54
Type S801, Soft Starters V6-T1-56
Type S811, Soft Starters with DIM V6-T1-84

The S611 offers an impressive array of advanced protective features. Not only are the protective features selectable, but many offer variable settings allowing the user to fine tune the soft starter to meet specific system requirements.
The S611 has an easy to use User Interface Module (UI) that allows the user to configure the device and to read system parameters and values. The UI includes an LED display and keypad to scroll through the various parameters. The UI allows the user to modify control parameters, enable or disable protections, set communication variables, monitor system values such as line voltages and currents, and access the fault queue.

User Interface Module (UI)

The UI can be removed from the S611 and remote mounted. Kits are available to door mount the UI, enabling users to safely configure, commission, monitor and troubleshoot the system at the electrical panel without opening the enclosure door. This will help eliminate the possibility of an arc flash incident.

Solid-State Starters

Communications

The S611 has built-in communication capabilities through two communications ports to connect the soft starter to a variety of networks, including Modbus (resident), DeviceNet ${ }^{\top \mathrm{M}}$, PROFIBUS ${ }^{\circledR}$, and Ethernet

Network Communications Reference

Description	Catalog Number
Modbus communication adapter without 1/0	C441M
Modbus communication adapter with $120 \mathrm{Vac} 1 / 0$	C441N
Modbus communication adapter with $24 \mathrm{Vdc} 1 / 0$	C441P
DeviceNet communication adapter with 120 Vac I/0	C441K
DeviceNet communication adapter with $24 \mathrm{Vdc} 1 / 0$	C441L
PROFIBUS communication adapter with $120 \mathrm{Vac} 1 / 0$	C441S
PRoFIBUS communication adapter with $24 \mathrm{Vdc} / 1 / 0$	C4410
Ethernet IP/Modbus TCP communication adapter with 120 Vac I/0	C441R
Ethernet IP/Modbus TCP communication adapter with $24 \mathrm{Vdc} 1 / 0$	C441T
Communication adapter	C440-COM-ADP

Operation

Starting and Stopping Modes

The S611 has a variety of starting and stopping methods to provide superior performance in the most demanding applications. The motor can be started in either Voltage Ramp Start or Current Limit Start mode. Kick Start and Soft Stop are available within both starting modes.

Voltage Ramp Start

Provides a voltage ramp to the motor resulting in a constant torque increase. The most commonly used form of soft start, this start mode allows you to set the initial torque value and the duration of the ramp to full voltage conditions. Bypass contactors close after ramp time.

- Adjustable initial torque 0-85\% of locked rotor torque
- Adjustable ramp time $0.5-180$ seconds (can be extended with factory modification)

Starting Characteristics-Ramp Start

Current Limit Start

Limits the maximum current available to the motor during the start phase. This mode of soft starting is used when it becomes necessary to limit the maximum starting current due to long start times or to protect the motor. This start
mode allows you to set the maximum starting current as a percentage of locked rotor current and the duration of the current limit. Bypass contactors close after current limit time.

- Maximum current of 0-85\% locked rotor current
- Adjustable ramp time $0.5-180$ seconds (can be extended with factory modification)

Starting Characteristics-Current Limit Start

Solid-State Starters

Kick Start

Selectable feature in both Voltage Ramp Start and Current Limit Start modes. Provides a current and torque "kick" for 0 to 2.0 seconds. This provides greater initial current to develop additional torque to breakaway a high friction load.

- 0-85\% of locked rotor torque
- 0-2.0 seconds duration

Starting Characteristics-Kick Start

Soft Stop

Allows for a controlled stopping of a load. Used when a stop-time that is greater than the coast-to-stop time is desired. Often used with high friction loads where a sudden stop may cause system or load damage.

Starting Characteristics - Soft Stop

Pump Control Option

This option is intended to reduce the potential for water hammer in a centrifugal pump system by using a starting and stopping algorithm developed for pump control. Upon a start command, the speed of the motor is
increased, under the control of the S611 soft starter microprocessor, to achieve a gentle start. After the speed has reached its nominal value, the bypass contactors close and the pump operates as with any other starter.

Upon a stop command, the bypass contactors are opened and the motor speed is decreased in a tapered manner, to gradually slow the flow until the motor is brought to a stop.

Pump Control Option

Edge and Level Sensing Control

Edge or Level Sensing is selected with the Start Control parameter in the Advanced Configuration Menu. Factory default is Level Sensing.

Edge Sensing
Edge sensing requires 120 Vac power be momentarily applied to the Start terminal (with the Permissive terminal 120 Vac) to initiate a start under all conditions. After a stop or fault occurs, the 120 Vac must be reapplied to the start terminal before another start can occur. This control configuration should be used when restarting of the motor after a fault or stop must be supervised manually or as a part of a control scheme. The cycling of 120 Vac power to the Permissive terminal before starting is required regardless of the position of the auto reset parameter.

Level Sensing

Level sensing will enable a motor to restart after a fault is cleared without cycling 120 V AC to the Permissive terminal as long as:

- Permissive terminal is supplied with 120 Vac
- The auto reset parameter is set to enabled
- All faults have cleared or have been reset

This control configuration should be used where it is desirable to restart a motor after a fault without additional manual or automatic control. An example of this condition would be on a remote pumping station where it is desirable to automatically restart a pump after a power outage without operator intervention.

Note: If the auto reset feature is used, CAUTION must be exercised to assure that any restart occurs in a safe manner.

Solid-State Starters

Features and Benefits

- The User Interface Module (UI) provides an intuitive, easy-to-use human interface with powerful configuration capabilities to maximize system performance
- Door or device mounted UI enables users to safely configure, commission, monitor and troubleshoot the system at the electrical panel without opening the enclosure door, eliminating the possibility of an arc flash incident
- System operating parameters can be monitored enterprise-wide through a communications network. Increase uptime by providing data for process management and preventive diagnostics
- Run bypass mode greatly reduces internal heating created by the greater power dissipation in the SCRs. Bypass contactors directly connect the motor to the line and improves system efficiency by reducing internal power losses
- Internal solid-state overload protection provides accurate current measurement and trip settings. Sophisticated algorithms solve a series of differential equations that model true motor heating and cooling, resulting in superior motor overload protection while minimizing nuisance trips. Advanced selectable protective features safeguard the motor and system against a variety of system faults
- Internal run bypass contactors and overload protection eliminate the need for additional devices, reducing enclosure sizes minimizing installation and wiring time and reducing overall assembly size and cost
- Wide range of overload FLA settings (50-100\% of rated frame current) and a selectable trip class (5-30) offers users the flexibility to fine tune the starter to match specific application requirements
- Variable ramp times and torque control settings provide unlimited starting configurations, allowing for maximum application flexibility
- Kick-start feature enables soft starting of high friction loads
- Soft stop control for applications where an abrupt stop of the load is not acceptable
- Pump control option with sophisticated pump algorithms on both starting and stopping that minimize the pressure surges that cause water hammer. The pump control option will maximize the life of the pump and piping systems while minimizing the downtime caused by system failure
- Six SCRs control all three motor phases, providing smooth acceleration and deceleration performance
- Soft acceleration and deceleration reduces wear on belts, gears, chains, clutches, shafts and bearings

Protective Features

All protective features can be configured, enabled or disabled with the UI or through the communications network.

Motor Overload

The S611 includes electronic overload protection as standard. The overload meets applicable requirements for a motor overload protective device. The overload protects the motor from over heat conditions with the use of sophisticated algorithms that model true motor heating, resulting in superior motor protection and fewer nuisance trips.
The S611 calculates a thermal memory value. A 100\% value represents the maximum safe temperature of the motor. When the thermal memory value reaches 100\%, an overload trip will occur removing power to the motor.

Upon trip, the S611 stores the calculated motor heating value and will not allow a motor re-start until the motor has cooled. This feature ensures the motor will not be damaged by repeated overload trip, reset and re-start cycles.

The thermal memory value can be monitored through the UI or the communications network. The thermal memory value can be of great use in determining an impending overload trip condition. Alarms can be implemented in the process monitoring system warning of an impending trip before a trip occurs halting the process. Costly system downtime can be avoided.

The trip current is adjusted to match the specific application requirements by entering the motor nameplate full load current rating and trip class. The FLA adjustment includes a 2 to 1 adjustment range. The overload trip class is adjustable from class 5 through class 30 . The overload is ambient temperature compensated meaning its trip characteristics will not vary with changes in ambient temperature. The overload protection can be enabled, disabled, or disabled on start.

- Reduce the peak inrush current's stress on the power system
- Minimize peak starting torque to diminish mechanical system wear and damage
- 120 Vac control voltage enhances ease of connections
- The S611 lends itself to serviceability. The PCBs and contactors can be replaced in the field

Short Circuit

The use of a short circuit protective device in coordination with the S611 is required in branch motor circuits by most electrical codes. Short circuit coordination ratings with both fuses and Eaton molded case circuit breakers are available providing customers with design flexibility. The S611 has short circuit coordination ratings as an open component, an enclosed starter, and in a motor control center. The short circuit ratings can go up to 100 KA .

Jam

Excessive current and torque up to locked rotor levels can occur in a jam condition. The condition can result in stress and damage to the motor, load, mechanical system, and the electrical distribution system. Jam protection prevents the stress and damage from a jam during normal run. After the motor is started, a current greater than 300% FLA setting will cause the starter to trip on a jam fault.

Stall

Excessive current and torque up to locked rotor levels can occur in a stall condition. The condition can lead to an overload trip and result in stress and damage to the motor, load, mechanical system, and the electrical distribution system. Stall protection prevents stress and damage to a motor that has not come up to speed, or stalled after the soft start time. The S611 will trip to protect the system in the event that the motor did not get to the rated speed in the defined soft start period. A current greater than 200\% FLA at the end of the soft start period will cause the starter to trip on a stall fault.

Pole Over Temperature

High ambient temperatures, extended ramp times and high duty cycle conditions may cause the S611 power pole conductors to reach a temperature that exceeds their thermal rating. The S611 is equipped with sensors that monitor the temperature of the power poles. Over temperature protection occurs if the device's thermal capacity is exceeded. The soft starter will trip in over temperature conditions, preventing device failure.

The device pole temperature value can be monitored through the UI or the communications network. This feature can be of use in determining an impending over temperature trip condition. Alarms can be implemented in the process monitoring system warning of an impending trip before a trip occurs, halting the process. Costly system shutdown can be avoided.

Phase Loss

Loss of a phase can cause a significant increase in the current drawn in the remaining two phases. Phase loss can lead to motor damage before an eventual overload trip occurs. Phase loss is typically an indication of a failure in the electrical distribution system. The S611 will detect a phase loss and trip if any phase current drops below a preset value. The phase loss trip level is adjustable from 0% to 100% of the average of the other two phase levels with an adjustable trip delay of 0.1 to 60 seconds.

Phase Imbalance

Phase current or voltage imbalance can cause a significant increase in the current drawn in the remaining two phases. Phase imbalance can lead to motor damage before an eventual overload trip. Phase imbalance is typically an indication of a failure in the electrical distribution system or the motor. The S611 will detect both current and voltage phase imbalances and trip if any phase becomes imbalanced as compared to the average of the other two phases.

The phase current imbalance trip level is adjustable from 0% to 100% of the average of the current in the other two phases with an adjustable trip delay of 0.1 to 60 seconds.

The phase voltage imbalance trip level is adjustable from 0% to 100% of the average of the voltage in the other two phases with an adjustable trip delay of 0.1 to 60 seconds.

Reset Mode

The S611 can be set up for automatic or manual reset on trip. The manual reset mode requires the operator to physically press the RESET button located on the soft starter. The overload can be manually reset through the UI or through the communications network.

The automatic reset mode allows the soft starter to be automatically reset as soon as the trip condition is no longer present. With the automatic reset mode, after the fault is no longer present, the motor will be restarted as soon as a valid start signal is present.

Phase Reversal

The S611 can determine if the proper line phase sequence is present by default. The device will trip if the line phase sequence is something other than A-B-C. The S611 can be configured to operate under reversed phase conditions (A-C-B).

Shorted SCR Detection

The S611 monitors the operation of the power poles and will trip under a shorted SCR condition.

Open SCR Detection

The S611 monitors the operation of the power poles and will trip under an open SCR condition.

Low Current

Low current conditions can be a result of a loss of load or a failure in the mechanical system. The S611 has low current protection that will trip if the average RMS current falls below a preset value. The low current protection can be programmed as a percent of motor FLA from 0% to 100%.

Low Voltage

Low voltage conditions can result from disturbances in the electrical power distribution system. Low voltage conditions can cause a malfunction and damage to electrical equipment. The S611 has low voltage protection that will trip if the average RMS voltage falls below a preset value. The low voltage protection can be programmed as a percent of nominal voltage from 1% to 99% with a trip delay of 0.1 to 60 seconds.

High Voltage

High voltage conditions can result from disturbances in the electrical power distribution system. High voltage conditions can cause malfunctions or failures of electrical equipment. The S611 has high voltage protection that will trip if the average RMS voltage is greater than a preset value. The high voltage protection can be programmed as a percent of nominal voltage from 101% to 120% with a trip delay of 0.1 to 60 seconds.

Solid-State Starters

Monitoring Capabilities

The S611 has an impressive array of system monitoring capabilities that allow users to access real time process and diagnostic data. This data can be viewed at the device with the UI or through a communications network. Data over a communications network can provide valuable insight into the condition of the equipment and processes. Maintenance and production personnel can

Average Line Current

Provides the average of the three phase RMS line currents in amps, accurate to within 2\%. Current data can be used to indicate a need for maintenance. Increased currents in a fixed load application can indicate a reduction in system efficiencies and performance, signifying system maintenance is due

Average Pole Current

Provides the average of the three phase RMS pole currents in amps, accurate to within 2%. The pole current is the current through the soft starter. The line and pole current will be identical in in-line applications, and will differ in inside-the-delta applications.

Average Line Current as a \% FLA

Provides the average RMS line current as a percentage of the S611 FLA setting

Three-Phase Line Currents
Provides three RMS phase line currents in amps, accurate to within 2%. Imbalances or changes in the relative phase current to one another can indicate anomalies in the motor or electrical distribution system
monitor critical operational and maintenance data from a central control station that can be located far away from the production facility. Process data can be monitored to determine system anomalies that may indicate a need for preventive maintenance or an Impeding failure

Adjustments made through the communications network can reduce costs by minimizing

Three-Phase Pole Currents

Provides three RMS phase pole currents in amps, accurate to within 2%. The pole current is the current through the soft starter. The line and pole current will be identical in in-line applications

Three-Phase Line Voltages

Provides the individual RMS three phase line voltages. Imbalances or changes in the relative phase voltage to one another can indicate anomalies in the motor or electrical distribution system. Voltage can be used to monitor electrical distribution system performance. Warnings, alarms and system actions to low or high voltage conditions can be implemented.

Percent Thermal Memory

Provides the real time calculated thermal memory value. The S611 calculates thermal memory value. A 100% value represents the maximum safe temperature of the motor. When the thermal memory value reaches 100\%, an overload trip will occur, removing power to the motor.

The thermal memory value can be of great use in determining an impending overload trip Condition. Alarms can be implemented in the process monitoring system warning of an Impending trip before a trip occurs, halting the process. Costly system downtime can be avoided.
the time traveling to the location where the motor controls are located. When faults do occur, real time fault data can assist maintenance in troubleshooting and planning repair resources. Remote reset signals can be given to tripped devices without the need for manual intervention by maintenance personnel.

Pole Temperature

Increases in pole temperature are caused by increases in ambient temperature, start/ stop times and start duty cycles. Changes in pole temperatures represent a change in system operating conditions. Identifying unexpected operating conditions or changes can prompt maintenance and aid in process evaluation activities.

Power Monitoring

S611 can monitor power and it can be displayed on the UI.

Start Count

Number of starts are stored in the device and can be displayed using field bus.

Diagnostics

Fault Queue

Current fault and a fault queue containing the last nine system faults can be read through the UI or communications network. Fault identification can minimize troubleshooting time and cost and prevent arc flash incidents. The fault queue can be remotely accessed through a communications network to assist in planning maintenance resources. 30 different faults can be identified by the S611.

Control Status

The S611 provides data that represents system conditions that can be read through the UI or the communications network. This data identifies the status of the system and the control commands the system is requesting of the S611. This can be used for advanced Troubleshooting and system integration activities.

Field Serviceability

In the case of maintenance, the S611 provides easy access and replacement of key components including control board and internal bypass contactorssignificantly increasing its service life. If a component ever needs to be replaced, this straightforward operation can be completed by an enduser without the need to call in an outside service technician or engineer. These components are stocked and available for order and quick fulfillment-ensuring your operation continues with minimal downtime.

Standards and Certifications

- IEC 60947-4-2
- UL listed
- CSA certified (3211 06)

Instructional Leaflets

- Instruction Manual: MN03902011E
- Quick Start Guide: MN03901003E

Catalog Number Selection

S611 Soft Starters

Product Selection

Motor applications and customer needs come in many different varieties. With the standard and severe duty rating tables, we have attempted to provide
guidelines on what the soft starter is capable of. If the application falls under these categories, you can use these charts. For other applications, or when a question arises,
consult with your local Eaton
Representative or call the
Eaton Technical Resource
Center.

Horsepower Ratings

Note: Always refer to motor plate FLA and ensure that the motor plate FLA is equal to or lower than the maximum current value in the tables.

S611	Standard Duty - 300\% Current for 15 Seconds, 115\% Continuous					
	Maximum	Hors	ating			
	Current (Amps)	208V	240V	480V	600 V	Catalog Number
	52	15	15	40	50	S611A052N3S
	65	20	20	50	60	S611A065N3S
	77	25	25	60	75	S611A077N3S
	99	30	30	75	100	S611B099N3S
	125	40	40	100	125	S611B125N3S
	156	50	60	125	150	S611C156N3S
	180	60	60	150	150	S611C180N3S
	242	75	75	200	250	S611D242N3S
	302	100	100	250	300	S611E302N3S
	361	125	150	300	350	S611E361N3S
	414	150	150	350	450	S611F414N3S

Standard Duty Plus-350\% FLA for 30 Seconds, 115\% Continuous

Maximum Current (Amps)	Horsepower Rating $\mathbf{2 0 8 V}$	$\mathbf{2 4 0 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$	Catalog Number
52	15	15	40	50	S611A052N3S
65	20	20	50	60	S611A065N3S
71	20	25	60	75	S611A077N3S
99	30	30	75	100	S611B099N3S
119	40	40	100	125	S611B125N3S
156	50	60	125	150	S611C156N3S
180	60	60	150	150	S611C180N3S
242	75	75	200	250	$\mathbf{S 6 1 1 D 2 4 2 N 3 S}$
302	100	100	250	300	$\mathbf{S 6 1 1 E 3 0 2 N 3 S}$
361	125	150	300	350	$\mathbf{S 6 1 1 E 3 6 1 N 3 S}$
407	150	150	350	400	$\mathbf{S 6 1 1 F 4 1 4 N 3 S}$

Note: Always refer to motor plate FLA and ensure that the motor plate FLA is equal to or lower than the maximum current value in the tables.

Heavy Duty-500\% FLA for 30 Seconds, 125\% Continuous

| Maximum
 Current (Amps) | Horsepower Rating
 $\mathbf{2 0 8 V}$ | | $\mathbf{2 4 0 V}$ | $\mathbf{4 8 0 V}$ | $\mathbf{6 0 0 V}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | Catalog Number \quad| 49 | 15 | 15 | 40 | 50 |
| :--- | :--- | :--- | :--- | :--- |
| 83 | 25 | 30 | 60 | 75 |
| 142 | 40 | 60 | 125 | 150 |
| 225 | 75 | 75 | 200 | 200 |
| 256 | 75 | 100 | 200 | 250 |
| 285 | 100 | 125 | 250 | 300 |

Severe Duty-600\% FLA for 30 Seconds, 125\% Continuous

Maximum Current (Amps)	Horsepower Rating $\mathbf{2 0 8 V}$	$\mathbf{2 4 0 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}$	Catalog Number
41	10	15	30	40	S611A052N3S
69	20	30	60	60	S611B099N3S
117	30	50	100	125	S611C180N3S
187	60	75	150	200	S611D242N3S
213	75	75	150	200	S611E361N3S
238	75	100	200	250	S611F414N3S

Accessories

Optional Accessory Kits

Description	S611 Current Rating	Accessory Kit Part Number
User interface remote mounting kit -3.28 ft (1m)	52-414A	S611-RMK-100
User interface remote mounting kit-6.56 ft (2m)	52-414A	S611-RMK-200
User interface remote mounting kit-9.84 ft (3m)	$52-414 \mathrm{~A}$	S611-RMK-300
User interface communication cable-3.28 ft (1m)	$52-414 \mathrm{~A}$	D77E-0PIP100
User interface communication cable-6.56 ft (2m)	$52-414 \mathrm{~A}$	D77E-0PIP200
User interface communication cable-9.84 ft (3m)	52-414A	D77E-0PIP300
Lug kit-mechanical	52-77A	S611-LUG-M01
	99-125A	S611-LUG-M02
	156-242A	S611-LUG-M03
	302-414A	S611-LUG-M04

Reduced Voltage Motor Starters

Solid-State Starters

Options

Pump Control
For pump control option, change the 8th digit in the Catalog Number to \mathbf{P}, as in S611XXXP3S.

Replacement Parts

S611 Replacement Components

Description	Part Number
User interface	S611-KEYPAD
User interface communication cable- $0.25 \mathrm{~m}(0.82$ ft)	D77E-0PIP25
Control board assembly-52A standard	S611-PCB-052S
Control board assembly-65A standard	S611-PCB-065S
Control board assembly-77A standard	S611-PCB-077S
Control board assembly-99A standard	S611-PCB-099S
Control board assembly-125A standard	S611-PCB-125S
Control board assembly-156A standard	S611-PCB-156S
Control board assembly-180A standard	S611-PCB-180S
Control board assembly-242A standard	S611-PCB-242S
Control board assembly-302A standard	S611-PCB-302S
Control board assembly-361A standard	S611-PCB-361S
Control board assembly-414A standard	S611-PCB-414S
Control board assembly-52A pump	S611-PCB-052P
Control board assembly-65A pump	S611-PCB-065P
Control board assembly-77A pump	S611-PCB-077P
Control board assembly-99A pump	S611-PCB-099P
Control board assembly-125A pump	S611-PCB-125P
Control board assembly-156A pump	S611-PCB-156P
Control board assembly-180A pump	S611-PCB-180P
Control board assembly-242A pump	S611-PCB-242P
Control board assembly-302A pump	S611-PCB-302P
Control board assembly-361A pump	S611-PCB-361P
C Control board assembly-414A pump	S611-PCB-414P
Frame A/B CT	S611-CT-AB
Frame C/D CT	S611-CT-CD
Frame E/F CT	S611-CT-EF
Contactor assembly-52-180A	C25DNY172
Contactor assembly-242-414A	C25NY173

Solid-State Starters

Technical Data and Specifications

Soft Starters-S611

Description		S611 Soft Starter (Partial Catalog Number)		S611A072	S611B099
		S611A052	S611A065		
Max. current capacity	A	52	65	77	99
FLA range	A	26-52	32.5-65	38.5-77	48-99
Dimensions					
Width	inch (mm)	11.58 (294)	11.58 (294)	11.58 (294)	11.58 (294)
Height	inch (mm)	19.45 (494)	19.45 (494)	19.45 (494)	19.45 (494)
Depth	inch (mm)	7.46 (189)	7.46 (189)	7.46 (189)	7.46 (189)
Weight	lb (kg)	24 (11)	24 (11)	24 (11)	24 (11)
General Information					
Bypass mechanical lifespan		10M	10M	10M	10M
Insulating voltage	V	660	660	660	660
Ramp time range	Seconds	0.5-180	0.5-180	0.5-180	0.5-180
Vibration resistance-non-operating	g	3 g up to 242 A units, 2 g on 302A to 414 A units	3 g up to 242 A units, 2 g on 302A to 414A units	$3 g$ up to 242 A units, 2 g on 302A to 414A units	3 g up to 242A units, 2 g on 302A to 414 A units
Vibration resistance-operating	g	1	1	1	1
Shock resistance	g	15 g up to 242 A units, 5 g on 302A to 414A units	15 g up to 242 A units, 5 g on 302A to 414A units	15 g up to 242 A units, 5 g on 302 A to 414 A units	15 g up to 242 A units, 5 g on 302A to 414A units
Electrical Information					
Operating voltage	V	130-600	130-600	130-600	130-600
Operating frequency	Hertz	47-63	47-63	47-63	47-63
Overload setting (frame)	\% FLA	50-100	50-100	50-100	50-100
Trip class		5,10,20,30	5,10,20,30	5,10,20,30	5,10,20,30
Cabling Capacity (IEC 947)					
Number of conductors		1	1	1	1
Wire sizes	AWG	14-2/0	14-2/0	14-2/0	14-2/0
Type of connectors		Lug	Lug	Lug	Lug
Control Wiring					
Wire sizes	AWG	22-12	22-12	22-12	22-12
Number of conductors		2 (or one 12-14 AWG)			
Torque requirements	lb -in	3.5	3.5	3.5	3.5
Maximum size	AWG	12	12	12	12
Control Power Requirements					
Voltage range ($120 \mathrm{~V} \pm 10 \%$)	V	108-132	108-132	108-132	108-132
Steady state current	A	0.375	0.375	0.375	0.375
Inrush current	A	0.5	0.5	0.5	0.5
Ripple	\%	1	1	1	1
Relays (1) Class A and C					
Voltage AC-maximum	V	120	120	120	120
Voltage DC-maximum	V	24	24	24	24
Amps-maximum	A	3	3	3	3
Environment					
Temperature-operating	${ }^{\circ} \mathrm{C}$	-20° to $50^{\circ} \mathrm{C}$			
Temperature-storage	${ }^{\circ} \mathrm{C}$	-40° to $85^{\circ} \mathrm{C}$			
Altitude	Meters	<2000m, derate 0.5\% per $100 \mathrm{~m}>2000 \mathrm{~m}$	<2000m, derate 0.5% per $100 \mathrm{~m}>2000 \mathrm{~m}$	<2000m, derate 0.5\% per $100 \mathrm{~m}>2000 \mathrm{~m}$	$<2000 \mathrm{~m}$, derate 0.5% per $100 \mathrm{~m}>2000 \mathrm{~m}$
Humidity	\%	<95\% non-condensing	<95\% non-condensing	<95\% non-condensing	<95\% non-condensing
Operating position		Vertical, line side up			
Pollution degree IEC947-1		3	3	3	3
Impulse withstand voltage IEC947-4-1	V	6000	6000	6000	6000

Reduced Voltage Motor Starters

Solid-State Starters

Soft Starters-S611, continued

Description		S611 Soft Starter (Partial Catalog Number)		S611C180	S611D242
		S611B125	S611C156		
Max. current capacity	A	125	156	180	242
FLA range	A	62.5-125	78-156	90-180	120-242
Dimensions					
Width	inch (mm)	11.58 (294)	11.58 (294)	11.58 (294)	11.58 (294)
Height	inch (mm)	19.45 (494)	20.83 (529)	20.83 (529)	20.83 (529)
Depth	inch (mm)	7.46 (189)	8.37 (213)	8.37 (213)	8.37 (213)
Weight	lb (kg)	24 (11)	33 (15)	33 (15)	38 (17)
General Information					
Bypass mechanical lifespan		10M	10M	10M	10M
Insulating voltage	V	660	660	660	660
Ramp time range	Seconds	0.5-180	0.5-180	0.5-180	0.5-180
Vibration resistance-non-operating	g	3 g up to 242 A units, 2 g on 302 A to 414 A units	3 g up to 242 A units, 2 g on 302A to 414A units	3 g up to 242A units, 2 g on 302A to 414A units	3 g up to 242 A units, 2 g on 302A to 414A units
Vibration resistance-operating	g	1	1	1	1
Shock resistance	g	15 g up to 242 A units, 5 g on 302A to 414 A units	15 g up to 242 A units, 5 g on 302A to 414A units	$15 g$ up to $242 A$ units, $5 g$ on 302 A to 414 A units	15 g up to 242 A units, 5 g on 302 A to 414 A units
Electrical Information					
Operating voltage	V	130-600	130-600	130-600	130-600
Operating frequency	Hertz	47-63	47-63	47-63	47-63
Overload setting (frame)	\% FLA	50-100	50-100	50-100	50-100
Trip class		5, 10, 20, 30	5, 10, 20, 30	5, 10, 20, 30	5, 10, 20, 30

Cabling Capacity (IEC 947)					
Number of conductors		1	1	1	1
Wire sizes	AWG	2-600 kcmil	2-600 kcmil	2-600 kcmil	2-600 kcmil
Type of connectors		Lug	Lug	Lug	Lug
Control Wiring					
Wire sizes	AWG	22-12	22-12	22-12	22-12
Number of conductors		2 (or one 12-14 AWG)			
Torque requirements	lb-in	3.5	3.5	3.5	3.5
Maximum size	AWG	12	12	12	12

Control Power Requirements

Voltage range $(120 \mathrm{~V} \pm 10 \%)$	V	$108-132$	$108-132$	$108-132$	$108-132$
Steady state current	A	0.375	0.375	0.375	0.375
Inrush current	A	0.5	0.5	0.5	0.5
Ripple	$\%$	1	1	1	1

Relays (1) Class A and C

Voltage AC—maximum	V	120	120	120	120
Voltage DC—maximum	V	24	24	24	24
Amps—maximum	A	3	3	3	3

Environment

Temperature-operating	${ }^{\circ} \mathrm{C}$	-20° to $50^{\circ} \mathrm{C}$			
Temperature-storage	${ }^{\circ} \mathrm{C}$	-40° to $85^{\circ} \mathrm{C}$			
Altitude	Meters	$<2000 \mathrm{~m}$, derate 0.5% per $100 \mathrm{~m}>2000 \mathrm{~m}$	$<2000 \mathrm{~m}$, derate 0.5% per $100 \mathrm{~m}>2000 \mathrm{~m}$	<2000m, derate 0.5\% per $100 \mathrm{~m}>2000 \mathrm{~m}$	$<2000 \mathrm{~m}$, derate 0.5% per $100 \mathrm{~m}>2000 \mathrm{~m}$
Humidity	\%	<95\% non-condensing	<95\% non-condensing	<95\% non-condensing	<95\% non-condensing
Operating position		Vertical, line side up			
Pollution degree IEC947-1		3	3	3	3
Impulse withstand voltage IEC947-4-1	V	6000	6000	6000	6000

Solid-State Starters

Soft Starters-S611, continued

Dimensions

Approximate Dimensions in inches (mm)

A and B Frame

C and D Frame

Approximate Dimensions in inches (mm)
E and F Frame

Reduced Voltage Motor Starters
Solid-State Starters

Type S801, Soft Starters

Contents

Description	Page
Type S611, Solid-State Soft Starters	V6-T1-39
Type S801, Soft Starters	
Operation	V6-T1-57
Features	V6-T1-59
Benefits.	V6-T1-59
Standards and Certifications	V6-T1-59
Catalog Number Selection	V6-T1-59
Product Selection	V6-T1-60
Accessories.	V6-T1-74
Options	V6-T1-75
Technical Data and Specifications	V6-T1-76
Wiring Diagrams .	V6-T1-80
Dimensions.	V6-T1-81
Type S811, Soft Starters with DIM.	V6-T1-84

Type S801, Soft Starters

Product Description

Eaton's S801 line of reduced voltage soft starters is very compact, multi-functional, easy to install and easy to program. Designed to control acceleration and deceleration of three-phase motors, the line is available for current ranges from 11A all the way through 1000A applications, and is suitable for mounting in motor control centers or in enclosed control (NEMA 1, 4, 4X and 12) applications.

Application Description

The S801 line of soft starters is designed to be the smallest, most compact soft starter in the market today. With this small size, it can easily fit in place of existing soft starter designs, wyedelta starters or across-theline NEMA and IEC starters. This feature allows easy retrofits of existing motor control centers or enclosures, and saves the expense of replacing existing structure or adding a new one to house a soft starter.

The product is designed to work with three-phase motors in a delta (three-lead) configuration. The S801 works with all motors from fractional horsepower up to motors requiring 1000A of steady-state current. The built-in overload (in ranges from 11-1000A) and run bypass contactor make installation and setup quick and easy. The overload also offers some advanced protective functions to give additional motor protection.

With the pump control option, it is the No. 1 soft starter available for pumping applications. This unique soft stopping control provides a smooth transition for stopping a motor and eliminates the "waterhammer" effect that can damage pipes, valves and pumps.

Operation

Overload Functionality

Overtemperature

Protects the device from overheating. Starter will shut down at $100^{\circ} \mathrm{C}$.

Stall

Selectable protective feature, unit trips to protect system in event motor can not get to rated speed in the defined ramp period.

Jam

Selectable protective feature, unit trips to prevent damage to motor during normal run.

Phase Loss

Selectable protective feature, trips under voltage loss condition to any phase.

Phase Reversal

Selectable protective feature, trips when phase rotation is something other than A-B-C.

Kick Start

Selectable feature that provides a current "kick" of up to 550% of full load current for 0 to 2.0 seconds. This provides the additional torque required at startup to break free a motor.

Ramp Start

Provides a constant increase in torque to the motor.

Current Limit Start

Limits the maximum current available to the motor during the startup phase.

Soft Stop

Allows for a controlled stopping of a frictional load.

Shorted SCR Detection

Monitors for shorted SCR in the power polls.

Starting Characteristics

Kick Start

Provides an initial boost of current to the motor to help break free the rotor and start spinning the motor.

Starting Characteristics-Kick Start

Ramp Start

The most commonly used form of soft start. This allows you to set the initial torque value (of the ramp) and then raises it to full voltage conditions.

- Adjustable initial torque $=$ $0-85 \%$ of locked rotor torque
- Adjustable ramp time = $0.5-180$ seconds (can be extended with factory modification)

Starting Characteristics-Ramp Start

- 0-85\% of locked rotor torque
- $0-2.0$ seconds duration

Reduced Voltage Motor Starters

Solid-State Starters

Current Limit

This mode of soft starting is used when it becomes necessary to limit the maximum starting current due to long start times or to protect the motor.

- Maximum current of 0-85\% locked rotor current
- Adjustable ramp time = $0.5-180$ seconds and can be extended to 360 seconds as a factory installed option

Starting Characteristics-Current Limit

Soft Stop

Used when an extended coast-to-rest period is desired. Often used with high friction loads where a sudden stop may cause system or product damage

Starting Characteristics-Soft Stop

Time (Seconds)

Features

- Built-in overload protection
- Built-in run bypass contactor
- Adjustable ramp times
- Adjustable torque control
- Adjustable kick start control
- Programmable overload settings, 31-100\% (3.2:1) of rated current for the unit
- Physically fits in place of most NEMA and IEC starters
- Easy to use control interface module
- Soft stop control
- Multiple trip class settings (5, 10, 20 and 30)
- Six SCR control
- Optional pump control
- Optional extended ramp time
- Optional CIM door mount kit for safety
- Optional IP20 protection
- Optional Inside-the-delta mode

Benefits

- Reduced wear on belts, gears, chains, clutches, shafts and bearings
- Allows for controlling the inrush current to the motor
- Reduced inrush current leads to more stable power grid and can lower peak demand charges
- Elimination of waterhammer in pumping applications
- Less shock to product on conveyor lines and material handling gear
- 24 Vdc control enhances personnel and equipment safety

Standards and Certifications

- IEC 947 compliant
- EN 60947-4-2
- CSA certification
- cULus listed
(File No. E202571)
- CE marked

User Manuals

A comprehensive user manual is available and can be downloaded free of charge from www.eaton.com by performing a document search for MN03902008E.

The Inside-the-Delta User Manual can be found by searching for Pub. No. MN03902009E.

Catalog Number Selection

S801 Open Soft Starters (12)

[^0]Solid-State Starters

Product Selection

Standard Duty Ratings

The table below is the base ratings for the soft starter. The tables included in this catalog are meant to be a selection table for different applications, but to match a unit to your exact application, consult with your local Eaton representative or call our Technical Resource Center.
Standard Duty Ratings

Starting Method	Ramp Current \% of FLA	Ramp Time Seconds	Starts per Hour	Ambient Temperature
Soft start	300\%	30 sec .	3	$50^{\circ} \mathrm{C}$
Full voltage	500\%	10 sec .	3	$50^{\circ} \mathrm{C}$
Wye-delta	350\%	20 sec .	3	$50^{\circ} \mathrm{C}$
80\% RVAT	480\%	20 sec .	2	$50^{\circ} \mathrm{C}$
65\% RVAT	390\%	20 sec .	3	$50^{\circ} \mathrm{C}$
50\% RVAT	300\%	20 sec .	4	$50^{\circ} \mathrm{C}$
Motor applications and customer needs come in many different varieties. With the standard and severe duty rating tables, we have attempted to provide		guidelines on what the soft starter is capable of. If the application falls under these categories, you can use these charts. For other applications, or when a		question arises, consult with your local Eaton representative or call our Technical Resource Center.

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-75.

Notes

(1) 690 V is available only from T18 thru V85. Not available on U-Frames
(2) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75
${ }^{(3)}$ For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(4) U-Frame 500A does not have IEC certification.
(5) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Standard Duty-25 Second Ramp, 4 Starts per Hour, 300\% Current Limit at $40^{\circ} \mathrm{C}$

Frame Size V

320	90	160	185	100	75	125	100	250	200	300	250	S801V36N3S
380	110	200	220	125	100	150	125	300	250	350	300	S801V42N3S
460	140	250	280	150	125	150	150	350	300	450	400	S801V50N3S
610	185	315	375	250	150	200	200	500	450	600	500	S801V65N3S
680	200	375	445	-	200	250	200	600	500	700	600	S801V72N3S
810	250	450	500	-	-	300	300	700	600	900	700	S801V85N3S
890	290	510	560	-	-	400	350	700	600	900	700	S801V10N3S ©

For Pump Option, replace character $\mathbf{8}$ with "P" and also, see Page V6-T1-75.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75
${ }^{(3)}$ For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(4) U-Frame 500A does not have IEC certification.
(5) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Standard Duty-15 Second Ramp, 4 Starts per Hour, 300\% Current Limit at $50^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors											
				200 V		230 V		460 V		575-69		Catal
	230V	380-400V	440V	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	Number ${ }^{(2) 3}$
Frame Size N												
34	9	15	18.5	10	7-1/2	10	10	25	20	30	25	S801N37N3S
63	15	30	33	20	15	20	20	40	40	60	50	S801N66N3S
Frame Size R												
96	25	45	55	30	25	30	30	75	60	75	75	S801R10N3S
120	33	63	63	40	30	40	40	75	75	100	100	S801R13N3S
Frame Size T												
150	45	80	90	50	40	50	50	100	100	150	125	S801T18N3S
215	63	110	132	60	60	75	60	150	150	200	150	S801T24N3S
278	80	147	160	75	75	100	75	200	200	250	250	S801T30N3S

Frame Size U

320	90	160	185	100	75	125	100	250	200	300	250	S801U36N3S
460	110	200	220	125	100	150	125	300	250	350	300	S801U42N3S
460	140	250	280	150	125	150	150	350	300	450	400	S801U50N3S ${ }^{4}$

Frame Size V

320	90	160	185	100	75	125	100	250	200	300	250	S801V36N3S
380	110	200	220	125	100	150	125	300	250	350	300	S801V42N3S
460	140	250	280	150	125	150	150	350	300	450	400	S801V50N3S
610	185	315	375	250	150	200	200	500	450	600	500	S801V65N3S
680	200	375	445	-	200	250	200	600	500	700	600	S801V72N3S
830	257	450	500	-	-	300	300	700	600	900	700	S801V85N3S
960	302	510	540	-	-	350	300	800	700	900	800	S801V10N3S ${ }^{5}$)

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-75.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75.
(3) For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(4) U-Frame 500A does not have IEC certification.
(5) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Standard Duty-50 Second Ramp, 2 Starts per Hour, 300\% Current Limit at $50^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors											
										575-69		Catalog
	230 V	380-400V	440V	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	Number ${ }^{(2) 3}$
Frame Size \mathbf{N}												
21	5.5	10	11	5	5	5	5	15	10	15	15	S801N37N3S
42	11	18.5	22	10	10	15	10	30	25	40	30	S801N66N3S
Frame Size R												
60	15	30	33	15	15	20	15	40	40	50	50	S801R10N3S
80	22	40	45	25	20	30	25	60	50	75	60	S801R13N3S
Frame Size 1												
115	33	59	63	30	30	40	30	75	75	100	100	S801T18N3S
150	45	80	90	50	40	50	50	100	100	150	125	S801T24N3S
192	55	100	110	60	50	60	60	150	125	200	150	S801T30N3S
Frame Size U												
280	80	150	160	75	75	100	75	200	200	250	250	S801U36N3S
340	110	180	200	100	100	125	100	250	200	350	300	S801U42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S801U50N3S ${ }^{4}$

Frame Size V

280	80	150	160	75	75	100	75	200	200	250	250	S801V36N3S
340	110	180	200	100	100	125	100	250	200	350	300	S801V42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S801V50N3S
420	129	220	257	150	125	150	150	350	300	450	350	S801V65N3S
480	147	257	295	150	150	200	150	400	350	500	450	S801V72N3S
590	180	315	375	200	150	200	200	500	400	600	500	S801V85N3S
650	205	370	415	250	200	250	200	500	450	600	500	S801V10N3S $\left.{ }^{5}\right)$

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-75.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75
${ }^{(3)}$ For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(4) U-Frame 500A does not have IEC certification.
(5) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Standard Duty-15 Second Ramp, 4 Starts per Hour, 450\% Current Limit at $40^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors											
				200 V		230 V		460 V		575-69		Catal
	230V	380-400V	440V	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	Number ${ }^{(2) 3}$
Frame Size N												
29	7.5	12.5	15	7-1/2	7-1/2	10	7-1/2	20	15	25	20	S801N37N3S
49	12.5	22	25	15	10	15	15	30	30	40	40	S801N66N3S
Frame Size R												
73	18.5	37	40	20	20	25	20	50	40	60	60	S801R10N3S
94	25	45	55	30	25	30	30	60	60	75	75	S801R13N3S
Frame Size T												
155	45	80	90	50	40	60	50	100	100	150	125	S801T18N3S
219	63	110	132	60	60	75	60	150	150	200	150	S801T24N3S
280	80	150	160	75	75	100	75	200	200	250	250	S801T30N3S

Frame Size U

345	100	185	200	100	100	125	100	250	200	350	300	S801U36N3S
405	110	200	250	125	100	150	125	300	250	400	350	S801U42N3S ${ }^{4}$)

Frame Size V

345	100	185	200	100	100	125	100	250	200	350	300	S801V36N3S
405	110	200	250	125	100	150	125	300	250	400	350	S801V42N3S
465	140	250	280	150	125	150	150	350	300	450	400	S801V50N3S
530	160	280	335	150	150	200	150	450	350	500	450	S801V65N3S
590	180	315	375	200	150	-	200	500	400	600	500	S801V72N3S
651	200	355	425	-	-	-	-	600	450	700	600	S801V85N3S
754	220	400	465	-	-	-	-	600	500	800	700	S801V10N3S ${ }^{5}$)

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-75.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75.
(3) For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(4) U-Frame 500A does not have IEC certification.
(5) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Standard Duty-30 Second Ramp, 4 Starts per Hour, 450% Current Limit at $40^{\circ} \mathrm{C}$

	Three-Phase Motors kW Rating (50 Hz)			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	575-690V ${ }^{\text {(1) }}$		Catalog Number (2) 3
Max. Current	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF					575-69 1.0SF	1.15SF	
Frame Size N												
21	5.5	10	12.5	5	5	5	5	15	10	15	15	S801N37N3S
40	11	18.5	22	10	10	10	10	30	25	30	30	S801N66N3S
Frame Size R												
55	15	25	30	15	15	20	15	40	30	50	40	S801R10N3S
75	22	37	45	20	20	25	20	50	50	60	60	S801R13N3S
Frame Size \mathbf{T}												
151	45	80	90	50	40	50	50	100	100	150	125	S801T18N3S
215	63	110	132	60	60	75	60	150	150	200	150	S801T24N3S
264	80	140	160	75	75	100	75	200	150	250	200	S801T30N3S
Frame Size U												
300	90	160	185	100	75	100	100	200	200	300	250	S801U36N3S
340	100	180	200	100	100	125	100	250	200	350	300	S801U42N3S ${ }^{4}$
380	110	200	220	125	100	150	125	300	250	350	300	S801U50N3S

Frame Size V

300	90	160	185	100	75	100	100	200	200	300	250	S801V36N3S
340	100	180	200	100	100	125	100	250	200	350	300	S801V42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S801V50N3S
420	129	220	257	150	125	150	150	350	300	450	350	S801V65N3S
460	140	250	280	150	125	150	150	350	300	450	400	S801V72N3S
500	150	257	300	150	150	200	150	400	350	500	450	S801V85N3S
560	160	277	325	200	150	250	200	500	400	600	500	S801V10N3S $\left.{ }^{5}\right)$

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-75.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75.
${ }^{(3)}$ For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(4) U-Frame 500A does not have IEC certification.
(5) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Solid-State Starters

Severe Duty Ratings

The table below is the base ratings for the soft starter. The tables included in this catalog are meant to be a selection table for different applications, but to match a unit to your exact application, consult with your local Eaton representative or call our Technical Resource Center.

Severe Duty Ratings

Starting Method	Ramp Current \% of FLA	Ramp Time Seconds	Starts per Hour	Ambient Temperature
Soft start	450\%	30 sec .	4	$50^{\circ} \mathrm{C}$
Full voltage	500\%	10 sec .	10	$50^{\circ} \mathrm{C}$
Wye-delta	350\%	65 sec .	3	$50^{\circ} \mathrm{C}$
80\% RVAT	480\%	25 sec .	4	$50^{\circ} \mathrm{C}$
65\% RVAT	390\%	40 sec .	4	$50^{\circ} \mathrm{C}$
50\% RVAT	300\%	60 sec .	4	$50^{\circ} \mathrm{C}$
Severe duty defined as an parameters t standard duty	re nation of ed the where	the ramp time is over 30 seconds, the number of starts per hour exceeds 4 , or the current limit set is over	300\%. Example: 35-second ramp, 5 starts per hour, 350% current limit at $40^{\circ} \mathrm{C}$ ambient.	

$\overline{\mathbf{S 8 0 1}}$ Severe Duty \rightarrow 30 Second Ramp, >4 Starts per Hour or $>300 \%$ Current Limit

Three-Phase Motor

kW Rating (50 Hz)

Max. Current	230 V	380-400V	440V	$\begin{aligned} & \text { 200V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 575 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number (1)2
Frame Size N												
22	5.5	10	11	5	5	7-1/2	5	15	10	20	15	S801N37N3S
42	11	18.5	22	10	10	15	10	30	25	40	30	S801N66N3S
Frame Size R												
65	15	30	33	15	15	20	15	50	40	50	50	S801R10N3S
80	22	40	45	25	20	30	25	60	50	75	60	S801R13N3S
Frame Size T												
115	33	59	63	30	30	40	30	75	75	100	100	S801T18N3S
150	45	80	90	50	40	50	50	100	100	150	125	S801T24N3S
192	55	100	110	60	50	75	60	150	125	200	150	S801T30N3S
Frame Size U												
240	75	110	147	75	60	75	75	200	150	200	200	S801U36N3S
305	90	160	185	100	75	100	100	250	200	300	250	S801U42N3S
365	110	185	220	125	100	150	125	300	250	350	300	S801U50N3S ${ }^{3}$
Frame Size V												
240	75	110	147	75	60	75	75	200	150	200	200	S801V36N3S
305	90	160	185	100	75	100	100	250	200	300	250	S801V42N3S
365	110	185	220	125	100	150	125	300	250	350	300	S801V50N3S
420	129	220	257	150	125	150	150	350	300	450	350	S801V65N3S
480	147	257	295	150	150	200	150	400	350	500	450	S801V72N3S
525	160	280	335	150	150	200	150	450	350	500	450	S801V85N3S
600	185	315	375	200	150	250	200	500	450	600	500	S801V10N3S ${ }^{4}$

Notes

(1) For a longer ramp acceleration time of 0.5 to 360 seconds, see Page V6-T1-75
(2) For two-wire (level sensing) control, change the last digit from \mathbf{S} to \mathbf{B}.
(3) U-Frame 500A unit does not have IEC certification.
(4) For more information on optimum performance of the 1000A Frame Size V S801, see Appendix C of MN03902008E.

Inside-the-Delta Standard Duty Ratings

Notes

(1) 15 sec. start, 300% inrush, $40^{\circ} \mathrm{C}, 1$ start every 15 minutes. If these start parameters are exceeded, please refer to 290 mm V-Frame, 865 A Inside-the-Delta Starter. (2) U-Frame 500A unit does not have IEC certification.
(3) For more information on optimum performance of the 1000A Frame Size V Inside-the-Delta S801, see Appendix C of MN03902009E.

Inside-the-Delta Standard Duty-25 Second Ramp, 4 Starts per Hour, 300% Current Limit at $40^{\circ} \mathrm{C}$ Ambient

ax. Continuous	Three-Phase Motor kW Rating (50 Hz) hp Rating (60 Hz)											
Motor Line Current	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 575V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
58	9	15	18.5	15	10	15	15	40	30	50	40	S801N37N3D
108	15	30	33	30	25	30	30	60	60	100	75	S801N66N3D

Frame Size \mathbf{R}												
164	25	45	55	50	40	50	50	125	100	125	125	S801R10N3D
206	33	63	63	60	50	60	50	125	125	150	150	S801R13N3D

Frame Size T

257	45	80	90	75	60	75	60	150	150	250	200	S801T18N3D
365	63	110	132	100	100	125	100	250	250	300	250	S801T24N3D
477	80	147	160	125	125	150	125	300	300	400	400	S801T30N3D

Frame Size U

554	90	160	185	150	125	200	150	400	300	450	400	S801U36N3D
646	110	200	220	200	150	250	200	500	400	550	450	S801U42N3D
796	140	250	280	250	200	250	250	550	500	700	600	S801U50N3D (1) 2$)$

Frame Size V

554	90	160	185	150	125	200	150	400	300	450	400
646	110	200	220	200	150	250	200	500	400	550	S801V36N3D
796	140	250	280	250	200	250	250	550	500	700	600
1055	185	315	375	400	250	300	300	800	700	900	S801V42N3D
1176	200	375	445	-	300	400	300	900	800	900	S801V50N3D
1358	-	-	-	-	-	-	-	-	-	-	S801V65N3D
-	-	-	-	-	-	-	-	-	-	-	-

Notes

(1) 15 sec. start, 300% inrush, $40^{\circ} \mathrm{C}, 1$ start every 15 minutes. If these start parameters are exceeded, please refer to 290 mm V-Frame, 796 A Inside-the-Delta Starter.
(2) U-Frame 500A unit does not have IEC certification.
${ }^{(3)}$ For more information on optimum performance of the 1000A Frame Size V Inside-the-Delta S801, see Appendix C of MN03902009E.

Inside-the-Delta Standard Duty-15 Second Ramp, 4 Starts per Hour, 300% Current Limit at $50^{\circ} \mathrm{C}$ Ambient

554	90	160	185	150	125	200	150	400	300	450	400	S801U36N3D
646	110	200	220	200	150	250	200	450	400	550	450	S801U42N3D
796	140	250	280	250	200	250	250	550	450	700	600	S801U50N3D (1)

Frame Size V

554	90	160	185	150	125	200	150	400	300	450	400	S801V36N3D
646	110	200	220	200	150	250	200	450	400	550	450	S801V42N3D
796	140	250	280	250	200	250	250	550	450	700	600	S801V50N3D
1055	185	315	375	400	250	300	300	750	700	900	750	S801V65N3D
1176	200	375	445	-	-	-	-	-	-	-	-	S801V72N3D
1358	257	450	500	-	-	-	-	-	-	-	-	S801V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S801V10N3D ${ }^{2}$ 2

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information on optimum performance of the 1000A Frame Size V Inside-the-Delta S801, see Appendix C of MN03902009E.

Inside-the-Delta Standard Duty-50 Second Ramp, 2 Starts per Hour, 300% Current Limit at $50^{\circ} \mathrm{C}$ Ambient

Max. Continuous Motor Line Current	Three-Phase Motor kW Rating (50 Hz)			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 575V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF							
Frame Size \mathbf{N}												
36	5.5	10	11	7-1/2	7-1/2	7-1/2	7-1/2	25	15	25	25	S801N37N3D
73	11	18.5	22	15	15	25	15	50	40	60	50	S801N66N3D

Frame Size R

103	15	30	33	25	25	30	25	60	60	75	75	S801R10N3D
138	22	40	45	40	30	50	40	100	75	125	100	S801R13N3D

Frame Size T

199	33	59	63	50	50	60	50	125	125	150	150	S801T18N3D
257	45	80	90	75	60	75	75	150	150	250	200	S801T24N3D
324	55	100	110	100	75	100	100	250	200	300	250	S801T30N3D

Frame Size U

485	80	150	160	125	125	150	125	300	300	400	400	S801U36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S801U42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S801U50N3D (1)

Frame Size V

485	80	150	160	125	125	150	125	300	300	400	400	S801V36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S801V42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S801V50N3D
727	129	220	257	250	200	250	250	550	500	700	550	S801V65N3D
816	147	257	295	250	250	300	250	600	550	750	700	S801V72N3D
1021	180	315	375	300	250	300	300	750	600	900	750	S801V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S801V10N3D ${ }^{2}$ 2

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information on optimum performance of the 1000A Frame Size V Inside-the-Delta S801, see Appendix C of MN03902009E.

S801	Inside-the-Delta Standard Duty-15 Second Ramp, 4 Starts per Hour, 450\% Current Limit at $40^{\circ} \mathrm{C}$ Ambient												
		Three-Phase Motor			hp Rating (60 Hz)								
	Motor Line Current	230V	380-	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 575 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
	Frame Size N												
	47	7.5	12.5	15	10	10	15	10	30	25	40	30	S801N37N3D
	83	12.5	22	25	25	15	25	25	50	50	60	60	S801N66N3D
जear	Frame Size R												
	126	18.5	37	40	30	30	40	30	75	60	100	100	S801R10N3D
	162	25	45	55	50	40	50	50	100	100	125	125	S801R13N3D
	Frame Size T												
	266	45	80	90	75	60	100	75	150	150	250	200	S801T18N3D
	379	63	110	132	100	100	125	100	250	250	300	250	S801T24N3D
	485	80	150	160	125	125	150	125	300	300	400	400	S801T30N3D
	Frame Size U												
	580	100	185	200	150	150	200	150	400	300	550	450	S801U36N3D
	695	110	200	250	200	150	250	200	450	400	600	550	S801U42N3D
	798	140	250	280	250	200	250	250	550	450	700	600	S801U50N3D ${ }^{1}$
	Frame Size V												
	580	100	185	200	150	150	200	150	400	300	550	450	S801V36N3D
	695	110	200	250	200	150	250	200	450	400	600	550	S801V42N3D
	798	140	250	280	250	200	250	250	550	450	700	600	S801V50N3D
	908	160	280	335	250	250	300	250	700	550	750	700	S801V65N3D
	1021	-	-	-	-	-	-	-	-	-	-	-	S801V72N3D
	1125	-	-	-	-	-	-	-	-	-	-	-	S801V85N3D

Note

(1) U-Frame 500A unit does not have IEC certification.

Inside-the-Delta Standard Duty-30 Second Ramp, 4 Starts per Hour, 450% Current Limit at $40^{\circ} \mathrm{C}$ Ambient

Max. Continuous Motor Line Current	Three-Phase Motor kW Rating (50 Hz) hp Rating (60 Hz)											
	230 V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 575V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
36	5.5	10	12.5	7-1/2	7-1/2	7-1/2	7-1/2	25	15	25	25	S801N37N3D
69	11	18.5	22	15	15	15	15	50	40	50	50	S801N66N3D
Frame Size R												
96	15	25	30	25	25	30	25	60	50	75	60	S801R10N3D
130	22	37	45	30	30	40	30	75	75	100	100	S801R13N3D

Frame Size T

257	45	80	90	75	60	75	75	150	150	250	200	S801T18N3D
365	63	110	132	100	100	125	100	250	250	300	250	S801T24N3D
448	80	140	160	125	125	150	125	300	250	400	300	S801T30N3D

Frame Size U

503	90	160	185	150	125	150	150	300	300	450	400	S801U36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S801U42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S801U50N3D (1)

Frame Size V

503	90	160	185	150	125	150	150	300	300	450	400	S801V36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S801V42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S801V50N3D
727	129	220	257	250	200	250	250	550	450	700	550	S801V65N3D
796	-	-	-	-	-	-	-	-	-	-	-	S801V72N3D
865	-	-	-	-	-	-	-	-	-	-	-	S801V85N3D

Note
(1) U-Frame 500 A unit does not have IEC certification.

Solid-State Starters

Inside-the-Delta Severe Duty Ratings

Severe duty ratings are defined as any combination of parameters that exceed the standard duty ratings where the ramp time is over 30 seconds, the number of starts per hour exceeds 4, or the current limit set is over 300%.

Example: 35 -second ramp, 5 starts per hour 350% current limit at $40^{\circ} \mathrm{C}$ ambient.

Inside-the-Delta Severe Duty

Max. Continuous Motor Line Current	Three-Phase Motor kW Rating (50 Hz)			hp Rating (60 Hz)		$230 \mathrm{~V}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 575 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
	230V	380-400V	440 V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF							
Frame Size \mathbf{N}												
39	5.5	10	11	7-1/2	7-1/2	10	7-1/2	25	15	30	25	S801N37N3D
73	11	18.5	22	15	15	25	15	50	40	60	50	S801N66N3D
Frame Size R												
111	15	30	33	25	25	30	25	75	60	75	75	S801R10N3D
138	22	40	45	40	30	50	40	100	75	120	100	S801R13N3D
Frame Size T												
199	33	59	63	50	50	60	50	125	125	150	150	S801T18N3D
257	45	80	90	75	60	75	75	150	150	250	200	S801T24N3D
324	55	100	110	100	75	100	100	250	200	300	250	S801T30N3D
Frame Size U												
415	75	110	147	125	100	125	125	300	250	300	300	S801U36N3D
526	90	160	185	150	120	150	150	400	300	450	400	S801U42N3D
623	110	185	220	200	150	250	200	450	400	550	450	S801U50N3D ${ }^{1}$
Frame Size V												
415	75	110	147	125	100	125	125	300	250	300	300	S801V36N3D
526	90	160	185	150	120	150	150	400	300	450	400	S801V42N3D
623	110	185	220	200	150	250	200	450	400	550	450	S801V50N3D
727	129	220	257	250	200	250	250	550	450	700	550	S801V65N3D
816	147	257	295	250	250	300	250	600	550	750	700	S801V72N3D
908	160	280	335	250	250	300	250	700	550	750	700	S801V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S801V10N3D (2)

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information on optimum performance of the 1000A Frame Size V Inside-the-Delta S801, see Appendix C of MN03902009E.

Accessories

Lug Kits

The T and U frame (200 mm) and V frame (290 mm) each have different lug options based on your wiring needs.

Each lug kit contains three lugs that can be mounted on either the load or line side.

Power Supplies

24 Vdc power supply that can be used with the S801 SSRV or as a stand-alone device.

Power Supplies

Description	Catalog Number		
$85-264$ Vac input	PSG240E		
24 Vdc output		\quad PSG240F \quad	360-575 Vac input
:---			
24 Vdc output			

Lug Cover Kits

Replacement covers for the T- and V-Frame are available in case of damage to the existing covers.

Lug Cover Kits	
Description	Catalog Number
Lug cover T- U-Frame	EML27
Lug cover V-Frame	EML34

IP20 Kits

IP20 Kits

Description	Catalog Number
N-Frame kit	SS-IP20-N
R-Frame kit	SS-IP20-R
T- and U-Frame kit	SS-IP20-TU
V-Frame kit	SS-IP20-V

Surge Suppressors

The surge suppressor can mount on either the line or load side of the soft starter. It is designed to clip the line voltage (or load side induced voltage).

Surge Suppressors

Description	Catalog Number
600 V MOV for 200 mm and 290 mm units	EMS39
690 V MOV for 200 mm and 290 mm units ${ }^{(2)}$	EMS41

Notes
(1) The EML33 does not have a CSA listing.
(2) T-Frame only.

Mounting Plates

The mounting plates are designed to help make it easy to install or retrofit the soft starter into enclosures and MCCs. The soft starter can be mounted onto the plate prior to installation. The mounting plate is designed with tear drop mounting holes for easier installation.

Mounting Plates	
Description	Catalog Number
Mounting plate N-Frame	EMM13N
Mounting plate R-Frame	EMM13R
Mounting plate T-, U-Frame	EMM13T
Mounting plate V-Frame	EMM13V

Vibration Plates

The vibration plates allow the soft starter to be applied in high shock and vibration applications. The vibration plate allows vibration up to 5 g and shock in up to 40 g . The soft starter is mounted onto the vibration plate prior to installation in the panel.

Vibration Plates

Description	Catalog Number
Vibration plate N-Frame	EMM14N
Vibration plate R-Frame	EMM14R
Vibration plate T-, U-Frame	EMM14T
Vibration plate V-Frame	EMM14V

Adapter Plates

The adapter plate allows customers to retrofit a V-Frame 290 mm soft starter with the U-Frame 200 mm soft starter.

Adapter Plates	
	Catalog Number
Description	EMM13U
Adapter plates ${ }^{(2)}$	

Control Wire Connector
Control Wire Connector

Catalog \quad| Number |
| :--- |
| Description |

Control Interface Module

The Control Interface Module (CIM) is available as a replacement part in two versions.

CIM

Description	Catalog Number
Blank cover (filler)	EMA68
CIM for standard unit	EMA71
CIM for pump control option	EMA72
Panel mounting kit	
3 ft cable	EMA69A
5 ft cable	EMA69B
8 ft cable	EMA69C
10 ft cable	EMA69D

Extended Ramp

For a longer ramp acceleration time of 0.5360 seconds, change the last digit in the catalog number from Page V6-T1-60 to \mathbf{L}.

Extended Ramp Option

Frame Size	Max. Current	Catalog Number
N	37	S801N37N3L
	66	S801N66N3L
R	105	S801R10N3L
	135	S801R13N3L
T	180	S801T18N3L
	240	S801T24N3L
	304	S801T30N3L
U	360	S801U36N3L
	420	S801U42N3L
	500	S801U50N3L ${ }^{(1)}$
V	360	S801V36N3L
	420	S801V42N3L
	500	S801V50N3L
	650	S801V65N3L
	720	S801V72N3L
	850	S801V85N3L
	1000	S801V10N3L

Extended Ramp and 690V Option

For voltage ratings of 690V, use the table below.

690V Option

Frame Size	Max. Current	Catalog Number
T	180	S801T18V3L
	240	S801T24V3L
	304	S801T30V3L
V	360	S801V36V3L
	420	S801V42V3L
	500	S801V50V3L
	650	S801V65V3L
	720	S801V72V3L
	850	S801V85V3L

Cooling Fan Kit

The EMM18 cooling fan kit mounts on either side of any frame size S801 Soft Starter to provide additional printed circuit board cooling in high ambient operating temperatures.

Cooling Fan Kit

	Catalog Number
Fan Kit	EMM18

[^1]Reduced Voltage Motor Starters

Solid-State Starters

Technical Data and Specifications

Soft Starters-S801

Description	S801 Soft Starter (Partial Catalog Number)			
	S801N37	S801N66	S801R10	S801R13
Max. current capacity	37	66	105	135
General Information				
Bypass mechanical lifespan	10M	10M	10M	10M
Insulating voltage Ui	660 V	660 V	660 V	660 V
Ramp time range	$\begin{aligned} & 0.5-180 \text { seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	$\begin{aligned} & \text { 0.5-180 seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	$\begin{aligned} & \text { 0.5-180 seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	$\begin{aligned} & 0.5-180 \text { seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$
Resistance to vibration	3 g	3 g	3 g	3 g
Resistance to shock	15g	15 g	15g	15g
Electrical Information				
Operating voltage	200-600V	200-600V	200-600V	200-600V
Operating frequency	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30
Cabling Capacity (IEC 947)				
Number of conductors	1	1	1	1
Wire sizes	14-2	14-2	14-4/0	14-4/0
Type of connectors	Box lug	Box lug	Box lug	Box lug
Control Wiring (12-Pin)				
Wire sizes in AWG	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)			
Torque requirements in lb-in	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31
Control Power Requirements				
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.0	1.0	1.0	1.0
Inrush current amps	10	10	10	10
Ripple	1\%	1\%	1\%	1\%
Relays (1) Class A and C				
Voltage AC-maximum	240	240	240	240
Voltage DC-maximum	120	120	120	120
Amps-maximum	3	3	3	3
Environment				
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$			
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$			
Humidity	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing
Operating position	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000 V	6000 V

Solid-State Starters

Soft Starters-S801, continued

Description	S801 Soft Starter (Partial Catalog Number)		S801T30	S801U36
	S801T18	S801T24		
Max. current capacity	180	240	304	360
General Information				
Bypass mechanical lifespan	10M	10M	10M	10M
Insulating voltage Ui	660 V	660 V	660 V	660 V
Ramp time range	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)
Resistance to vibration	3 g	3 g	3 g	3 g
Resistance to shock	15g	15g	15g	15 g
Electrical Information				
Operating voltage	200-600V	200-600V	200-600V	200-600V
Operating frequency	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30	$5,10,20$ and 30
Cabling Capacity (IEC 947)				
Number of conductors	1 or 2	1 or 2	1 or 2	1 or 2
Wire sizes	4 AWG to 500 kcmil			
Type of connectors	Add-on lug kit	Add-on lug kit	Add-on lug kit	Add-on lug kit
Control Wiring (12-Pin)				
Wire sizes in AWG	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)			
Torque requirements in Ib-in	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31
Control Power Requirements				
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.0	1.0	1.0	1.0
Inrush current amps	10	10	10	10
Ripple	1\%	1\%	1\%	1\%
Relays (1) Class A and C				
Voltage AC-maximum	240	240	240	240
Voltage DC-maximum	120	120	120	120
Amps-maximum	3	3	3	3
Environment				
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50 \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$			
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$			
Humidity	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing
Operating position	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000 V	6000 V

[^2]
Reduced Voltage Motor Starters

Solid-State Starters

Soft Starters-S801, continued

Description	S801 Soft Starter (Partial Catalog Number)		S801V36	S801V42
	S801U42	S801U50 ${ }^{(1)}$		
Max. current capacity	420	500	360	420
General Information				
Bypass mechanical lifespan	10M	10M	10M	10M
Insulating voltage Ui	660 V	660 V	660 V	660 V
Ramp time range	$\begin{aligned} & 0.5-180 \text { seconds } \\ & \text { (} 0.5-360 \text { seconds extended ramp) } \end{aligned}$	$\begin{aligned} & 0.5-180 \text { seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	$\begin{aligned} & 0.5-180 \text { seconds } \\ & \text { (} 0.5-360 \text { seconds extended ramp) } \end{aligned}$	0.5-180 seconds (0.5-360 seconds extended ramp)
Resistance to vibration	3 g	3 g	3 g	3 g
Resistance to shock	15 g	15g	15g	15 g
Electrical Information				
Operating voltage	200-600V	200-600V	200-600V	200-600V
Operating frequency	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5, 10, 20 and 30	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30
Cabling Capacity (IEC 947)				
Number of conductors	1 or 2	1 or 2	2,4 or 6	2,4 or 6
Wire sizes	4 AWG to 500 kcmil	4 AWG to 500 kcmil	2/0 to 500 kcmil	2/0 to 500 kcmil
Type of connectors	Add-on lug kit	Add-on lug kit	Add-on lug kit	Add-on lug kit
Control Wiring (12-Pin)				
Wire sizes in AWG	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)			
Torque requirements in Ib-in	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31
Control Power Requirements				
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.0	1.0	1.4	1.4
Inrush current amps	10	10	10	10
Ripple	1\%	1\%	1\%	1\%
Relays (1) Class A and C				
Voltage AC-maximum	240	240	240	240
Voltage DC-maximum	120	120	120	120
Amps-maximum	3	3	3	3
Environment				
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$			
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$			
Humidity	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing
Operating position	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000 V	6000 V

Note
(1) U-Frame 500A unit does not have IEC certification.

Solid-State Starters

Soft Starters-S801, continued

	S801 Soft Starter (Partial Catalog Number) Description S801V50	500	S801V72		S801V85

Environment					
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$				
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$				
Humidity	<95\% noncondensing				
Operating position	Any	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000V	6000 V	6000 V

Note

(1) UL recognized component.

Wiring Diagrams

Line Connected Soft Starter

Inside-the-Delta Connected Soft Starter for a 6-Lead Motor

Inside-the-Delta Connected Soft Starter for a 12-Lead Low Voltage Motor

Inside-the-Delta Connected Soft Starter for a 12-Lead High Voltage Motor

Solid-State Starters

Dimensions

Approximate Dimensions in Inches (mm)
Soft Starters-S801

Partial Catalog Number	W	H	D	Weight in Lbs (kg)
S801N37	2.60 (66.0)	7.38 (187.4)	6.63 (168.4)	5.8 (2.6)
S801N66	2.60 (66.0)	7.38 (187.4)	6.63 (168.4)	5.8 (2.6)
S801R10	4.37 (111.0)	7.92 (201.1)	7.03 (178.6)	10.5 (4.8)
S801R13	4.37 (111.0)	7.92 (201.1)	7.03 (178.6)	10.5 (4.8)
S801T18	7.65 (194.4)	12.71 (322.9)	6.69 (169.8)	48 (21.8) with lugs 41 (18.6) without lugs
S801T24	7.65 (194.4)	12.71 (322.9)	6.69 (169.8)	48 (21.8) with lugs 41 (18.6) without lugs
S801T30	7.65 (194.4)	12.71 (322.9)	6.69 (169.8)	48 (21.8) with lugs 41 (18.6) without lugs
S801U36	7.73 (196.3)	12.72 (323.1)	7.08 (179.9)	48 (21.8) with lugs 41 (18.6) without lugs
S801U42	7.73 (196.3)	12.72 (323.1)	7.08 (179.9)	48 (21.8) with lugs 41 (18.6) without lugs
S801U50	7.73 (196.3)	12.72 (323.1)	7.08 (179.9)	48 (21.8) with lugs 41 (18.6) without lugs
S801V36	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs
S801V42	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs
S801V50	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs
S801V65	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs
S801V72	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs
S801V85	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs
S801V10	11.03 (280.2)	16.57 (420.8)	7.23 (183.7)	103 (46.8) with lugs 91 (41.4) without lugs

Also refer to dimension drawings below and on Pages V6-T1-82 and V6-T1-83.

N-Frame (65 mm) S801

Approximate Dimensions in Inches (mm)
R-Frame (110 mm) S801

T-Frame (200 mm) S801

Approximate Dimensions in Inches (mm)

U-Frame (200 mm) S801

V-Frame (290 mm) S801

Type S811, Soft Starters with DIM

Type S811, Soft Starters with DIM

Product Description

Eaton's S811 offers all the popular features of the S801, but adds enhanced functionality with the new DIM (Digital Interface Module), communications, metering, monitoring and diagnostics capabilities.

Eaton's line of S811 reduced voltage soft starters is very compact, multi-functional, easy to install and easy to set operating parameters. Designed to control the acceleration and deceleration of three-phase motors up to 690 V , the line is available from 11-1000A.

The S811 is designed to be a complete package combining the silicon controlled rectifiers (SCRs), bypass contactor and overload in one, very compact unit. The S811 is available as a component for panel mounting, in motor control centers or in enclosed control (NEMA Type 1, 3R, 4, 4X, 7/9 and 12).

Application Description

Designed to control the acceleration and deceleration of three-phase motors, the S811 soft starter uses SCRs to control the voltage to soft start and soft stop the motor. After the motor is started, internal run bypass contactors close, resulting in the motor running directly across-the-line. The built-in solid-state overload protects the motor from overload conditions with sophisticated algorithms that model true motor heating, resulting in better motor protection and fewer nuisance trips. Advanced protective and diagnostic features reduce downtime.

A voltage ramp start or current limit start is available. Kick start is available in either starting mode. The soft stop option allows for a ramp stop time that is longer than the coast to stop time. The pump control option provides a smooth transition for starting and stopping a motor and eliminating the "waterhammer" effect that can damage pipes, valves and pumps.

Contents

Description Page
Type S611, Solid-State Soft Starters V6-T1-39
Type S801, Soft Starters. V6-T1-56
Type S811, Soft Starters with DIM
Operation V6-T1-86
Features and Benefits V6-T1-89
Standards and Certifications V6-T1-92
Instructional Leaflets V6-T1-92
Catalog Number Selection V6-T1-92
Product Selection V6-T1-93
Accessories V6-T1-107
Options V6-T1-109
Wiring Diagrams V6-T1-113
Dimensions V6-T1-114

The S811 offers an impressive array of advanced protective features. Not only are the protective features selectable, but many offer variable settings and adjustable time delays to ride through system discrepancies.

The S811 has an easy to use Digital Interface Module (DIM) that allows the user to configure the device and to read system parameters and monitor system values. The DIM includes an LCD display and keypad to scroll through the various menus. The DIM allows the user to modify control parameters, enable or disable protections, set communication variables, monitor system parameters such as line voltages and currents, and access the fault queue.

The DIM can be removed from the S811 and remote mounted. Kits are available to door mount the DIM, enabling users to safely configure, commission, monitor and troubleshoot the system at the electrical panel without opening the enclosure door. This will help eliminate the possibility of an arc flash incident.

Digital Interface Module (DIM)

Communications

The S811 has built-in communication capabilities through Eaton's QC (Quick Connect) Port. QCPort ${ }^{\text {TM }}$ enables the soft starter to be connected to a variety of networks, including DeviceNet ${ }^{\text {TM }}$, EtherNet/Modbus, EtherNet/ IP and PROFIBUS. The advantage of QCPort is that multiple control components can be connected to one Eaton D77D gateway.

The gateway concentrates data from the devices into a single node. Configuration is simple-a single press of the gateway's Auto Configuration button sets the system up for default operation. This automatically configures the I/O assemblies to the QCPort system devices. The data from these devices are then assembled into single input and output messages

Communications Reference

Description	Part Number
DeviceNet network adapter	D77D-DNA
EtherNet Modbus network adapter	D77D-EMA
EtherNet/IP network adapter	D77D-EIP
PROFIBUS network adapter	D77D-PNA
Terminator and power tap	D77E-0PLR
DIN rail communications backplane, 7-position	D77E-BP7
DIN rail communications backplane, 12-position	D77E-BP12
$85-264$ Vac input, 24 Vdc output	PSG240E
$360-575$ Vac input, 24 Vdc output	PSG240F

The S811 communication parameters can be configured with the DIM or through the Fieldbus using CH Studio Component Manager. Advanced communication configuration settings provide the system integrator with powerful tools to facilitate system optimization

S811 Connection

Solid-State Starters

Operation

Starting and Stopping Modes

The S811 has a variety of starting and stopping methods to provide superior performance in the most demanding applications. The motor can be started in either voltage ramp start or current limit start mode. Kick start and soft stop are available within both starting modes.

Voltage Ramp Start

Provides a voltage ramp to the motor resulting in a constant torque increase. The most commonly used form of soft start, this start mode allows you to set the initial torque value and the duration of the ramp to full voltage conditions. Bypass contactors close after ramp time

- Adjustable initial torque 0-85\% of locked rotor torque
- Adjustable ramp time $0.5-180$ seconds (can be extended with factory modification)

Starting Characteristics-Ramp Start

Time (Seconds)

Current Limit Start

Limits the maximum current available to the motor during the start phase. This mode of soft starting is used when it becomes necessary to limit the maximum starting current due to long start times or to protect the motor. This start

Starting Characteristics-Current Limit Start

Kick Start

Selectable feature in both voltage ramp start and current limit start modes. Provides a current and torque "kick" for 0 to 2.0 seconds. This provides greater initial current to develop additional torque to breakaway a high friction load.

- 0-85\% of locked rotor torque
- $0-2.0$ seconds duration

Starting Characteristics-Kick Start

Soft Stop

Allows for a controlled

- Stop time $=0-60$ seconds stopping of a load. Used when a stop-time that is greater than the coast-to-stop time is desired. Often used with high friction loads where a sudden stop may cause system or load damage.

Starting Characteristics-Soft Stop

Time (Seconds)

Reduced Voltage Motor Starters

Solid-State Starters

Edge and Level Sensing Control

Edge Sensing
Edge sensing requires +24 Vdc power be momentarily applied to Pin 1 (with terminal P at +24 Vdc) to initiate a start under all conditions. After a stop or fault occurs, the +24 Vdc must be removed, then reapplied to pin 1 before another start can occur. This control configuration should be used when restarting of the motor after a fault or stop must be supervised manually or as a part of a control scheme. The cycling of +24 Vdc power to Terminal 1 before starting is required regardless of the position of the auto reset switch on the DIM.

Level Sensing

Level sensing will enable a motor to restart after a fault is cleared without cycling +24 Vdc power to Terminal 1 as long as:

- Terminal P is supplied with +24 Vdc (to start from Terminal Block, Input \#3 must also be enabled)
- The auto reset switch on the DIM is set to enabled
- All faults have been reset

This control configuration should be used where it is desirable to restart a motor after a fault without additional manual or automatic control. An example of this condition would be on a remote pumping station where it is desirable to automatically restart a pump after a power outage without operator intervention.

Note: If the auto reset feature is used, CAUTION must be exercised to ensure that any restart occurs in a safe manner.

Features and Benefits

- Communication capabilities with various protocols
- The DIM (Digital Interface Module) provides an intuitive, easy-to-use human interface with powerful configuration capabilities to maximize system performance
- Door or device mounted DIM enables users to safely configure, commission, monitor and troubleshoot the system at the electrical panel without opening the enclosure door, eliminating the possibility of an arc flash incident
- System operating parameters can be monitored enterprise-wide through a communications network. Increase uptime by providing data for process management and preventive diagnostics
- Run internal bypass mode greatly reduces internal heating created by the greater power dissipation in the SCRs. Bypass contactor directly connects the motor to the line and improves system efficiency by reducing internal power losses
- Internal solid-state overload protection provides accurate current measurement and trip settings. Sophisticated algorithms solve a series of differential equations that model true motor heating and cooling, resulting in superior motor overload protection while minimizing nuisance trips. Advanced selectable protective features safeguard the motor and system against a variety of system faults
- Internal run bypass contactors and overload protection eliminate the need for additional devices, reducing enclosure sizes, minimizing installation and wiring time, and reducing overall assembly size and cost
- Wide range of overload FLA settings (31-100\% of rated current) and a selectable trip class (5-30) offers users the flexibility to fine tune the starter to match specific application requirements
- Variable ramp times and torque control settings provide unlimited starting configurations, allowing for maximum application flexibility
- Kick-start feature enables soft starting of high friction loads
- Soft stop control for applications where an abrupt stop of the load is not acceptable
- Pump control option with sophisticated pump algorithms on both starting and stopping that minimize the pressure surges that cause water hammer. The pump control option will maximize the life of the pump and piping systems while minimizing the downtime caused by system failure

Protective Features

All protective features can be configured, enabled or disabled with the DIM or through the communications network.

Motor Overload

The S811 includes electronic overload protection as standard. The overload meets applicable requirements for a motor overload protective device. The overload protects the motor from over heat conditions with the use of sophisticated algorithms that model true motor heating, resulting in superior motor protection and fewer nuisance trips.

The S811 calculates a thermal memory value based on the heat energy introduced into the motor during the start process. A 100\% value represents the maximum safe internal temperature of the motor.

When the thermal memory value reaches 100%, an overload trip will occur removing power to the motor. Upon trip, the S811 stores the calculated motor heating value and will not allow a motor re-start until the motor has a thermal memory value of less than 100%. This feature ensures the motor will not be damaged by repeated overload trip, reset and restart cycles.

The thermal memory value can be monitored through the DIM or the communications network. The thermal memory value can be of great use in determining an impending overload trip condition.Alarms can be implemented in the
process monitoring system warning of an impending trip before a trip occurs halting the process. Costly system downtime can be avoided.

The trip current is adjusted to match the specific application requirements by entering the motor nameplate full load current rating and trip class. The FLA parameter is adjustable from 32% to 100% of the unit's rated current. The overload trip class is adjustable from class 5 through class 30. The overload is ambient temperature compensated-meaning its trip characteristics will not vary with changes in ambient temperature. The overload protection can be enabled, disabled, or disabled on start.

- Six SCRs control all three motor phases, providing smooth acceleration and deceleration performance
- Soft acceleration and deceleration reduces wear on belts, gears, chains, clutches, shafts and bearings
- Reduce the peak inrush current's stress on the power system
- Manage peak starting torque to diminish mechanical system wear and damage
- 24 Vdc control voltage enhances personnel and equipment safety
- Removable, lockable control terminal block reduces maintenance costs. Also provides the opportunity for OEMs to reduce assembly and test costs by utilizing preassembled wire harnesses

Solid-State Starters

Jam

Excessive current and torque up to locked rotor levels can occur in a jam condition. The condition can result in stress and damage to the motor, load, mechanical system, and the electrical distribution system. Jam protection prevents the stress and damage from a jam during normal run. After the motor is in bypass, a current greater than 300% FLA setting will cause the starter to trip on a jam fault.

Stall

Excessive current and torque up to locked rotor levels can occur in a stall condition. The condition can lead to an overload trip and result in stress and damage to the motor, load, mechanical system, and the electrical distribution system. Stall protection prevents stress and damage to a motor that has not come up to speed during the soft start time. The S811 will trip to protect the system in the event that the motor did not get to the rated speed in the defined soft start period. A current greater than 200\% FLA at the end of the soft start period will cause the starter to trip on a stall fault.

Pole Over Temperature

High ambient temperatures, extended ramp times and high duty cycle conditions may cause the S811 power pole conductors to reach a temperature that exceeds their thermal rating. The S811 is equipped with sensors that monitor the temperature of the power poles. Over temperature protection occurs if the power pole's thermal capacity is exceeded. The soft starter will trip in over temperature conditions, preventing device failure.

Each power pole temperature value can be monitored through the DIM or the communications network This feature can be of use in determining an impending over temperature trip condition.

When using a communications network, alarms can be implemented in the process monitoring system warning of an impending trip before the trip occurs, halting the process.

Phase Loss

Loss of a phase can cause a significant increase in the current drawn in the remaining two phases. Phase loss can lead to motor damage before an eventual overload trip occurs. Phase loss is typically an indication of a failure in the electrical distribution system. The S811 will detect a phase loss and trip if any phase current drops below a preset value. The phase loss trip level is adjustable from 0\% to 100\% of the average of the other two phase levels with an adjustable trip delay of 0.1 to 60 seconds.

Phase Imbalance

Phase current or voltage imbalance can cause a significant increase in the current drawn in the remaining two phases. Phase imbalance can lead to motor damage before an eventual overload trip. Phase imbalance is typically an indication of a failure in the electrical distribution system or the motor. The S811 will detect both current and voltage phase imbalances and trip if any phase becomes imbalanced as compared to the average of the other two phases.

The phase current imbalance trip level is adjustable from 0% to 100% of the average of the current in the other two phases with an adjustable trip delay of 0.1 to 60 seconds.

The phase voltage imbalance trip level is adjustable from 0% to 100% of the average of the voltage in the other two phases with an adjustable trip delay of 0.1 to 60 seconds.

Reset Mode

The S811 can be set up for automatic or manual reset on trip. The manual reset mode requires the operator to physically press the RESET button located on the Soft Starter. The trip can be manually reset through the DIM or through the communications network. The trip can also be electrically reset by energizing a 24 Vdc input on the control terminal block.

The automatic reset mode allows the Soft Starter to be automatically reset as soon as the trip condition is no longer present. With the automatic reset mode, after the fault is no longer present, the motor will be restarted as soon as a valid start signal is present.

Phase Reversal

The S811 can determine if the proper line phase sequence is present by default. The device will trip if the line phase sequence is something other than A-B-C. The S811 can be configured to operate under reversed phase conditions (A-C-B).

Shorted SCR Detection

The 8811 monitors the operation of the power poles and will trip under a shorted SCR condition.

Open SCR Detection

The 8811 monitors the operation of the power poles and will trip under an open SCR condition.

Monitoring Capabilities

The S811 has an impressive array of system monitoring capabilities that allows users to access real time process and diagnostic data. This data can be viewed at the device with the DIM or through a communications network. Data over a communications network can provide valuable insight into the condition of the equipment and processes. Maintenance and

Average Line Current

Provides the average of the three-phase rms line currents in amps, accurate to within 2%. Current data can be used to indicate a need for maintenance. Increased currents in a fixed load application can indicate a reduction in system efficiencies and performance, signifying system maintenance is due.

Average Pole Current

Provides the average of the three-phase rms pole currents in amps, accurate to within 2%. The pole current is the current through the Soft Starter. The line and pole current will be identical in inline applications, and will differ in inside-the-delta applications.

Average Line Current as a \% FLA

Provides the average rms line current as a percentage of the S811 FLA setting.

Three-Phase Line Currents

Provides three rms phase line currents in amps, accurate to within 2%. Imbalances or changes in the relative phase current to one another can indicate anomalies in the motor or electrical distribution system.
production personnel can monitor critical operational and maintenance data from a central control station that can be located far away from the production facility. Process data can be monitored to determine system anomalies that may indicate a need for preventive maintenance or an impeding failure. Adjustments made through the communications
network can reduce costs by minimizing the time traveling to the location where the motor controls are located. When faults do occur, real time fault data can assist maintenance in troubleshooting and planning repair resources. Remote reset signals can be given to tripped devices without the need for manual intervention by maintenance personnel.

Three-Phase Pole Currents

Provides three rms phase pole currents in amps, accurate to within 2%. The pole current is the current through the soft starter. The line and pole current will be identical in in-line applications, and will differ in inside-the-delta applications.

Three-Phase Line Voltages

Provides the individual rms three-phase line voltages. Imbalances or changes in |the relative phase voltage to one another can indicate anomalies in the motor or electrical distribution system. Voltage can be used to monitor electrical distribution system performance. Warnings, alarms and system actions to low or high voltage conditions can be implemented.

Percent Thermal Memory

Provides the real time calculated thermal memory value. The S811 calculates thermal memory value. A 100% value represents the maximum safe internal temperature of the motor. When the thermal memory value reaches 100\%, an overload trip will occur, removing power to the motor.

The thermal memory value can be of great use in determining an impending overload trip condition. When using a communications network, alarms can be implemented in the process monitoring system warning of an impending trip before the trip occurs, halting the process. Costly system downtime can be avoided.

DC Control Voltage

Monitors level of the 24 Vdc control voltage. Fluctuations in control voltage can cause component malfunction and failure. System control voltage data can be used to implement warnings, alarms and system actions to low or high voltage conditions.

Pole Temperature

Increases in power pole temperature are caused by increases in ambient temperature, start/stop times and start duty cycles. Changes in pole temperatures represent a change in system operating conditions. Identifying unexpected operating conditions or changes can prompt maintenance and aid in process evaluation activities.

PCB Device Temperature

An increase in printed circuit board (device) temperature is a strong indication of an increase in ambient temperature. High ambient temperature operation can be identified with the device temperature data. Device temperature increases can be due to undersized enclosures, failure of cooling fans or blocked venting. High operating temperatures will reduce the life of all electrical equipment in the enclosure.

Start Count

Start count data can be used to monitor system output, schedule preventative maintenance, identify system anomalies and identify changes in system operation.

Solid-State Starters

Diagnostics

Fault Queue
Current fault and a fault queue containing the last nine system faults can be read through the DIM or communications network. Fault identification can minimize troubleshooting time and cost, and prevent arc flash incidents. The fault queue can be remotely accessed through a communications network to assist in planning maintenance resources. Thirty different faults can be identified by the S811.

Standards and Certifications

- IEC 60947-4-2
- EN 60947-4-2
- UL listed (NMFT-E202571) Frame N37 to V85
- UL recognized (NMFT2)Frame V10

Control Status

The S811 provides data that represents system conditions that can be read through the DIM or the communications network. This data identifies the status of the system and the control commands the system is requesting of the S811. This can be used for advanced troubleshooting and system integration activities.

Breaker Status

The S 811 has provisions to read and display circuit breaker status. Eaton communicating cover control or other communicating protective device is required to take advantage of this feature.

Instructional Leaflets

- User manual MNO3902002E
- Inside-the-Delta user manual MN03902009E
- Outline drawings:
- 65 mm , N-Frame: 10-8574
- 110 mm , R-Frame: 10-8575
- 200 mm , T-Frame: 10-8576
- 200 mm , U-Frame: $10-8857$
- 290 mm , V-Frame: 10-8577
- CE marked
- CSA certified (3211 06)
- CSA elevator (2411 01)

Catalog Number Selection

S811 Open Soft Starters ©

[^3]Solid-State Starters

Product Selection

Standard Duty Ratings

Starting Method	Ramp Current \% of FLA	Ramp Time Seconds	Starts per Hour	Ambient Temperature
Soft start	300\%	30 sec .	3	$50^{\circ} \mathrm{C}$
Full voltage	500\%	10 sec .	3	$50^{\circ} \mathrm{C}$
Wye-delta	350\%	20 sec .	3	$50^{\circ} \mathrm{C}$
80\% RVAT	480\%	20 sec .	2	$50^{\circ} \mathrm{C}$
65\% RVAT	390\%	20 sec .	3	$50^{\circ} \mathrm{C}$
50\% RVAT	300\%	20 sec .	4	$50^{\circ} \mathrm{C}$
Motor applications and customer needs come in many different varieties. With the standard and severe duty rating tables, we have attempted to provide		guidelines on what the soft starter is capable of. If the application falls under these categories, you can use these charts. For other applications, or when a	oft que with der rep er Tec	question arises, consult with your local Eaton representative or call our Technical Resource Center.

Standard Duty-15 Second Ramp, 4 Starts per Hour, 300\% Current Limit at $40^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors kW Rating (50 Hz)			hp Rating (60 Hz)		230V1.0SF	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	575-690V ${ }^{(1)}$		Catalog Number
				200V								
	230V	380-400V	440V	1.0SF	1.15SF					1.0SF	1.15SF	
Frame Size N												
37	10	18.5	18.5	10	10	10	10	25	20	30	30	S811N37N3S
66	18.5	30	37	20	15	20	20	50	40	60	50	S811N66N3S
Frame Size R												
105	30	55	59	30	25	40	30	75	60	100	75	S811R10N3S
135	40	63	80	40	30	50	40	100	75	125	100	S811R13N3S
Frame Size T												
180	51	90	110	60	50	60	60	150	125	150	150	S811T18N3S
240	75	110	147	75	60	75	75	200	150	200	200	S811T24N3S
304	90	160	185	100	75	100	100	250	200	300	250	S811T30N3S
Frame Size U												
360	110	185	220	125	100	150	125	300	250	350	300	S811U36N3S
420	129	220	257	150	125	175	150	350	300	450	350	S811U42N3S
500	150	257	300	150	150	200	150	400	350	500	450	S811U50N3S ${ }^{2}$
Frame Size V												
360	110	185	220	125	100	150	125	300	250	350	300	S811V36N3S
420	129	220	257	150	125	175	150	350	300	450	350	S811V42N3S
500	150	257	300	150	150	200	150	400	350	500	450	S811V50N3S
650	200	355	425	250	200	250	200	500	450	600	500	S811V65N3S
720	220	400	450	-	-	300	250	600	500	700	600	S811V72N3S
850	257	475	500	-	-	350	300	700	600	900	700	S811V85N3S
1000	277	525	550	-	-	400	350	800	700	900	800	S811V10N3S ${ }^{3}$

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-108.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) 500A rating does not have IEC certification.
(3) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

S811 Standard Duty-25 Second Ramp, 4 Starts per Hour, 300\% Current Limit at $40^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors											
				200V		230 V		460V		575-6		Catalog
	230V	380-400V	440V	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	1.0SF	1.15SF	Number
Frame Size \mathbf{N}												
34	9	15	18.5	10	7-1/2	10	10	25	20	30	25	S811N37N3S
63	15	30	33	20	15	20	20	40	40	60	50	S811N66N3S

Frame Size R											
96	25	45	55	30	25	30	30	75	60	75	75
120	33	63	63	40	30	40	40	75	75	100	100

Frame Size T												
150	45	80	90	50	40	50	50	100	100	150	125	S811T18N3S
215	63	110	132	60	60	75	60	150	150	200	150	S811T24N3S
278	80	147	160	75	75	100	75	200	200	250	250	S811T30N3S

Frame Size U

320	90	160	185	100	75	125	100	250	200	300	250
380	110	200	220	125	100	150	125	300	250	350	300
460	140	250	280	150	125	150	150	350	300	450	400
S811U36N3S	S811U42N3S										

Frame Size V

320	90	160	185	100	75	125	100	250	200	300	250	S811V36N3S
380	110	200	220	125	100	150	125	300	250	350	300	S811V42N3S
460	140	250	280	150	125	150	150	350	300	450	400	S811V50N3S
610	185	315	375	250	150	200	200	500	450	600	500	S811V65N3S
680	200	375	445	-	200	250	200	600	500	700	600	S811V72N3S
810	250	450	500	-	-	300	300	700	600	900	700	S811V85N3S
890	290	510	560	-	-	400	350	700	600	900	700	S811V10N3S ${ }^{3}$.

For Pump Option, replace character $\mathbf{8}$ with "P" and also, see Page V6-T1-108.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) 500A rating does not have IEC certification.
(3) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Standard Duty-15 Second Ramp, 4 Starts per Hour, 300% Current Limit at $50^{\circ} \mathrm{C}$

	Three-Phase Motors kW Rating (50 Hz)			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	575-690V ${ }^{1}$		Catalog Number
Max. Current	230V	380-400V	440V	$\begin{aligned} & \text { 200V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF							
Frame Size N												
34	9	15	18.5	10	7-1/2	10	10	25	20	30	25	S811N37N3S
63	15	30	33	20	15	20	20	40	40	60	50	S811N66N3S
Frame Size R												
96	25	45	55	30	25	30	30	75	60	75	75	S811R10N3S
120	33	63	63	40	30	40	40	75	75	100	100	S811R13N3S
Frame Size T												
150	45	80	90	50	40	50	50	100	100	150	125	S811T18N3S
215	63	110	132	60	60	75	60	150	150	200	150	S811T24N3S
278	80	147	160	75	75	100	75	200	200	250	250	S811T30N3S
Frame Size U												
320	90	160	185	100	75	125	100	250	200	300	250	S811U36N3S
460	110	200	220	125	100	150	125	300	250	350	300	S811U42N3S
460	140	250	280	150	125	150	150	350	300	450	400	S811U50N3S ${ }^{\text {2 }}$

Frame Size V

320	90	160	185	100	75	125	100	250	200	300	250	S811V36N3S
380	110	200	220	125	100	150	125	300	250	350	300	S811V42N3S
460	140	250	280	150	125	150	150	350	300	450	400	S811V50N3S
610	185	315	375	250	150	200	200	500	450	600	500	S811V65N3S
680	200	375	445	-	200	250	200	600	500	700	600	S811V72N3S
830	257	450	500	-	-	300	300	700	600	900	700	S811V85N3S
960	302	510	540	-	-	350	300	800	700	900	800	S811V10N3S ${ }^{3}$)

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-108.

Notes

(1) 690 V is available only from T18 thru V85. Not available on U-Frames.
(2) 500 A rating does not have IEC certification.
(3) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E
$\overline{\mathbf{8 8 1 1}}$ Standard Duty-50 Second Ramp, 2 Starts per Hour, 300\% Current Limit at $50^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors kW Rating (50 Hz)			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	575-690V ${ }^{(1)}$		Catalog Number
				200V								
	230 V	380-400V	440V	1.0SF	1.15SF					1.0SF	1.15SF	
Frame Size \mathbf{N}												
21	5.5	10	11	5	5	5	5	15	10	15	15	S811N37N3S
42	11	18.5	22	10	10	15	10	30	25	40	30	S811N66N3S
Frame Size \mathbf{R}												
60	15	30	33	15	15	20	15	40	40	50	50	S811R10N3S
80	22	40	45	25	20	30	25	60	50	75	60	S811R13N3S
Frame Size T												
115	33	59	63	30	30	40	30	75	75	100	100	S811T18N3S
150	45	80	90	50	40	50	50	100	100	150	125	S811T24N3S
192	55	100	110	60	50	60	60	150	125	200	150	S811T30N3S

Frame Size U

280	80	150	160	75	75	100	75	200	200	250	250	S811U36N3S
340	110	180	200	100	100	125	100	250	200	350	300	S811U42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S811U50N3S ${ }^{2}$ (2)

Frame Size V

280	80	150	160	75	75	100	75	200	200	250	250	S811V36N3S
340	110	180	200	100	100	125	100	250	200	350	300	S811V42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S811V50N3S
420	129	220	257	150	125	150	150	350	300	450	350	S811V65N3S
480	147	257	295	150	150	200	150	400	350	500	450	S811V72N3S
590	180	315	375	200	150	200	200	500	400	600	500	S811V85N3S
650	205	370	415	250	200	250	200	500	450	600	500	S811V10N3S ${ }^{3}$ 3

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-108.

Notes

(1) 690 V is available only from T18 thru V85. Not available on U-Frames.
(2) 500A rating does not have IEC certification.
(3) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

S811
Standard Duty-15 Second Ramp, 4 Starts per Hour, 450% Current Limit at $40^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors kW Rating ($\mathbf{5 0 ~ H z}$)			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	575-690V ${ }^{\text {(1) }}$		Catalog Number
	230 V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF					575-69 1.0SF	1.15SF	
Frame Size N												
29	7.5	12.5	15	7-1/2	7-1/2	10	7-1/2	20	15	25	20	S811N37N3S
49	12.5	22	25	15	10	15	15	30	30	40	40	S811N66N3S
Frame Size R												
73	18.5	37	40	20	20	25	20	50	40	60	60	S811R10N3S
94	25	45	55	30	25	30	30	60	60	75	75	S811R13N3S
Frame Size 1												
155	45	80	90	50	40	60	50	100	100	150	125	S811T18N3S
219	63	110	132	60	60	75	60	150	150	200	150	S811T24N3S
280	80	150	160	75	75	100	75	200	200	250	250	S811T30N3S

Frame Size U

345	100	185	200	100	100	125	100	250	200	350	300	S811U36N3S
405	110	200	250	125	100	150	125	300	250	400	350	S811U42N3S

Frame Size V

345	100	185	200	100	100	125	100	250	200	350	300	S811V36N3S
405	110	200	250	125	100	150	125	300	250	400	350	S811V42N3S
465	140	250	280	150	125	150	150	350	300	450	400	S811V50N3S
530	160	280	335	150	150	200	150	450	350	500	450	S811V65N3S
590	180	315	375	200	150	-	200	500	400	600	500	S811V72N3S
651	200	355	425	-	-	-	-	600	450	700	600	S811V85N3S
754	220	400	465	-	-	-	-	600	500	800	700	S811V10N3S ${ }^{2}$ (2)

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-108.

Notes

(1) 690 V is available only from T18 thru V85. Not available on U-Frames.
(2) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E

S811 Standard Duty - 30 Second Ramp, 4 Starts per Hour, 450% Current Limit at $40^{\circ} \mathrm{C}$

Max. Current	Three-Phase Motors kW Rating ($\mathbf{5 0} \mathbf{~ H z) ~}$			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	575-690V ${ }^{1}$		Catalog Number
	230 V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF					575-69 1.0SF	1.15SF	
Frame Size \mathbf{N}												
21	5.5	10	12.5	5	5	5	5	15	10	15	15	S811N37N3S
40	11	18.5	22	10	10	10	10	30	25	30	30	S811N66N3S
Frame Size R												
55	15	25	30	15	15	20	15	40	30	50	40	S811R10N3S
75	22	37	45	20	20	25	20	50	50	60	60	S811R13N3S
Frame Size 1												
151	45	80	90	50	40	50	50	100	100	150	125	S811T18N3S
215	63	110	132	60	60	75	60	150	150	200	150	S811T24N3S
264	80	140	160	75	75	100	75	200	150	250	200	S811T30N3S

Frame Size U

300	90	160	185	100	75	100	100	200	200	300	250	S811U36N3S
340	100	180	200	100	100	125	100	250	200	350	300	S811U42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S811U50N3S

Frame Size V

300	90	160	185	100	75	100	100	200	200	300	250	S811V36N3S
340	100	180	200	100	100	125	100	250	200	350	300	S811V42N3S
380	110	200	220	125	100	150	125	300	250	350	300	S811V50N3S
420	129	220	257	150	125	150	150	350	300	450	350	S811V65N3S
460	140	250	280	150	125	150	150	350	300	450	400	S811V72N3S
500	150	257	300	150	150	200	150	400	350	500	450	S811V85N3S
560	160	277	325	200	150	250	200	500	400	600	500	S811V10N3S ${ }^{2}$)

For Pump Option, replace character $\mathbf{8}$ with " \mathbf{P} " and also, see Page V6-T1-108.

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Solid-State Starters

Severe Duty

Severe Duty Ratings

Starting Method	Ramp Current \% of FLA	Ramp Time Seconds	Starts per Hour	Ambient Temperature
Soft start	450\%	30 sec .	4	$50^{\circ} \mathrm{C}$
Full voltage	500\%	10 sec .	10	$50^{\circ} \mathrm{C}$
Wye-delta	350\%	65 sec .	3	$50^{\circ} \mathrm{C}$
80\% RVAT	480\%	25 sec .	4	$50^{\circ} \mathrm{C}$
65\% RVAT	390\%	40 sec .	4	$50^{\circ} \mathrm{C}$
50\% RVAT	300\%	60 sec .	4	$50^{\circ} \mathrm{C}$
Severe duty defined as an parameters th standard duty	re nation of ed the where	the ramp time is seconds, the num starts per hour ex the current limit s		Example: 35-second starts per hour, urrent limit at $40^{\circ} \mathrm{C}$ t.

Severe Duty - > 30 Second Ramp, >4 Starts per Hour or >300\% Current Limit

	Three-Phase Motors kW Rating (50 Hz)			hp Rating (60 Hz)		$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	575-690V ${ }^{(1)}$		Catalog Number
Max. Current	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF					575-69 1.0SF	1.15SF	
Frame Size \mathbf{N}												
22	5.5	10	11	5	5	7-1/2	5	15	10	20	15	S811N37N3S
42	11	18.5	22	10	10	15	10	30	25	40	30	S811N66N3S
Frame Size R												
65	15	30	33	15	15	20	15	50	40	50	50	S811R10N3S
80	22	40	45	25	20	30	25	60	50	75	60	S811R13N3S
Frame Size T												
115	33	59	63	30	30	40	30	75	75	100	100	S811T18N3S
150	45	80	90	50	40	50	50	100	100	150	125	S811T24N3S
192	55	100	110	60	50	75	60	150	125	200	150	S811T30N3S

Frame Size U

240	75	110	147	75	60	75	75	200	150	200	200	S811U36N3S
305	90	160	185	100	75	100	100	250	200	300	250	S811U42N3S

Frame Size V

240	75	110	147	75	60	75	75	200	150	200	200	S811V36N3S
305	90	160	185	100	75	100	100	250	200	300	250	S811V42N3S
365	110	185	220	125	100	150	125	300	250	350	300	S811V50N3S
420	129	220	257	150	125	150	150	350	300	450	350	S811V65N3S
480	147	257	295	150	150	200	150	400	350	500	450	S811V72N3S
525	160	280	335	150	150	200	150	450	350	500	450	S811V85N3S
575	172	303	370	200	150	250	200	500	450	600	500	S811V10N3S ${ }^{2}$ 2

Notes

(1) 690 V is available only from T 18 thru V85. Not available on U-Frames.
(2) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Reduced Voltage Motor Starters

Solid-State Starters

Inside-the-Delta Standard Duty Ratings

Inside-the-Delta Standard Duty-15 Second Ramp, 4 Starts per Hour, 300% Current Limit at $40^{\circ} \mathrm{C}$ Ambient

Frame Size R

182	30	55	59	50	40	60	50	125	100	150	125
234	40	63	80	60	50	75	60	150	125	S811R10N3D	
200	150	S811R13N3D									

Frame Size T

311	51	90	110	100	75	100	100	250	200	250	250	S811T18N3D
415	75	110	147	125	100	125	125	300	250	300	300	S811T24N3D
526	90	160	185	150	125	150	150	400	300	400	400	S811T30N3D

Frame Size U

623	110	185	220	200	150	250	200	450	400	550	450	S811U36N3D
727	129	220	257	250	200	300	250	550	450	700	550	S811U42N3D
865	150	257	300	250	250	300	250	600	550	750	700	S811U50N3D 1 (2)

Frame Size V

623	110	185	220	200	150	250	200	450	400	550	450
727	129	220	257	250	200	300	250	550	450	S811V36N3D	
865	150	257	300	250	250	300	250	600	550	750	550
1125	200	355	425	400	300	400	300	750	700	900	S811V42N3D
1246	-	-	-	-	-	-	-	-	-	-	-
1471	-	-	-	-	-	-	-	-	-	-	S811V50N3D
-		-	-	-	-	-	-	-	-	-	S811V65N3D

Notes

(1) 15 sec. start, 300% inrush, $40^{\circ} \mathrm{C}, 1$ start every 15 minutes. If these start parameters are exceeded, please refer to 290 mm V-Frame, 865 A inside-the-delta starter.
(2) U-Frame 500A unit does not have IEC certification.
(3) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Inside-the-Delta Standard Duty-25 Second Ramp, 4 Starts per Hour, 300% Current Limit at $40^{\circ} \mathrm{C}$ Ambient

Max. Continuous Motor Line Current	Three-Phase Motor kW Rating (50 Hz) hp Rating (60 Hz)											
	230V	380-400V	440V	$\begin{aligned} & \text { 200V } \\ & \text { 1.0SF } \end{aligned}$		$\begin{aligned} & \text { 230V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 575V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
58	9	15	18.5	15	10	15	15	40	30	50	40	S811N37N3D
108	15	30	33	30	25	30	30	60	60	100	75	S811N66N3D
Frame Size R												
164	25	45	55	50	40	50	50	125	100	125	125	S811R10N3D
206	33	63	63	60	50	60	50	125	125	150	150	S811R13N3D
Frame Size T												
257	45	80	90	75	60	75	60	150	150	250	200	S811T18N3D
365	63	110	132	100	100	125	100	250	250	300	250	S811T24N3D
477	80	147	160	125	125	150	125	300	300	400	400	S811T30N3D
Frame Size U												
554	90	160	185	150	125	200	150	400	300	450	400	S811U36N3D
646	110	200	220	200	150	250	200	500	400	550	450	S811U42N3D
796	140	250	280	250	200	250	250	550	500	700	600	S811U50N3D ${ }^{(1) 2}$
Frame Size V												
554	90	160	185	150	125	200	150	400	300	450	400	S811V36N3D
646	110	200	220	200	150	250	200	500	400	550	450	S811V42N3D
796	140	250	280	250	200	250	250	550	500	700	600	S811V50N3D
1055	185	315	375	400	250	300	300	800	700	900	750	S811V65N3D
1176	200	375	445	-	300	400	300	900	800	900	900	S811V72N3D
1358	-	-	-	-	-	-	-	-	-	-	-	S811V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S811V10N3D ${ }^{3}$

Notes

(1) 15 sec. start, 300% inrush, $40^{\circ} \mathrm{C}, 1$ start every 15 minutes. If these start parameters are exceeded, please refer to 290 mm V-Frame, 796 A inside-the-delta starter. (2) U-Frame 500A unit does not have IEC certification.
${ }^{(3)}$ For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Inside-the-Delta Standard Duty-15 Second Ramp, 4 Starts per Hour, 300% Current Limit at $50^{\circ} \mathrm{C}$ Ambient

Max.	Three	se Motor (50 Hz)		hp Rating (60 Hz)								
Motor Line Current	kW Rating (50 Hz)			$\begin{aligned} & 200 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & \text { 575V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
58	9	15	18.5	15	10	15	15	40	30	50	40	S811N37N3D
108	15	30	33	30	25	30	30	60	60	100	75	S811N66N3D

Frame Size R

164	25	45	55	50	40	50	50	125	100	125	125	S811R10N3D
206	33	63	63	60	50	60	60	125	125	150	150	S811R13N3D

Frame Size T

257	45	80	90	75	60	75	75	150	150	250	200	S811T18N3D
365	63	110	132	100	100	125	100	250	250	300	250	S811T24N3D
477	80	147	160	125	125	150	125	300	300	400	400	S811T30N3D

Frame Size U

554	90	160	185	150	125	200	150	400	300	450	400	S811U36N3D
646	110	200	220	200	150	250	200	450	400	550	450	S811U42N3D
796	140	250	280	250	200	250	250	550	450	700	600	S811U50N3D ${ }^{1}$)

Frame Size V

554	90	160	185	150	125	200	150	400	300	450	400	S811V36N3D
646	110	200	220	200	150	250	200	450	400	550	450	S811V42N3D
796	140	250	280	250	200	250	250	550	450	700	600	S811V50N3D
1055	185	315	375	400	250	300	300	750	700	900	750	S811V65N3D
1176	200	375	445	-	-	-	-	-	-	-	-	S811V72N3D
1358	257	450	500	-	-	-	-	-	-	-	-	S811V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S811V10N3D ${ }^{2}$)

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Inside-the-Delta Standard Duty-50 Second Ramp, 2 Starts per Hour, 300% Current Limit at $50^{\circ} \mathrm{C}$ Ambient

Three-Phase Motor

Max	kW Rating (50 Hz)			hp Rating (60 Hz)								
Continuous Motor Line Current	230V	380-400V	440V	$\begin{aligned} & \text { 200V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 575 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
36	5.5	10	11	7-1/2	7-1/2	7-1/2	7-1/2	25	15	25	25	S811N37N3D
73	11	18.5	22	15	15	25	15	50	40	60	50	S811N66N3D
Frame Size R												
103	15	30	33	25	25	30	25	60	60	75	75	S811R10N3D
138	22	40	45	40	30	50	40	100	75	125	100	S811R13N3D
Frame Size T												
199	33	59	63	50	50	60	50	125	125	150	150	S811T18N3D
257	45	80	90	75	60	75	75	150	150	250	200	S811T24N3D
324	55	100	110	100	75	100	100	250	200	300	250	S811T30N3D
Frame Size U												
485	80	150	160	125	125	150	125	300	300	400	400	S811U36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S811U42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S811U50N3D ${ }^{1}$
Frame Size V												
485	80	150	160	125	125	150	125	300	300	400	400	S811V36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S811V42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S811V50N3D
727	129	220	257	250	200	250	250	550	500	700	550	S811V65N3D
816	147	257	295	250	250	300	250	600	550	750	700	S811V72N3D
1021	180	315	375	300	250	300	300	750	600	900	750	S811V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S811V10N3D ${ }^{(2)}$

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Inside-the-Delta Standard Duty-15 Second Ramp, 4 Starts per Hour, 450% Current Limit at $40^{\circ} \mathrm{C}$ Ambient

Max. Continuous Motor Line Current	Three-Phase Motor											
	kW Rating (50 Hz)			hp Rating (60 Hz)								
	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 575 \mathrm{~V} \\ & 1.0 \mathrm{SF} \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
47	7.5	12.5	15	10	10	15	10	30	25	40	30	S811N37N3D
83	12.5	22	25	25	15	25	25	50	50	60	60	S811N66N3D
Frame Size R												
126	18.5	37	40	30	30	40	30	75	60	100	100	S811R10N3D
162	25	45	55	50	40	50	50	100	100	125	125	S811R13N3D
Frame Size T												
266	45	80	90	75	60	100	75	150	150	250	200	S811T18N3D
379	63	110	132	100	100	125	100	250	250	300	250	S811T24N3D
485	80	150	160	125	125	150	125	300	300	400	400	S811T30N3D
Frame Size U												
580	100	185	200	150	150	200	150	400	300	550	450	S811U36N3D
695	110	200	250	200	150	250	200	450	400	600	550	S811U42N3D
798	140	250	280	250	200	250	250	550	450	700	600	S811U50N3D ${ }^{(1)}$
Frame Size V												
580	100	185	200	150	150	200	150	400	300	550	450	S811V36N3D
695	110	200	250	200	150	250	200	450	400	600	550	S811V42N3D
798	140	250	280	250	200	250	250	550	450	700	600	S811V50N3D
908	160	280	335	250	250	300	250	700	550	750	700	S811V65N3D
1021	-	-	-	-	-	-	-	-	-	-	-	S811V72N3D
1125	-	-	-	-	-	-	-	-	-	-	-	S811V85N3D

Note

(1) U-Frame 500A unit does not have IEC certification.

Inside-the-Delta Standard Duty-30 Second Ramp, 4 Starts per Hour, 450% Current Limit at $40^{\circ} \mathrm{C}$ Ambient

Max. Continuous Motor Line Current	Three-Phase Motor											
	kW Rating (50 Hz)			hp Rating (60 Hz)								
	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 460V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 575 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
36	5.5	10	12.5	7-1/2	7-1/2	7-1/2	7-1/2	25	15	25	25	S811N37N3D
69	11	18.5	22	15	15	15	15	50	40	50	50	S811N66N3D
Frame Size R												
96	15	25	30	25	25	30	25	60	50	75	60	S811R10N3D
130	22	37	45	30	30	40	30	75	75	100	100	S811R13N3D
Frame Size T												
257	45	80	90	75	60	75	75	150	150	250	200	S811T18N3D
365	63	110	132	100	100	125	100	250	250	300	250	S811T24N3D
448	80	140	160	125	125	150	125	300	250	400	300	S811T30N3D
Frame Size U												
503	90	160	185	150	125	150	150	300	300	450	400	S811U36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S811U42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S811U50N3D ${ }^{\text {(1) }}$
Frame Size V												
503	90	160	185	150	125	150	150	300	300	450	400	S811V36N3D
580	100	180	200	150	150	200	150	400	300	550	450	S811V42N3D
646	110	200	220	200	150	250	200	450	400	550	450	S811V50N3D
727	129	220	257	250	200	250	250	550	450	700	550	S811V65N3D
796	-	-	-	-	-	-	-	-	-	-	-	S811V72N3D
865	-	-	-	-	-	-	-	-	-	-	-	S811V85N3D

Note
(1) U-Frame 500A unit does not have IEC certification.

Inside-the-Delta Severe Duty Ratings

Severe duty ratings are defined as any combination of parameters that exceed the standard duty ratings where the ramp time is over 30 seconds, the number of starts per hour exceeds 4, or the current limit set is over 300%.

Inside-the-Delta Severe Duty

Example: 35 -second ramp,
5 starts per hour 350\%
current limit at $40^{\circ} \mathrm{C}$ ambient.

Max. Continuous Motor Line Current	Three-Phase Motor											
	kW Rating (50 Hz)			hp Rating (60 Hz)								
	230V	380-400V	440V	$\begin{aligned} & 200 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 230 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & 460 \mathrm{~V} \\ & \text { 1.0SF } \end{aligned}$	1.15SF	$\begin{aligned} & \text { 575V } \\ & \text { 1.0SF } \end{aligned}$	1.15SF	Catalog Number
Frame Size N												
39	5.5	10	11	7-1/2	7-1/2	10	7-1/2	25	15	30	25	S811N37N3D
73	11	18.5	22	15	15	25	15	50	40	60	50	S811N66N3D
Frame Size R												
111	15	30	33	25	25	30	25	75	60	75	75	S811R10N3D
138	22	40	45	40	30	50	40	100	75	120	100	S811R13N3D
Frame Size T												
199	33	59	63	50	50	60	50	125	125	150	150	S811T18N3D
257	45	80	90	75	60	75	75	150	150	250	200	S811T24N3D
324	55	100	110	100	75	100	100	250	200	300	250	S811T30N3D

Frame Size U

415	75	110	147	125	100	125	125	300	250	300	300	S811U36N3D
526	90	160	185	150	120	150	150	400	300	450	400	S811U42N3D
623	110	185	220	200	150	250	200	450	400	550	450	S811U50N3D ${ }^{1}$.

Frame Size V

415	75	110	147	125	100	125	125	300	250	300	300	S811V36N3D
526	90	160	185	150	120	150	150	400	300	450	400	S811V42N3D
623	110	185	220	200	150	250	200	450	400	550	450	S811V50N3D
727	129	220	257	250	200	250	250	550	450	700	550	S811V65N3D
816	147	257	295	250	250	300	250	600	550	750	700	S811V72N3D
908	160	280	335	250	250	300	250	700	550	750	700	S811V85N3D
-	-	-	-	-	-	-	-	-	-	-	-	S811V10N3D ${ }^{2}$)

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information on optimum performance of the 1000A Frame Size V S811, see Appendix E of MN03902002E.

Accessories

Lug Kits

The T and U frame (200 mm) and V frame (290 mm) each have different lug options based on your wiring needs.

The T and U frame (200 mm) and V frame (290 mm) soft starters each have different lug options based on your wiring needs. Each lug kit contains three lugs that can be mounted on either the load or line side.

Power Supplies

24 Vdc power supply that can be used with the S811 SSRV or as a stand-alone device.

Power Supplies

Description	Catalog Number
$85-264$ Vac input	PSG240E
24 Vdc output	PSG240F
$360-575$ Vac input	
24 Vdc output	

Lug Cover Kits

Replacement covers for the T- and V-Frame are available in case of damage to the existing covers.

Lug Cover Kits

Description	Catalog Number
Lug cover T. U-Frame	EML27
Lug cover V-Frame	EML34

IP20 Kits

IP20 Kits

Description	Catalog Number
N-Frame kit	SS-IP20-N
R-Frame kit	SS-IP20-R
T- and U-Frame kit	SS-IP20-TU
V-Frame kit	SS-IP20-V

Surge Suppressors

The surge suppressor can mount on either the line or load side of the soft starter. It is designed to clip the line voltage (or load side induced voltage).

Surge Suppressor Surge Suppressors

Description	Catalog Number
600 V MOV for 200 mm and 290 mm units	EMS39
690 V MOV for 200 mm and 290 mm units (2)	EMS41

[^4]
Mounting Plates

The mounting plates are designed to help make it easy to install or retrofit the soft starter into enclosures and MCCs. The soft starter can be mounted onto the plate prior to installation. The mounting plate is designed with tear drop mounting holes for easier installation.

Mounting Plates

Description	Catalog Number
Mounting Plate N-Frame	EMM13N
Mounting Plate R-Frame	EMM13R
Mounting Plate T-, U-Frame	EMM13T
Mounting Plate V-Frame	EMM13V

Vibration Plates

The vibration plates allow the soft starter to be applied in high shock and vibration applications. The vibration plate allows vibration up to 5 g and shock in up to 40 g . The soft starter is mounted onto the vibration plate prior to installation in the panel.

Vibration Plates

Description	Catalog Number
Vibration plate N-Frame	EMM14N
Vibration plate R-Frame	EMM14R
Vibration plate T-, U-Frame	EMM14T
Vibration plate V-Frame	EMM14V

Adapter Plates

The adapter plate allows customers to retrofit a V-Frame 290 mm soft starter with the U-Frame 200 mm soft starter.

Adapter Plates	
Description	Catalog Number
Adapter plates ${ }^{(2)}$	EMM13U

Control Wire Connector	
Control Wire Connector	
	Catalog
Description	Number
12 -pin, 5 mm pitch connector for control wiring	EMA75

Control Interface Module

The Control Interface Module (CIM) is available as a replacement part in two versions.

CIM

Description	Catalog Number
Blank cover (filler)	EMA68
CIM for standard unit	EMA71
CIM for pump control option	EMA72
Panel mounting kit	
3 ft cable	EMA69A
5 ft cable	EMA69B
8 ft cable	EMA69C
10 ft cable	EMA69D

Options

Pump Control

For pump control option, change the 8th digit in the catalog number to \mathbf{P}.

Extended Ramp

For a longer ramp acceleration time of 0.5-360 seconds, change the last digit in the catalog number from Page V6-T1-93 to \mathbf{L}.

Pump Control Option

Frame Size	Max. Current	Catalog Number
N	37	S811N37P3S
	66	S811N66P3S
R	105	S811R10P3S
	135	S811R13P3S
T	180	S811T18P3S
	240	S811T24P3S
	304	S811T30P3S
U	360	S811U36P3S
	420	S811U42P3S
	500	S811U50P3S ${ }^{(1)}$
V	360	S811V36P3S
	420	S811V42P3S
	500	S811V50P3S
	650	S811V65P3S
	720	S811V72P3S
	850	S811V85P3S
	1000	S811V10P3S

Extended Ramp Option

Frame Size	Max. Current	Catalog Number
N	37	S811N37N3L
	66	S811N66N3L
R	105	S811R10N3L
	135	S811R13N3L
T	180	S811T18N3L
	240	S811T24N3L
	304	S811T30N3L
U	360	S811U36N3L
	420	S811U42N3L
	500	S811U50N3L ${ }^{(1)}$
V	360	S811V36N3L
	420	S811V42N3L
	500	S811V50N3L
	650	S811V65N3L
	720	S811V72N3L
	850	S811V85N3L
	1000	S811V10N3L

Extended Ramp and 690V Option

690V ratings are available on the T - and V -Frames by changing the 8th digit in the 0.0 to \mathbf{V}.

690V Option

Frame Size	Max. Current	Catalog Number
T	180	S811T18V3L
	240	S811T24V3L
304	S811T30V3L	
V	360	S811V36V3L
420	S811V42V3L	
	500	S811V50V3L
	650	S811V65V3L
720	S811V72V3L	
	850	S811V85V3L

Cooling Fan Kit

The EMM18 cooling fan kit mounts on either side of any frame size S801 Soft Starter to provide additional printed circuit board cooling in high ambient operating temperatures.

Cooling Fan Kit

Description	Catalog Number
Fan Kit	EMM18

Notes

(1) U-Frame 500A unit does not have IEC certification.
(2) For more information, see Pub 51719 .

Solid-State Starters

Technical Data and Specifications

Soft Starters-S811

Description	S811 Soft Starter (Partial Catalog Number)		S811R10	S811R13
	S811N37	S811N66		
Max. current capacity	37	66	105	135
FLA range	11-37	20-66	32-105	42-135
General Information				
Bypass mechanical lifespan	10M	10M	10M	10M
Insulating voltage Ui	660 V	660 V	660 V	660 V
Ramp time range	$\begin{aligned} & \text { 0.5-180 seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	0.5-180 seconds (0.5-360 seconds extended ramp)	$\begin{aligned} & \text { 0.5-180 seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	$\begin{aligned} & 0.5-180 \text { seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$
Resistance to vibration	3 g	3 g	3 g	3 g
Resistance to shock	15g	15g	15g	15 g
Electrical Information				
Operating voltage	200-600V	200-600V	200-600V	200-600V
Operating frequency	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5, 10, 20 and 30	5,10,20 and 30	5,10,20 and 30	5, 10, 20 and 30
Cabling Capacity (IEC 947)				
Number of conductors	1	1	1	1
Wire sizes	14-2	14-2	14-4/0	14-4/0
Type of connectors	Box lug	Box lug	Box lug	Box lug
Control Wiring (12-Pin)				
Wire sizes in AWG	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)			
Torque requirements in Ib-in	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31
Control Power Requirements				
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.0	1.0	1.0	1.0
Inrush current amps	10	10	10	10
Ripple	1\%	1\%	1\%	1\%
Relays (1) Class A and C				
Voltage AC-maximum	240	240	240	240
Voltage DC-maximum	120	120	120	120
Amps-maximum	3	3	3	3
Environment				
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$			
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$			
Humidity	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing
Operating position	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000 V	6000 V

Soft Starters-S811, continued

Description	S811 Soft Starter (Partial Catalog Number)		S811T30	S811U36
	S811T18	S811T24		
Max. current capacity	180	240	304	360
FLA range	56-180	75-240	95-304	112-360
General Information				
Bypass mechanical lifespan	10M	10M	10M	10M
Insulating voltage Ui	660 V	660 V	660 V	660 V
Ramp time range	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)	$\begin{aligned} & \text { 0.5-180 seconds } \\ & \text { (0.5-360 seconds extended ramp) } \end{aligned}$	0.5-180 seconds (0.5-360 seconds extended ramp)
Resistance to vibration	3 g	3 g	3 g	3 g
Resistance to shock	15g	15g	15 g	15 g
Electrical Information				
Operating voltage	200-600V	200-600V	200-600V	200-600V
Operating frequency	${ }^{47-63 ~ H z}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5,10,20 and 30	5, 10, 20 and 30	5, 10, 20 and 30	5,10,20 and 30
Cabling Capacity (IEC 947)				
Number of conductors	1 or 2	1 or 2	1 or 2	1 or 2
Wire sizes	4 AWG to 500 kcmil			
Type of connectors	Add-on lug kit	Add-on lug kit	Add-on lug kit	Add-on lug kit
Control Wiring (12-Pin)				
Wire sizes in AWG	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)			
Torque requirements in lb -in	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31
Control Power Requirements				
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.0	1.0	1.0	1.0
Inrush current amps	10	10	10	10
Ripple	1\%	1\%	1\%	1\%
Relays (1) Class A and C				
Voltage AC-maximum	240	240	240	240
Voltage DC-maximum	120	120	120	120
Amps-maximum	3	3	3	3

Environment				
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$			
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$	<2000m-consult factory for operation $>2000 \mathrm{~m}$	<2000m—consult factory for operation $>2000 \mathrm{~m}$	<2000m—consult factory for operation $>2000 \mathrm{~m}$
Humidity	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing
Operating position	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000 V	6000 V

Solid-State Starters

Soft Starters-S811, continued

Description	S811 Soft Starter (Partial Catalog Number)		S811V36	S811V42
	S811U42	S811U50 ${ }^{(1)}$		
Max. current capacity	420	500	360	420
FLA range	131-420	156-500	112-360	131-420
General Information				
Bypass mechanical lifespan	10M	10M	10M	10M
Insulating voltage Ui	660 V	660 V	660 V	660 V
Ramp time range	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)	0.5-180 seconds (0.5-360 seconds extended ramp)
Resistance to vibration	3 g	3 g	3 g	3 g
Resistance to shock	15g	15 g	15g	15g
Electrical Information				
Operating voltage	200-600V	200-600V	200-600V	200-600V
Operating frequency	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$	$47-63 \mathrm{~Hz}$
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30
Cabling Capacity (IEC 947)				
Number of conductors	1 or 2	1 or 2	2, 4 or 6	2, 4 or 6
Wire sizes	4 AWG to 500 kcmil			
Type of connectors	Add-on lug kit	Add-on lug kit	Add-on lug kit	Add-on lug kit
Control Wiring (12-Pin)				
Wire sizes in AWG	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)			
Torque requirements in lb -in	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31
Control Power Requirements				
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.0	1.0	1.4	1.4
Inrush current amps	10	10	10	10
Ripple	1\%	1\%	1\%	1\%
Relays (1) Class A and C				
Voltage AC-maximum	240	240	240	240
Voltage DC-maximum	120	120	120	120
Amps-maximum	3	3	3	3
Environment				
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$			
Altitude	<2000m-consult factory for operation >2000m	<2000m—consult factory for operation $>2000 \mathrm{~m}$	<2000m-consult factory for operation $>2000 \mathrm{~m}$	<2000m—consult factory for operation $>2000 \mathrm{~m}$
Humidity	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing	<95\% noncondensing
Operating position	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V	6000 V	6000 V	6000 V

Note
(1) U-Frame 500A unit does not have IEC certification.

Reduced Voltage Motor Starters

Solid-State Starters

Soft Starters-S811, continued

Description	S811 Soft Starter (Partial Catalog Number)				
	S811V50	S811V65	S811V72	S811V85	S811V10 ${ }^{(1)}$
Max. current capacity	500	650	720	850	1000
FLA range	156-500	203-650	225-720	265-580	320-1000
General Information					
Bypass mechanical lifespan	10M	10M	10M	10M	10M
Insulating voltage Ui	660 V				
Ramp time range	0.5-180 seconds (0.5-360 seconds extended ramp)	$0.5-180$ seconds ($0.5-360$ seconds extended ramp)	$0.5-180$ seconds (0.5-360 seconds extended ramp)	$0.5-180$ seconds ($0.5-360$ seconds extended ramp)	$0.5-180$ seconds ($0.5-360$ seconds extended ramp)
Resistance to vibration	3 g	3 g	3 g	3 g	3 g
Resistance to shock	15g	15 g	15g	15 g	15 g
Electrical Information					
Operating voltage	200-600V	200-600V	200-600V	200-600V	200-600V
Operating frequency	$47-63 \mathrm{~Hz}$				
Overload setting	30-100\%	30-100\%	30-100\%	30-100\%	30-100\%
Trip class	5,10, 20 and 30	5, 10, 20 and 30	5,10,20 and 30	5,10,20 and 30	5,10,20 and 30
Cabling Capacity (IEC 947)					
Number of conductors	2,4 or 6	2, 4 or 6	2, 4 or 6	2,4 or 6	2, 4 or 6
Wire sizes	2/0 to 500 kcmil				
Type of connectors	Add-on lug kit				
Control Wiring (12-Pin)					
Wire sizes in AWG	22-14	22-14	22-14	22-14	22-14
Number of conductors (stranded)	2 (or one AWG 12)				
Torque requirements in lb -in	3.5	3.5	3.5	3.5	3.5
Solid, stranded or flexible max. size in mm^{2}	3.31	3.31	3.31	3.31	3.31
Control Power Requirements					
Voltage range ($24 \mathrm{~V} \pm 10 \%$)	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4	21.6-26.4
Steady-state current amps	1.4	1.4	1.4	1.4	1.4
Inrush current amps	10	10	10	10	10
Ripple	1\%	1\%	1\%	1\%	1\%
Relays (1) Class A and C					
Voltage AC-maximum	240	240	240	240	240
Voltage DC-maximum	120	120	120	120	120
Amps-maximum	3	3	3	3	3
Environment					
Temperature-operating	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$	-30 to $50^{\circ} \mathrm{C}$ (no derating) consult factory for operation $>50^{\circ} \mathrm{C}$
Temperature-storage	-50 to $70^{\circ} \mathrm{C}$				
Altitude	<2000m—consult factory for operation $>2000 \mathrm{~m}$	<2000m—consult factory for operation $>2000 \mathrm{~m}$	<2000m-consult factory for operation $>2000 \mathrm{~m}$	<2000m—consult factory for operation $>2000 \mathrm{~m}$	<2000m—consult factory for operation $>2000 \mathrm{~m}$
Humidity	<95\% noncondensing				
Operating position	Any	Any	Any	Any	Any
Pollution degree IEC947-1	3	3	3	3	3
Impulse withstand voltage IEC947-4-1	6000 V				

Note

(1) UR recognized product.

Wiring Diagrams

Line Connected Soft Starter

Inside-the-Delta Connected Soft Starter for a 6-Lead Motor

Inside-the-Delta Connected Soft Starter for a 12-Lead Low Voltage Motor

Inside-the-Delta Connected Soft Starter for a 12-Lead High Voltage Motor

Dimensions

Approximate Dimensions in Inches (mm)
Soft Starters-S811

Partial Catalog Number	W	H	D	Weight in Lbs (kg)
S811N37	2.66 (67.6)	7.38 (187.4)	6.47 (164.4)	5.8 (2.6)
S811N66	2.66 (67.6)	7.38 (187.4)	6.47 (164.4)	5.8 (2.6)
S811R10	4.38 (111.3)	7.92 (201.2)	6.66 (169.2)	10.5 (4.8)
S811R13	4.38 (111.3)	7.92 (201.2)	6.66 (169.2)	10.5 (4.8)
S811T18	7.67 (194.8)	12.71 (322.9)	6.39 (162.4)	48 (21.8) with lugs 41 (18.6) without lugs
S811T24	7.67 (194.8)	12.71 (322.9)	6.39 (162.4)	48 (21.8) with lugs 41 (18.6) without lugs
S811T30	7.67 (194.8)	12.71 (322.9)	6.39 (162.4)	48 (21.8) with lugs 41 (18.6) without lugs
S811U36	7.73 (196.3)	12.72 (323.1)	7.08 (179.9)	48 (21.8) with lugs 41 (18.6) without lugs
S811U42	7.73 (196.3)	12.72 (323.1)	7.08 (179.9)	48 (21.8) with lugs 41 (18.6) without lugs
S811U50	7.73 (196.3)	12.72 (323.1)	7.08 (179.9)	48 (21.8) with lugs 41 (18.6) without lugs
S811V36	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs
S811V42	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs
S811V50	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs
S811V65	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs
S811V72	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs
S811V85	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs
S811V10	11.05 (280.6)	16.57 (420.8)	7.35 (186.6)	103 (46.8) with lugs 91 (41.4) without lugs

Also refer to dimension drawings below and on Pages V6-T1-115 and V6-T1-116.

N-Frame (65 mm) S811

R-Frame (110 mm) S811

T-Frame (200 mm) S811

Approximate Dimensions in Inches (mm)

U-Frame (200 mm) S811

V-Frame (290 mm) S811

Adjustable Frequency Drives

CPX9000

2.1 NFX9000 Drives

Product Description . V6-T2-2
Product Selection
V6-T2-3

2.2 M-Max Series Adjustable Frequency AC Drives

Product Description
V6-T2-8
Product Selection

2.3 SVX9000 Drives

Product Overview V6-T2-14
SVX9000 Open Drives
Product Description V6-T2-17
Product Selection V6-T2-19
SVX9000 Enclosed Drives
Product Description V6-T2-52
Product Selection V6-T2-55
SVX9000 VFD Pump Panels
Product Description V6-T2-78
Product Selection V6-T2-80
2.4 SPX9000 Drives
Product Description V6-T2-98
Product Selection V6-T2-101
2.5 H-Max Series Drives
Product Overview V6-T2-138
H-Max Drives
Product Description V6-T2-139
Product Selection V6-T2-141
H-Max IntelliPass and IntelliDisconnect DrivesV6-T2-149
Product Selection V6-T2-151
2.6 CFX9000 DrivesV6-T2-159
Product Selection V6-T2-168
2.7 CPX9000 Drives
Product DescriptionProduct SelectionV6-T2-200
2.8 LCX9000 Drives
Product Description V6-T2-222
Product Selection V6-T2-224
2.9 SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products
Product Description V6-T2-239
Product Selection V6-T2-243

Product Description

NFX9000 Adjustable Frequency AC Drives from Eaton's electrical sector are designed to provide adjustable speed control of three-phase motors. These microprocessor-based drives have standard features that can be programmed to tailor the drive's performance to suit a wide variety of application requirements.
The NFX9000 volts-per-hertz product line utilizes a 32-bit microprocessor and insulated gate bipolar transistors (IGBTs) which provide quiet motor operation, high motor efficiency and smooth low speed performance. The size and simplicity of the NFX9000 make it ideal for hassle free installation where size is a primary concern.

Models rated at 240 volts, single- or three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from $1 / 4$ to 2 hp . Models rated at 115 volts, single-phase, $50 / 60 \mathrm{~Hz}$ are available in the $1 / 4$ to $1 / 2 \mathrm{hp}$ size range.

The standard drive includes a digital display, operating and programming keys on the keypad.
The display provides drive monitoring as well as adjustment and diagnostic information. The keys are utilized for digital adjustment and programming of the drive as well as for operator control. Separate terminal blocks for control and power wiring are provided for customer connections. The drives feature RS-485 serial communications.

Contents

Description	Page
NFX9000 Drives	
\quad Catalog Number Selection	V6-T2-3
\quad Product Selection	V6-T2-3
Technical Data and Specifications	V6-T2-4
Wiring Diagrams .	V6-T2-7

Features and Benefits

NFX9000 Adjustable Frequency AC Drives

Feature	Customer Benefit
V/Hz control	Provides 150\% starting torque and advanced low speed control
Clearly laid out and easy to understand keypad with four-character LED display, four status indicating LEDs, speed potentiometer, and five function keys	Most informative operator's interface in this class of VFD, provided as standard. All parameters, diagnostic information and metering values are displayed with a bright four-character LED display
One analog input, four programmable, intelligent digital inputs, one programmable relay	Provide enhanced application flexibility
Serial communication port (RS-485)	Direct connection to serial communications networks
Single-phase or three-phase input capability on 115/240 Vac rated units	Operate three-phase motor with single-phase supply

Standards and Certifications

- NEMA, IEEE, NEC: Design Standards
- UL Listed
- cUL Listed
- CE Marked

Catalog Number Selection

NFX9000 Drives

Product Selection

NFX9000	NFX9000 Basic Controller IP20				
-0.0.	Description hp	Volts ${ }^{\text {2 }}$	Input Ampere Single-Three- Phase Rating	Continuous Output Ampere Rating	Catalog Number
-9®)	1/4	90-130	6.0/-	1.6	NFXF25A0-1
	1/2		9.0/-	2.5	NFXF50A0-1
[mp	1/4	200-240	4.9/-	1.6	NFXF25AO-2
\triangle wannma	1/2		6.5/-	2.5	NFXF50AO-2
	1		9.7/-	4.2	NFX001A0-2
-ッ."	2		-/9.0	7	NFX002AO-2

Notes
(1) Horsepower ratings are based on the use of a 240 V or 480 V NEMA B, four- or six-pole squirrel cage induction motor and are for reference only. Units are to be selected such that the motor current is less than or equal to the NFX9000 rated continuous output current.
(2) For $208 \mathrm{~V}, 380 \mathrm{~V}$ or 415 V applications, select the unit such that the motor current is less than or equal to the NFX9000 rated continuous output current.

Adjustable Frequency Drives
NFX9000 Drives

Technical Data and Specifications

2 General Specifications

NFX9000 Drives

Description	Specification
Output Ratings	
Horsepower	$\begin{aligned} & \text { 90V-132V: 1/4-1/2 hp } \\ & \text { 200-240V: 1/2-2 hp } \end{aligned}$
Frequency range	$0.1-400 \mathrm{~Hz}$
Overload rating	150\% for 60 seconds
Frequency resolution	Digital: 0.1 Hz
Frequency accuracy	Digital: $\pm 0.01 \%$ of max. frequency Analog: $\pm 0.2 \%$ of max. frequency
Undervoltage carryover limit	0.3 to 25 seconds
Motor Performance	
Motor control	V/Hz
Constant torque	Standard
Speed regulation	0.5\% of base speed
Input Power	
Voltage at $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$	100V-120V: $-10 \%+10 \% /$ single-phase 200V-240V: $-10 \%+5 \% /$ single-phase 200V-240V: $-10 \%+5 \% /$ three-phase
Displacement power factor	Better than 0.95
Efficiency	Typically greater than 95\%
Design Type	
Microprocessor	32-bit
Converter type	Diode
Inverter type	Insulated gate bipolar transistor
Waveform	PWM Volts/Hertz
Environment	
Operating temperature	-10° to $40^{\circ} \mathrm{C}$
Humidity	20 to 90\% non-condensing
Maximum elevation	1000 meters (3300 ft)
Enclosure	
Standard	Protected chassis (IP20)
Protective Features	
Ground fault	Standard
Overload protection	Standard
Overcurrent	Standard
Overvoltage	Standard
Undervoltage	Standard
Overtemperature	Standard
Overload limit	Standard

Set Up Adjustments, Performance Features,
Operator Control and External Interface
Keypad

Description	Specification
Alphanumeric display	Standard, 1×4 character
Digital indications	RUN/STOP and FORWARD/REVERSE
Diagnostics	Last three trips with cause
LED status indicators	Four (RUN/STOP and FORWARD/REVERSE)
Operator functions	RUN/STOP, speed control (digital or potentiometer), RESET, MODE keys and ENTER

I/O Terminal Block

Description	Specification
Analog inputs	One input: 0-10 Vdc, 4-20 mA Potentiometer: 1 kohm to 2 kohm Analog voltage: Nominal 10 Vdc (10 kohm input impedance) $)$ Analog current: Nominal 4-20 mA (250 ohm)
Digital inputs	Four programmable inputs
Digital outputs	One Form A relay contact

Programmable Parameters

Description	Specification
Out of the box	Factory settings loaded for quick start-up
Accel. and decel.	2 separately adjustable Linear or S Curve times: 0.1-600 seconds
DC injection braking	©
External fault	Terminal input
Jog	Terminal input
Fault reset	STOP/RESET or terminal input
/O	NO-NC selectable
Jump frequencies	Three (with adjustable width)
Parameter security	Programmable software lock
Preset speeds	Two preset speeds
Reversing	Keypad or terminal
Speed setting	Keypad, terminal or pot
RUN/STOP control	Keypad or terminal
Stop modes	Decel, coast or DC injection

Reliability

Description	Specification
Pretested components	Standard
Surface mount technology	Standard (PCBs)
Computerized testing	Standard
Final test with full load	Standard
Eaton's Engineering	National network of AF drive specialists
Systems and Service	

Note

(1) The motor can be electronically stopped in the shortest possible time, without using an optical external braking resistor.

Watts Loss			
Catalog Number	Horsepower	Volts	Watts Loss $\mathbf{9} \mathbf{~ k H z}$
NFXF25AO-1	$1 / 4$	115 Vac	20 W
NFXF50AO-1	$1 / 2$		20 W
NFXF25AO-2	$1 / 4$	230 Vac	20 W
NFXF50AO-2	$1 / 2$		20 W
NFX001A0-2	1		38 W
NFX002AO-2	2		75 W

Wiring Diagrams

Control Terminal Wiring (Factory Settings)

Wire Gauge: 22-24 AWG
Torque: $\quad 4 \mathrm{Kgf-cm}$

Adjustable Frequency Drives

NFX9000 Drives

Basic Wiring Diagram

Note: Do not plug a modem or telephone line to the RS-485 communication port, permanent damage may result. Terminals 1 and 2 are the power sources for the optional copy keypad and should not be used while using RS-485 communication.

- Use power terminals R/L1 and S/L2 for single-phase connection to models NFXF25A0-1, NFXF50A0-1, NFXF25A0-2, NFXF50A0-2 or NFX001A0-2.
- Use power terminals R/L1, S/L2 and T/L3 for three-phase connection to models NFXF25A0-2, NFXF50A0-2, NFX001A0-2 or NFX002A0-2.
- Single-phase power must not be used for model NFX002A0-2.

Dimensions

Approximate Dimensions in Inches (mm)

1/4 to 2 hp Drive

Adjustable Frequency Drives
M-Max Series Adjustable Frequency AC Drives

M-Max Series Drives for Machinery Applications

Contents

Description	Page
M-Max Series Adjustable Frequency AC Drive	
Catalog Number Selection	V6-T2-9
Product Selection	V6-T2-9
Accessories	V6-T2-10
Technical Data and Specifications	V6-T2-11
Dimensions	V6-T2-13

Features

- Ease of use—preset application macros, startup wizard, diagnostic capabilities
- Compact, space-saving design
- Rugged and reliable150\% for one minute, 50C rated, conformal coated boards
- DIN rail and screw mountable
- Side-by-side installation
- Industry leading efficiency delivers energy savings to the customer
- Integrated EMC filters make the unit suitable for commercial and industrial networks
- Available in the enclosure class IP20 as standard, options for IP21 and NEMA ${ }^{\circledR} 1$
- Brake chopper as standard in three-phase, applications of frames 2 (FS2) and larger
- Temperature-controlled fan
- RS-485/Modbus ${ }^{\circledR}$ as standard
- PID controller as standard
- Several fieldbus options

Standards and Certifications

Product

- Complies with EN61800-3 (2004)

Safety ${ }^{\text {(1) }}$

- 61800-5-1
- EN60204-1
- CE
- UL
- cUL
- IEC
- RoHS compliant

EMC (At Default Settings)

- EMC Category C2, C3, and C4 (Level H): With an internal RFI filter option

Catalog Number Selection

Product Selection

M-Max	M-Max Basic Controller					
	hp ${ }^{(1)}$	Volts ${ }^{(2)}$	100\% Continuous Current $I_{N}(A)$	Nominal Input Current (A)	Frame Size	Catalog Number
	1/4	100-120V single-phase in 230V three-phase out	1.7	9.2	FS2	MMX11AA1D7N0-0 ${ }^{(3)}$
	1/2		2.4	11.6		MMX11AA2D4N0-0 ${ }^{3}$
	$3 / 4$		2.8	12.4		MMX11AA2D8N0-0 ${ }^{3}$
	1		3.7	15		MMX11AA3D7N0-0 ${ }^{(3)}$
	1-1/2		4.8	16.5	FS3	MMX11AA4D8N0-0 ${ }^{3}$
	1/4	200-240V single-phase in 230V three-phase out	1.7	4.2	FS1	MMX12AA1D7FO-0
	1/2		2.4	5.7		MMX12AA2D4FO-0
	3/4		2.8	6.6		MMX12AA2D8FO-0
	1		3.7	8.3	FS2	MMX12AA3D7F0-0
	1-1/2		4.8	11.2		MMX12AA4D8F0-0
	2		7	14.1		MMX12AA7DOFO-0
	3		9.6	15.8	FS3	MMX12AA9D6F0-0
	1/4	200-240V three-phase in 230 V three-phase out	1.7	2.7	FS1	MMX32AA1D7N0-0 ${ }^{\text {3 }}$
	1/2		2.4	3.5		MMX32AA2D4N0-0 ${ }^{3}$
	3/4		2.8	3.8		MMX32AA2D8N0-0 ${ }^{(3)}$
	1		3.7	4.3	FS2	MMX32AA3D7N0-0 ${ }^{3}$
	1-1/2		4.8	6.8		MMX32AA4D8N0-0 ${ }^{3}$
	2		7	8.4		MMX32AA7DON0-0 ${ }^{3}$
	3		11	13.4	FS3	MMX32AA011N0-0 ${ }^{3}$
	1/2	380-480V three-phase in 460 V three-phase out	1.3	2.2	FS1	MMX34AA1D3F0-0
	3/4		1.9	2.8		MMX34AA1D9FO-0
	1		2.4	3.2		MMX34AA2D4FO-0
	1-1/2		3.3	4	FS2	MMX34AA3D3F0-0
	2		4.3	5.6		MMX34AA4D3F0-0
	3		5.6	7.3		MMX34AA5D6F0-0
	4		7.6	9.6	FS3	MMX34AA7D6F0-0
	5		9	11.5		MMX34AA9D0FO-0
	7-1/2		12	14.9		MMX34AA012F0-0
	10		14	18.7		MMX34AA014FO-0
	1	575 V three-phase in 575 V three-phase out	1.7	2.0	FS3	MMX35AA1D7N0-0 3 ${ }^{3}$
	2		2.7	3.6		MMX35AA2D7N0-0 3 ${ }^{3}$
	3		3.9	5.0		MMX35AA3D9N0-0 ${ }^{3}$
	5		6.1	7.6		MMX35AA6D1N0-0 ${ }^{3}$
	7-1/2		9.0	10.4		MMX35AA9DONO-0 ${ }^{3}$

Notes

(1) Horsepower ratings are based on the use of a $240 \mathrm{~V}, 460 \mathrm{~V}$, and 575 V NEMA B, four- or six-pole squirrel cage induction motor and are for reference only. Units are to be selected such that the motor current is less than or equal to the MMX rated continuous output current.
(2) For $208 \mathrm{~V}, 380 \mathrm{~V}$, or 415 V applications, select the unit such that the motor current is less than or equal to the MMX rated continuous output current.
(3) For MMX11_, MMX32_, and MMX35_, there are no options for units with filters.

Adjustable Frequency Drives
M-Max Series Adjustable Frequency AC Drives

Accessories

M-Max Copy/Paste Module
Description Catalog Number

Module is plugged onto the front of the drive to provide: upload/download of all parameters, MMX-COM-PC direct link to a PC via USB interface for parameter assignment via MaxConnect software, and copying of parameters for a series of devices or when exchanging devices. No PC required

Kits ${ }^{(1)}$

Description	Catalog Number
Type 1 and IP21 kit for frame 1	MMX-IP21-FS1
Type 1 and IP21 kit for frame 2	MMX-IP21-FS2
Type 1 and IP21 kit for frame 3	MMX-IP21-FS3

Optional Communication Modules

Description	Catalog Number
Communication adapter kit	MMX-NET-XA
CANopen network card	XMX-NET-CO-A
PROFIBUS DP network card with serial connection	XMX-NET-PS-A
PROFIBUS DP network card with Sub-D connection	XMX-NET-PD-A
DeviceNet network card	XMX-NET-DN-A

Line Reactors ${ }^{(2)}$

Description	Catalog Number
$\mathbf{3 \%}$ Line Reactor, Single-Phase	
$1 / 2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-8091
$1 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-0120
$2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-0180
$3 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-0250
$\mathbf{3 \%}$ Line Reactor, Three-Phase	
$1 / 2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-2091
$1 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-4091
$2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-8091
$3 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-0120
$1 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-2091
$2 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-4091
$3 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-4091
$5 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-8091
$7-1 / 2 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-0180
$10 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-0250
$1 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-2091
$2 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-8091
$3 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-8091
$5 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-4091
$7-1 / 2 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-0180
$10 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-0180

Notes

(1) Type 1 kit provides conduit entry plate.
(2) Additional input and output reactors are available. Consult Eaton representative for a complete listing.

M-Max Series Adjustable Frequency AC Drives

Technical Data and Specifications

Ratings	
M-Max Basic Controller IP20 Standard Ratings	
Description	Specification
Protections	
Overcurrent protection	Trip limit $4.0 \times \mathrm{I}_{H}$ instantaneously
Overvoltage protection	115/230V series: 437 Vdc ; 400V series: 874 Vdc ; 575 V series: 1048 Vdc trip level
Undervoltage protection	115/230V series: 183 Vdc ; 400V series: 333 Vdc ; 575 V series: 460 Vdc trip level
Ground fault protection	Ground fault is tested before every start. In case of ground fault in motor or motor cable, only the frequency converter is protected
Overtemperature protection	Yes
Motor overload protection	
Motor stall protection	Yes
Motor underload protection Yes	
Programmable Parameters	
Description	
Application macros: basic, pump, fan and high load (hoist)	
Programmable start/stop and reverse signal logic (sinking or sourcing)	
Reference scaling	
Programmable start and stop functions	
DC-brake at start and stop	
Programmable V/Hz curve	
Adjustable switching frequency	
Autorestart function after fault	
Protections and supervisions (all fully programmable; off, warning, fault)	
Current signal input fault	
External fault	
Fieldbus communication	
Eight preset speeds	
Analog input range selection, signal scaling and filtering	
PID controller	
Skip frequencies	

Specifications

M-Max Series Drives	
Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	+10\%/-15\% (575V units: $+15 \% /-15 \%$)
Input frequency ($\mathrm{fin}^{\text {) }}$	50/60 Hz (variation up to 45-66 Hz)
Connection to power	Once per minute or less (typical operation)
Output Ratings	
Output voltage	0 to $V_{\text {in }}{ }^{(1)}$
Continuous output current	Continuous rated current I_{N} at ambient temperature max. $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, overload $1.5 \times \mathrm{I}_{\mathrm{N}}$ max. $1 \mathrm{~min} / 10 \mathrm{~min}$
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Initial output current (I_{H})	Current $2 \times{ }_{1}$ for 2 seconds in every 20 -second period Torque depends on motor

Control Characteristics

Control method	Frequency control (V/Hz) open loop or sensorless vector control
Switching frequency	1.5 to 16 kHz ; default 6 kHz
Frequency reference	Analog input: resolution $0.1 \%(10-$-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel reference: resolution 0.01 Hz
Field weakening point	30 to 320 Hz
Acceleration time	0 to 3000 sec
Deceleration time	0 to 3000 sec
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)

Brake Resistor (Minimum Values) ${ }^{(2)}$

230 V Series	FS2 35 ohms and FS3 26 ohms
400 V Series	FS2 75 ohms and FS3 54 ohms
575 V Series	FS3 103 ohms

Ambient Conditions

Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right)$: Rated loadability I_{N}
Storage temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95\% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $6560 \mathrm{ft}(2000 \mathrm{~m})$
Vibration	EN 60068-2-6; 3 to 150 Hz , displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 50178, IEC 68-2-27 UPS Drop test (for applicable UPS weights); storage and shipping: max. $15 \mathrm{G}, 11 \mathrm{~ms}$ (in package)
Enclosure class	IP20

Notes

(1) Exception: 115 V single-phase in, 230 V three-phase out.
(2) Only three-phase FS2 and FS3 drives are equipped with brake chopper circuit.

M-Max Series Adjustable Frequency AC Drives

Standards

I/O Specifications

- Digital inputs DI1-DI6 are freely programmable. The user can assign multiple functions to a single input
- Digital, relay, and analog outputs are freely programmable

Includes:

- Six digital inputs
- Two analog inputs
- 4-20 mA
- 0-10V
- One analog output
- One digital output
- Two relay outputs
- RS-485 interface

Reliability

- Pretested components: standard
- Computerized testing: standard
- Final test with full load: standard
- Conformal-coated boards
- $50^{\circ} \mathrm{C}$ rated
- 150% for one minute/ 10 mm
- 200% for two seconds/ 20 sec .
- Eaton Electrical Services and Systems: national network of AF drive specialists

Note

P) Parameter-selectable function.

Dimensions

Approximate Dimensions in Inches (mm)

M-Max Drives

Frame Type	H1	H2	H3	W1	W2	W3	D1	D2	Weight Lbs (kg)
FS1	6.16	5.79	5.40	2.58	1.49	0.17	3.88	0.27	$1.213(0.550)$
	(156.5)	(147.0)	(137.3)	(65.5)	(37.8)	(4.5)	(98.5)	(7.0)	
FS2	7.68	7.20	6.69	3.54	2.46	0.22	4.00	0.27	$1.543(0.699)$
	(195.0)	(183.0)	(170.0)	(90.0)	(62.5)	(5.5)	(101.5)	(7.0)	
FS3	10.33	9.93	9.50	3.94	2.95	0.22	4.27	0.27	$2.183(0.990)$
	(262.5)	(252.3)	(241.3)	(100.0)	(75.0)	(5.5)	(108.5)	(7.0)	

NEMA 1/IP21 M-Max Drives and Communication Adapter Kit

Frame Type	H	W1	W2	W3	D
FS1	8.14	3.77	2.99	3.98	5.41
	(206.7)	(95.7)	(75.9)	(101.2)	(137.5)
FS2	9.90	4.72	3.97	4.94	5.68
	(251.5)	(120.0)	(100.8)	(125.5)	(144.2)
FS3	12.26	5.12	4.36	5.33	6.32
	(311.5)	(130.1)	(110.8)	(135.3)	(160.5)

SVX9000 Drives

Product Overview

With the SVX9000 Series Sensorless Vector Control, Eaton's expanded Eaton drive offering now covers a complete line of PWM adjustable frequency (speed) drives in ratings from:

- $208 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to 100 hp I
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $125 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- 480V-1 to $1900 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; $1-1 / 2$ to $2200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $575 \mathrm{~V}-2$ to $2000 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 3 to $2300 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
The Eaton family of drives includes HVX9000, H-Max, M-Max, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload $\left(I_{H}\right)$ or low overload (I_{L}). I_{L} indicates 110\% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

A full range of enclosure types and options are available to meet a wide array of applications-from simple variable torque to more complex industrial applications such as conveyors, mixers and machine controls.

Application Description

Application Engineering

Proper selection and application of all drive system components is essential to assure that an adjustable frequency drive system will safely and reliably provide the performance required for any given application. The party responsible for the overall design and operation of the facility must make sure that qualified personnel are employed to select all components of the drive system, including appropriate safety devices. Eaton's AF Drives Application Engineering Department is prepared to provide assistance to answer any questions about the technical capabilities of Eaton drives.

Motor Selection

The basic requirement of motor selection is to match the torque vs. speed capability of the motor to the torque vs. speed requirement of the driven load.

Contents

Description

Motor Torque vs. Speed Capability

As the speed of a motor is reduced below its 60 Hz base speed, motor cooling becomes less effective because of the reduced speed of the self-cooling fan. This limitation determines the maximum torque for continuous operation at any operating speed. The maximum intermittent operating torque is determined by the motor's torque vs. current characteristics and the output current capability of the adjustable frequency controller.

Multiple Motor Operation

A number of motors can be connected in parallel to a single controller. Since the frequency of the power supplied by the controller is the same for each motor, the motors will always operate at the same speed. Application Engineering assistance must be requested for all multiple motor applications to assure compliance with all controller design limitations.

Special Types of Motors

Standard NEMA Designs A and B three-phase motors are the only motors
recommended for use in the majority of applications, but other types of motors are occasionally used. If the existing motor used in the application or the motor proposed for use with the drive system is a type other than NEMA Design A or B, Application Engineering assistance must be requested to make certain that the drive is properly applied.

Product Selection Guide

Controller Selection

The basic requirement of controller selection is to match the output current, voltage and frequency capabilities of the controller with the requirements of the connected motor.

Output Current

The controller must be selected and applied such that the average operating motor current and horsepower do not exceed the continuous current and horsepower ratings of the controller. The intermittent operating current must not exceed the intermittent current rating of the controller.

Motor Protection

Eaton adjustable frequency drives include electronic motor overload protection circuits that are designed to meet the requirements of NEC article 430-2 provided that only one motor is connected to the output of the controller.

Output Voltage and Frequency

When they are shipped, AF controllers are adjusted to provide a maximum output voltage and frequency equivalent to the input line voltage and frequency. The controllers can be adjusted to operate above line frequency, but a hazard of personal injury or equipment damage may exist when the motor is operated above base speed. Before adjusting the drive to operate above line frequency, make sure that the motor and the driven machinery can safely be operated at the resulting speed.

Features

Controller Features Operator Control and Interface Requirements

Since there are many possible configurations and many ways of achieving a specific end result, it pays to consider the operator control and interface requirements carefully. A simplified and more economical drive package can often be achieved by selecting from standard product offerings rather than specifying a custom designed configuration.

Installation Compatibility

The successful application of an $A C$ drive requires the assurance that the drive will be compatible with the environment in which it will be installed. In planning the installation, be sure to carefully consider the heat produced by the drive, the altitude and temperature limits and the need for clean cooling air. Other important considerations include acoustical noise, vibration, electromagnetic compatibility, power quality, controller input harmonic current and power distribution equipment requirements.

Auxiliary Equipment and Accessories

Adjustable drives are generally designed to have a motor directly connected to the controller output terminals with no other equipment connected in series or parallel. Motor starters, disconnect switches, surge absorbers, DV/DT suppression circuits, output chokes, output transformers and any other equipment under consideration for installation on the output of the controller should not be installed without first requesting Application Engineering assistance. Power factor correction capacitors must never, under any circumstances, be connected at the output of the controller. They would serve no useful purpose, and they may damage the controller.

Enclosure Definitions

- NEMA Type 1/IP21-

Enclosures are intended for indoor use primarily to provide a degree of protection against contact with enclosed equipment and provide a degree of protection against a limited amount of falling dirt in locations where unusual service conditions do not exist. Top or side openings in the NEMA Type 1/IP21 enclosure allow for the free exchange of inside and outside air while meeting the UL rod entry and rust resistance design tests.

- NEMA Type 12/IP54-

Enclosures are intended for indoor use primarily to provide a degree of protection against circulating dust, falling dirt and dripping noncorrosive liquids. To meet UL drip, dust and rust resistance tests, NEMA Type 12/IP54 enclosures have no openings to allow for the exchange of inside and outside air.

- Chassis IPOO—Similar to Protected Chassis IP20 except power terminals are protected by plastic shielding only. Primarily intended to be mounted inside a surrounding protective enclosure.
- NEMA Type 3R-Similar in design to NEMA Type 12/ IP54 except with more stringent design and test requirements.

Motor Protection

DV/DT and Peak Motor Voltage Solutions

Today's AFD products offer significantly improved performance, but at the potential cost of motor insulation stress. The fast switching time of the IGBT devices used in newer AFDs can cause a transmission line effect in the output power leads to the motor, leading to possibly damaging voltage levels. To meet this need,

Product Availability Codes

The product availability codes indicate the type of facility (warehouse, Mod Center or factory) that the product will ship from and, if it is not in stock, the number of working days needed to assemble the

Product Availability Codes

NEMA has introduced a motor in MG1, Part 31, which provides an insulation system designed to maintain normal motor life in AFD applications. For existing motors, a motor protection scheme is required for longer cable runs. Eaton offers three standard solutions for existing systems.
product from receipt of the order to shipment from the designated facility. Please note that this lead-time does not include any in-transit time from our facility to your facility.

- MotoRx This solution provides an energy recovery system which clamps the peak motor voltage to a safe level for standard motors. This option is used when the distance between a single motor and the drive is 600 ft or less.

Code	Description
W	Warehouse stocked item. Shipped on customer request date. If item is backordered, please check Vista/VISTALINE or contact your Customer Support Center for product availability.
F1	Factory assemble-to-order. Shipped from factory within 1 working day after receipt of order on Vista.
FA	Factory assemble-to-order. Shipped from factory within 2-3 working days after receipt of order on Vista.
FB	Factory assemble-to-order. Shipped from factory within 4-10 working days after receipt of order on Vista.
FC	Factory assemble-to-order. Shipped from factory within 11-15 working days after receipt of order on Vista.
FD	Factory assemble-to-order. Shipped from factory within 16-20 working days after receipt of order on Vista.
FP	Factory assemble-to-order. Shipped from factory on negotiated promise date.
MA	Mod Center assemble-to-order. Shipped from Mod Center within 1-3 working days after receipt of order on Vista.
MB	Mod Center assemble-to-order. Shipped from Mod Center within 4-10 working days after receipt of order on Vista.
MP	Mod Center assemble-to-order. Shipped from Mod Center on negotiated promise date.

Product availability codes contained herein for a given product may be quantity sensitive and are subject to change without notice.

For the most current information, refer to the
Product Identification Inquiry
(PIN) screen on Vista.

- Output Line Reactor This option provides an output line reactor, reducing the DV/DT of the AFD output voltage and lessening the transmission line effect, to lower the peak voltage at the motor terminals.

SVX9000 Open Drives

Product Description

SVX9000 Series Adjustable Frequency Drives from Eaton's electrical sector are the next generation of drives specifically engineered for today's commercial and industrial applications. The power unit makes use of the most sophisticated semiconductor technology and a highly modular construction that can be flexibly adapted to the customer's needs.

The input and output configuration (I/O) is designed with modularity in mind. The I/O is compromised of option cards, each with its own input and output configuration. The control module is designed to accept a total of five of these cards. The cards contain not only normal analog and digital inputs but also fieldbus cards.
These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

Features

- Robust design-proven 500,000 hours MTBF
- Integrated 3\% line reactors standard on drives from FR4 through FR9
- EMI/RFI Filters H standard up to $200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}, 100$ hp $I_{H} 230 \mathrm{~V}$
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
- Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
- Copy/paste function allows transfer of parameter settings from one drive to the next
- Standard NEMA Type $12 /$ IP54 keypad on all drives

Contents

Description	Page
SVX9000 Open Drives	
Standards and Certifications	V6-T2-18
Catalog Number Selection	V6-T2-18
Product Selection	V6-T2-19
Accessories	V6-T2-23
Options	V6-T2-24
Replacement Parts	V6-T2-27
Technical Data and Specifications	V6-T2-34
Dimensions	V6-T2-35
SVX9000 Enclosed Drives	V6-T2-52
SVX9000 VFD Pump Panels	V6-T2-78

- The SVX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" precision application programs consisting of:
- Basic
- Standard
- Local/remote
- Multi step speed control
- PID control
- Multi-purpose control
- Pump and fan control with auto change
- Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
- Hand-held auxiliary 24 V power supply allows programming/monitoring of control module without applying full power to the drive
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake chopper standard from: 1-30 hp/380-500V 3/4-15 hp/208-230V
- NEMA Type 1/IP21 and NEMA Type 12/IP54 enclosures available, Frame Sizes FR4-FR9
- Open chassis FR10 and greater
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Adjustable Frequency Drives
SVX9000 Drives

Standards and Certifications

Product

- IEC 61800-2

EMC (At Default Settings)

- Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H

Safety

- UL 508C
(U)

Catalog Number Selection

SVX9000 Adjustable Frequency Drives

Power Module

Notes

(1) All 230 V drives and 480 V drives up to $200 \mathrm{hp}(\mathrm{IH})$ are only available with input option 1 (EMC Level H). 480 V drives $250 \mathrm{hp}(\mathrm{IH}$) or larger are available with input option 2 (EMC Level N). 480 V drives are available with input option 4 (EMC Level L). 575 V drives 200 hp (IH) or larger are only available with input option 2.575 V drives up to $150 \mathrm{hp}(\mathrm{IH})$ are only available with input option $\mathbf{4}$ (EMC Level L).
(2) 480 V drives up to $30 \mathrm{hp}(\mathrm{IH})$ are only available with brake chopper option B. 480 V drives $40 \mathrm{hp}(\mathrm{IH})$ or larger come standard with brake chopper option $\mathbf{N} .230 \mathrm{~V}$ drives up to $15 \mathrm{hp}(\mathrm{IH})$ are only available with brake chopper option B. 230 V drives 20 hp or larger come standard with brake chopper option N. All 575 V drives come standard without brake chopper option (N). $\mathbf{N}=\mathbf{N o}$ brake chopper.
(3) 480 V drives $250 \mathrm{hp}\left(I_{H}\right)$ and larger are available with enclosure style $\mathbf{0}$ (chassis); 690 V drives $200 \mathrm{hp}\left(I_{H}\right)$ and larger are available with enclosure style $\mathbf{0}$ (chassis).
(4) Factory promise delivery. Consult sales office for availability.

Product Selection

230V SVX9000 Drives

SVX9000 Open Drives	208-240V, NEMA Type 1/IP21 Drives						
	Frame Size	Delivery Code	hp (I_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{IL}_{\text {L }}$)	Catalog Number
	FR4	W	3/4	3.7	1	4.8	SVXF07A1-2A1B1
			1	4.8	1-1/2	6.6	SVX001A1-2A1B1
			1-1/2	6.6	2	7.8	SVXF15A1-2A1B1
			2	7.8	3	11	SVX002A1-2A1B1
			3	11	-	12.5	SVX003A1-2A1B1
	FR5	W	-	12.5	5	17.5	SVX004A1-2A1B1
			5	17.5	7-1/2	25	SVX005A1-2A1B1
			7-1/2	25	10	31	SVX007A1-2A1B1
	FR6	W	10	31	15	48	SVX010A1-2A1B1
			15	48	20	61	SVX015A1-2A1B1
	FR7	W	20	61	25	75	SVX020A1-2A1N1
			25	75	30	88	SVX025A1-2A1N1
			30	88	40	114	SVX030A1-2A1N1
	FR8	W	40	114	50	140	SVX040A1-2A1N1
			50	140	60	170	SVX050A1-2A1N1
			60	170	75	205	SVX060A1-2A1N1
	FR9	W	75	205	100	261	SVX075A1-2A1N1
			100	261	125	300	SVX100A1-2A1N1

208-240V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{IL}_{\text {L }}$)	Catalog Number
FR4	F1	3/4	3.7	1	4.8	SVXF07A2-2A1B1
		1	4.8	1-1/2	6.6	SVX001A2-2A1B1
		1-1/2	6.6	2	7.8	SVXF15A2-2A1B1
		2	7.8	3	11	SVX002A2-2A1B1
		3	11	-	12.5	SVX003A2-2A1B1
FR5	F1	-	12.5	5	17.5	SVX004A2-2A1B1
		5	17.5	7-1/2	25	SVX005A2-2A1B1
		7-1/2	25	10	31	SVX007A2-2A1B1
FR6	F1	10	31	15	48	SVX010A2-2A1B1
		15	48	20	61	SVX015A2-2A1B1
FR7	W	20	61	25	75	SVX020A2-2A1N1
		25	75	30	88	SVX025A2-2A1N1
		30	88	40	114	SVX030A2-2A1N1
FR8	FP	40	114	50	140	SVX040A2-2A1N1
		50	140	60	170	SVX050A2-2A1N1
		60	170	75	205	SVX060A2-2A1N1
FR9	FP	75	205	100	261	SVX075A2-2A1N1
		100	261	125	300	SVX100A2-2A1N1

480V SVX9000 Drives

SVX9000 Open Drives	380-500V, NEMA Type 1/IP21 Drives						
	Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current (l)	Catalog Number
	FR4	W	1	2.2	1-1/2	3.3	SVX001A1-4A1B1
			1-1/2	3.3	2	4.3	SVXF15A1-4A1B1
			2	4.3	3	5.6	SVX002A1-4A1B1
			3	5.6	5	7.6	SVX003A1-4A1B1
			5	7.6	-	9	SVX005A1-4A1B1
			-	9	7-1/2	12	SVX006A1-4A1B1
	FR5	W	7-1/2	12	10	16	SVX007A1-4A1B1
			10	16	15	23	SVX010A1-4A1B1
			15	23	20	31	SVX015A1-4A1B1
	FR6	W	20	31	25	38	SVX020A1-4A1B1
			25	38	30	46	SVX025A1-4A1B1
			30	46	40	61	SVX030A1-4A1B1
	FR7	W	40	61	50	72	SVX040A1-4A1N1
			50	72	60	87	SVX050A1-4A1N1
			60	87	75	105	SVX060A1-4A1N1
	FR8	W	75	105	100	140	SVX075A1-4A1N1
			100	140	125	170	SVX100A1-4A1N1
			125	170	150	205	SVX125A1-4A1N1
	FR9	W	150	205	200	261	SVX150A1-4A1N1
			200	245	250	300	SVX200A1-4A1N1

380-500V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	hp (I_{H})	Current (I_{H})	hp (L_{L})	Current (I_{L})	Catalog Number
FR4	F1	1	2.2	1-1/2	3.3	SVX001A2-4A1B1
		1-1/2	3.3	2	4.3	SVXF15A2-4A1B1
		2	4.3	3	5.6	SVX002A2-4A1B1
		3	5.6	5	7.6	SVX003A2-4A1B1
		5	7.6	-	9	SVX005A2-4A1B1
		-	9	7-1/2	12	SVX006A2-4A1B1
FR5	F1	7-1/2	12	10	16	SVX007A2-4A1B1
		10	16	15	23	SVX010A2-4A1B1
		15	23	20	31	SVX015A2-4A1B1
FR6	F1	20	31	25	38	SVX020A2-4A1B1
		25	38	30	46	SVX025A2-4A1B1
		30	46	40	61	SVX030A2-4A1B1
FR7	W	40	61	50	72	SVX040A2-4A1N1
		50	72	60	87	SVX050A2-4A1N1
		60	87	75	105	SVX060A2-4A1N1
FR8	W	75	105	100	140	SVX075A2-4A1N1
		100	140	125	170	SVX100A2-4A1N1
		125	170	150	205	SVX125A2-4A1N1
FR9	W	150	205	200	261	SVX150A2-4A1N1
		200	245	250	300	SVX200A2-4A1N1

SVX9000 Open Drives	Frame Size		hp (I_{H})	Current (I_{H})	hp (L_{L})	Current ($\mathrm{l}_{\text {L }}$)	Catalog Number
	FR10 ${ }^{1}$	W	250	330	300	385	SPX250A0-4A2N1
OU- 0			300	385	350	460	SPX300A0-4A2N1
0			350	460	400	520	SPX350AO-4A2N1
	FR11	W	400	520	500	590	SPX400A0-4A2N1
			500	590	-	650	SPX500A0-4A2N1
			-	650	600	730	SPX550A0-4A2N1
	FR12	FP	600	730	-	820	SPX600A0-4A2N1
		W	-	820	700	920	SPX650A0-4A2N1
		FP	700	920	800	1030	SPX700A0-4A2N1
	FR13	FP	800	1030	900	1150	SPX800A0-4A2N1
			900	1150	1000	1300	SPX900AO-4A2N1
			1000	1300	1200	1450	SPXH10A0-4A2N1
	FR14	FP	1200	1600	1500	1770	SPXH12AO-4A2N1
			1600	1940	1800	2150	SPXH16A0-4A2N1
			1900	2300	2200	2700	SPXH19A0-4A2N1

575V SVX9000 Drives

525-690V, NEMA Type 1/IP21 Drives

Frame Size	Delivery Code	hp (H_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current (l)	Catalog Number
FR6	W	2	3.3	3	4.5	SVX002A1-5A4N1
		3	4.5	-	5.5	SVX003A1-5A4N1
		-	5.5	5	7.5	SVX004A1-5A4N1
		5	7.5	7-1/2	10	SVX005A1-5A4N1
		7-1/2	10	10	13.5	SVX007A1-5A4N1
		10	13.5	15	18	SVX010A1-5A4N1
		15	18	20	22	SVX015A1-5A4N1
		20	22	25	27	SVX020A1-5A4N1
		25	27	30	34	SVX025A1-5A4N1
FR7	W	30	34	40	41	SVX030A1-5A4N1
		40	41	50	52	SVX040A1-5A4N1
FR8	W	50	52	60	62	SVX050A1-5A4N1
		60	62	75	80	SVX060A1-5A4N1
		75	80	100	100	SVX075A1-5A4N1
FR9	W	100	100	125	125	SVX100A1-5A4N1
		125	125	150	144	SVX125A1-5A4N1
		150	144	-	170	SVX150A1-5A4N1
		-	170	200	208	SVX175A1-5A4N1

Note
(1) FR10-FR14 includes 3\% line reactor, but it is not integral to chassis.

525-690V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (I_{L})	Current ($\mathrm{L}_{\text {L }}$)	Catalog Number
FR6	F1	2	3.3	3	4.5	SVX002A2-5A4N1
		3	4.5	-	5.5	SVX003A2-5A4N1
		-	5.5	5	7.5	SVX004A2-5A4N1
		5	7.5	7-1/2	10	SVX005A2-5A4N1
		7-1/2	10	10	13.5	SVX007A2-5A4N1
		10	13.5	15	18	SVX010A2-5A4N1
		15	18	20	22	SVX015A2-5A4N1
		20	22	25	27	SVX020A2-5A4N1
		25	27	30	34	SVX025A2-5A4N1
FR7	FP	30	34	40	41	SVX030A2-5A4N1
		40	41	50	52	SVX040A2-5A4N1
FR8	FP	50	52	60	62	SVX050A2-5A4N1
		60	62	75	80	SVX060A2-5A4N1
		75	80	100	100	SVX075A2-5A4N1
FR9	FP	100	100	125	125	SVX100A2-5A4N1
		125	125	150	144	SVX125A2-5A4N1
		150	144	-	170	SVX150A2-5A4N1
		-	170	200	208	SVX175A2-5A4N1

525-690V, Open Chassis Drives

Frame Size	Delivery Code	hp (H_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current (l_{L})	Catalog Number
FR10	FP	200	208	250	261	SPX200A0-5A2N1
		250	261	300	325	SPX250A0-5A2N1
		300	325	400	385	SPX300A0-5A2N1
FR11	FP	400	385	450	460	SPX400A0-5A2N1
		450	460	500	502	SPX450A0-5A2N1
		500	502	-	590	SPX500A0-5A2N1
FR12	FP	-	590	600	650	SPX550A0-5A2N1
		600	650	700	750	SPX600A0-5A2N1
		700	750	800	820	SPX700A0-5A2N1
FR13	FP	800	820	900	920	SPX800A0-5A2N1
		900	920	1000	1030	SPX900A0-5A2N1
		1000	1030	1250	1180	SPXH10AO-5A2N1
FR14	FP	1350	1300	1500	1500	SPXH13A0-5A2N1
		1500	1500	2000	1900	SPXH15A0-5A2N1
		2000	1900	2300	2250	SPXH20AO-5A2N1

Accessories

Demo Drive and Power Supply

Demo Drive and Power Supply

Description	Catalog Number
$9000 X$ demo drive	9000XDEMO
Hand-held 24V auxiliary power supply—Used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	$\mathbf{9 0 0 0 X A U X 2 4 V}$

NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 kit option is used to convert a NEMA Type 1/IP21 to a NEMA Type 12/IP54 drive. The NEMA Type 12/IP54
kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

NEMA Type 12/IP54 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)			Approximate Weight $\mathbf{L b}(\mathbf{k g})$	Catalog Number
		Length	Width	Height		
FR4	W	13 (330)	7 (178)	4 (102)	4 (1.8)	OPTN12FR4
FR5		16 (406)	8 (203)	7 (178)	$5(2.3)$	OPTN12FR5
FR6		21 (533)	10 (254)	5 (127)	7 (3.2)	OPTN12FR6

Flange Kits

Flange Kit NEMA Type 12/

 IP54The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12/IP54 fan components. Metal shroud not included.

Flange kits for NEMA Type 12/IP54 enclosure drive rating are determined by rating of drive.		
Flange Kit NEMA Type 12/ IP54-Frames 4, 5 and 6 (1)		
Frame Size	Delivery Code	Catalog Number
FR4	W	OPTTHRFR4
FR5		OPTTHRFR5
FR6		OPTTHRFR6

Flange Kit NEMA Type 12/ IP54-Frames 4-9 (1)		
Frame Size	Delivery Code	Catalog Number
FR4	FP	OPTTHR4
FR5		OPTTHR5
FR6		OPTTHR6
FR7		OPTTHR7
FR8		OPTTHR8
FR9		OPTTHR9

Flange Kit NEMA Type

 1/IP21Flange kits for NEMA Type 1/IP21 enclosure drive rating are determined by rating of drive

Frame Size	Delivery Code	Catalog Number
FR4	FP	OPTTHR4
FR5		OPTTHR5
FR6		OPTTHR6
FR7		OPTTHR7
FR8		OPTTHR8
FR9		OPTTHR9

Note

(1) For installation of an SVX9000 NEMA Type 1/IP21 drive into a NEMA Type 12/P54 oversized enclosure.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	■	-	\square	■	■	-	-
6 DI, 1 DO, 2 AI, 1AO, 1 +10 Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	-	-	-	-	-
Extended I/O Cards										
2 RO , therm-SPX only	B	OPTA3	A3	-	\square	\square	\square	\square	\square	-
Encoder low volt +5V/15V/24V—SPX only	C	OPTA4	A4	-	\square	\square	-	-	\square	-
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$-SPX only	C	OPTA5	A5	-	\square	\square	\square	-	\square	-
Double encoder-SPX only	C	OPTA7	A7	-	\square	\square	-	-	\square	-
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$-SPX only	A	OPTA8	A8	-	\square	\square	\square	\square	\square	-
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)—SPX only	C	OPTAE	AE	-	\square	\square	-	\square	\square	-
$6 \mathrm{DI}, 1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	■	-
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	-
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	■	■	-	-	\square	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	-
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	-
Communication Cards										
Modbus (3)	D, E	OPTC2	C2	-	\square	\square	-	-	\square	\square
Johnson Controls N2 ${ }^{(3)}$	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	-	\square	\square	-	-	\square	\square
BACnet	D, E	OPTCJ	CJ	-	\square	\square	\square	\square	\square	\square
Ethernet IP	D, E	OPTCK	CK	\square	\square	\square	\square	\square	\square	-
Profibus DP	D, E	OPTC3	C3	\square	\square	\square	\square	\square	\square	-
LonWorks	D, E	OPTC4	C4	-	\square	\square	-	-	\square	\square
Profibus DP (D9 connector)	D, E	OPTC5	C5	-	\square	\square	-	-	\square	\square
CanOpen (slave) ${ }^{(4)}$	D, E	OPTC6	C6	\square	\square	\square	-	\square	\square	-
DeviceNet	D, E	OPTC7	C7	-	\square	\square	\square	\square	\square	\square
Modbus (D9 type connector)	D, E	OPTC8	C8	\square						
Adapter-SPX only	D, E	OPTD1	D1	\square	\square	\square	\square	\square	\square	-
Adapter-SPX only	D, E	OPTD2	D2	-	\square	\square	\square	-	\square	-
RS-232 with D9 connection	D, E	OPTD3	D3	\square	\square	\square	-	-	\square	-
Keypad										
9000X Series local/remote keypad (replacement keypad)	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
$9000 \times$ Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.
(4) SPX9000 drives only (FR10 and larger).

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the $9000 \times$ Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CanOpen (Slave) Communications

The CanOpen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Control Panel Options

Factory Options

Description	Factory Installed	Field Installed NEMA Type 1/IP21 Catalog Number
Local/Remote Keypad SVX9000 Control Panel-This option is standard on all drives and consists of an RS-232 connection, backlit alphanumeric LCD display with nine indicators for the	A	Option Code

Keypad Remote Mounting Kit—This option is used to remote mount the SVX9000 keypad. The OPTRMT-KIT-9000X
footprint is compatible to the SV9000 remote mount kit. Includes 10 ft cable, keypad holder and mounting hardware.

Miscellaneous Options

| Description | Catalog Number |
| :--- | :--- | :--- |
| 9000XDrive-A PC-based tool for controlling and monitoring of the SVX9000. Features include: loading parameters that | 9000XDRIVE |
| can be saved to a file or printed, setting references, starting and stopping the motor, monitoring signals in graphical or text | |
| form, and real-time display. To avoid damage to the drive or computer, SVDrivecable must be used. | |

SVDrivecable-6 ft (1.8m) RS-232 cable (22 gauge) with a 7-pin connector on each end. Should be used in conjunction SVDRIVECABLE with the 9000XDrive option to avoid damage to the SVX9000 or computer. The same cable can be used for downloading specialized applications to the drive.
External Dynamic Braking Resistors-Used with the dynamic braking chopper circuit to absorb motor regenerative
energy for stopping the load and to dissipate the energy flowing back into the drive. Resistors are separated into standard duty and heavy-duty. Standard duty is defined as 20\% duty or less with 100\% braking torque, while heavy-duty is defined as 50% duty or less with 150% braking torque.

Open Drive Options

Brake Chopper Options

The brake chopper circuit option is used for applications that require dynamic braking. Dynamic braking resistors are not included with drive
purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

Conformal Coated

 Board Kits (8)Field Installed Factory Installed Catalog Number Option Designator
OPT_V ${ }^{4}$ (5)

For brake chopper circuit selection and adder-NEMA Type 1/IP21, NEMA Type 12/ IP54, Chassis, consult the factory. Delivery code is FP.

Conformal (Varnished) Coating (2) Chassis	Delivery Code
Frame	FP
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP
FR13	FP

Notes

(1) Consult factory.
(2) See Product Selection on Pages V6-T2-19 to V6-T2-22, 208-240V, 380-500V, 525-690V. Consult the factory for adder.
(3) See option catalog numbers on Page V6-T2-24
${ }^{4}$ Replace "__" with the correct catalog number from Page V6-T2-24. Example: OPTC2V.
(5) Construct catalog numbers for factory installed per Catalog Number Selection on Page V6-T2-18

Replacement Parts

SVX9000 Drives Spare Units

208-690V, Frames 4-12
Description
Catalog Number
Control unit-Includes the control board, blue base housing, installed SVX9000 software program and blue flip cover. CSBS0000000000
Does not include any OPT boards or keypad. See Page V6-T2-24 for standard and option boards and keypad.

SVX9000 Drives Replacement Parts

208-240V, Frames FR4-FR8

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) PP00061 capacitor not included in main fan; please order separately

208-240V, Frames FR4-FR8, continued

Frame hp (I_{H}):	4 $3 / 4$	1	1-1/2	2	3	5 5 (1)	5	7-1/2	6 10	15	7 20	25	30	8 40	50	60	Delivery Code	Catalog Number
	IGBT Modules																	
	1	1															W	CP01304
			1														W	CP01305
				1	1	1											W	CP01306
							1										W	CP01307
								1									W	CP01308
								1									W	PP01022
										1							W	PP01023
										1							W	PP01024
												1					W	PP01025
												1					W	PP01029
														1			W	PP01026
															1	1	W	PP01027
	Choppers/Rectifiers																	
									1								W	CP01367
										1							W	CP01368
	Diode/Thyristor Modules																	
											3	3	3				W	PP01035
														3	3	3	W	CP01268
	Rectifying Boards																	
											1	1	1				W	VB00242
														1	1	1	W	VB00227

380-500V, Frames FR4-FR9

Note

(1) I_{L} only; has no corresponding I_{H} rated $h p$ rating.

380-500V, Frames FR4-FR9, continued

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
${ }^{2}$ PP00061 capacitor not included in main fan; please order separately.
${ }^{3}$ PP00011 capacitor not included in main fan; please order separately.
(4) For FR9 NEMA Type 12/IP54 you need two PP01068 internal fans.

380-500V, Frames FR4-FR9, continued

Frame hp $\left(I_{H}\right)$:	$\begin{array}{ll} 4 & \\ 1 & 1-1 / 2 \end{array}$	23	35	5 7-1/2 (1)		10	15	6 20	25	30	7 40	50	60	75	100	125	9 150	200	Delivery Code	Catalog Number
	Rectifying Boards																			
											1	1	1						W	VB00242
														1	1	1			W	VB00227
																	1	1	W	VB00459
	Rectifying Module Sub-Assembly																			
																	1	1	W	FR09810
	Power Module Sub-Assemblies																			
																	1		W	FR09-150-4-ANS ${ }^{(2)}$
																		1	W	FR09-200-4-ANS ${ }^{2}$

380-500V, Frames FR10-FR12

Frame hp (I_{H}):	10			11			12				
	250	300	350	400	500	550	600	650	700	Code	Catalog Number
	Control Board										
	1	1	1	1	1	1	1	1	1	W	VB00561 ${ }^{(3)}$
	Shunt Boards										
	6									FC	VB00537
		6								FC	VB00497
			6				12	12	12	FC	VB00498
				9						FC	VB00538
					9					FC	VB00513
						9				FC	VB00514
	Driver Boards										
				3	3	3				FC	VB00489
	1	1	1				2	2	2	FC	VB00487
	Driver Adapter Board										
	1	1	1				2	2	2	FC	VB00330
	ASIC Board										
	1	1	1	1	1	1	2	2	2	FC	VB00451
	Feedback Interface Board										
							2	2	2	FC	VB00448
	Star Coupler Board										
							1	1	1	FC	VB00336
	Power Modules										
	1	1	1	2	2	2	2	2	2	FC	FR10820 ${ }^{4}$
	2	2	2							FC	FR10828
	1									FC	FR10-250-4-ANS ${ }^{2}$
		1								FC	FR10-300-4-ANS ${ }^{2}{ }^{2}$
			1				2	2	2	FC	FR10-350-4-ANS ${ }^{2}$
				3						FC	FR11-400-4-ANS ${ }^{2}$
				3						FC	FR11-500-4-ANS ${ }^{2}{ }^{2}$
						3				FC	FR11-550-4-ANS ${ }^{2}$

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) See Page V6-T2-18 for details.
(3) SPX9000 drives only (FR10 and larger).
(4) Rectifying board not included.

380-500V, Frames FR10-FR12, continued

Frame hp (I_{H}):	10 250	300	350	11 400	500	550	12 600	650	700	Delivery Code	Catalog Number
	Electrolytic Capacitors										
	2	2	2	3	3	3	4	4	4	FC	PP00060
	12	12	12	18	18	18	24	24	24	FC	PP01005
	Fuses										
	1	1	1	1	1	1	2	2	2	FC	PP01094
	2	2	2	2	2	2	4	4	4	FC	PP01095
	Cooling Fans and Isolation Transformers										
	2	2	2	3	3	3	4	4	4	FC	VB00299
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(1)}$
	2	2	2				4	4	4	FC	PP01068
	1	1	1	1	1	1	2	2	2	FC	PP01096
	1	1	1				2	2	2	FC	FR10844
	1	1	1	3	3	3	2	2	2	FC	FR10845
	1	1	1				2	2	2	FC	FR10846
	1	1	1	3	3	3	2	2	2	FC	FR10847
	Rectifying Board										
	1	1	1	2	2	2	2	2	2	FC	VB00459

525-690V, Frames FR6-FR9

Frame $\text { hp (} \left.\mathrm{I}_{\mathrm{H}}\right):$	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	3	$5{ }^{2}$	5	7-1/2	10	15	20	25	7 $\mathbf{3 0}$	40	8 50	60	75	$\begin{aligned} & 9 \\ & 100 \end{aligned}$	125	150	$200{ }^{(2)}$	Delivery Code	Catalog Number
	Control Board																			
	1	1	1	1	1	1	1	1	1	1	1					1	1	1	W	VB00252
	Driver Boards																			
	1																		FB	VB00404-0004-6
	1																		FB	VB00404-0005-6
			1																FB	VB00404-0007-6
			1																FB	VB00404-0010-6
					1														FB	VB00404-0013-6
					1														FB	VB00404-0018-6
							1												FB	VB00404-0022-6
							1												FB	VB00404-0027-6
									1										FB	VB00404-0034-6
	Power Boards																			
									1										FB	VB00419-0041-6
											1								FB	VB00419-0052-6
											1								FB	VB00422-0062-6
													1						FB	VB00422-0080-6
													1						FB	VB00422-0100-6
	Power Modules																			
															1				FC	FR09-100-5-ANS ${ }^{3}$
																1			FC	FR09-125-5-ANS ${ }^{(3)}$
																	1		FC	FR09-150-5-ANS ${ }^{(3)}$
																		1	FC	FR09-175-5-ANS ${ }^{(3)}$

Notes

(1) PP00060 capacitor not included in main fan; please order separately
(2) I only; has no corresponding I_{H} rated hp rating.
(3) See Page V6-T2-18 for details.

525-690V, Frames FR6-FR9, continued

Frame hp (I_{H}):	6 2	3	5 (1)	5	7-1/2	10	15	20	25	7 30	40	8 50	60	75	9 100	125	150	200 (1)	Delivery Code	Catalog Number
	Electrolytic Capacitors																			
	2	2	2	2	2	2	2	2	2										FC	PP01093
										2	2	4	4		8	8	8	8	FC	PP01041
														4					FC	PP01040
	Fuses																			
												1	1	1	1	1	1	1	W	PP01094
												2	2	2	2	2	2	2	W	PP01095
	Cooling Fans																			
	1	1	1	1	1														W	PP01061
						1	1	1	1										W	PP01062
										1	1								W	PP01063
												1	1	1					FC	PP01123
	1	1	1	1	1	1	1	1	1	1	1								W	PP01049
												1	1	1					FC	CP01180
															1	1	1	$1{ }^{(2)}$	W	PP01068
															1	1	1	1	FC	PP01080
	Fan Power Supply																			
																1	1	1	FC	VB00299
	IGBT Modules																			
	3	3	3	3	3	3	3	3	3										FC	PP01091
										1	1								FC	PP01089
												1	1	1					FC	PP01127
	IGBT/Diode (Brake)																			
	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	FC	PP01040
	Diode Module																			
	1	1	1	1	1	1	1	1	1										FC	PP01092
	Diode/Thyristor Modules																			
										3	3								FC	PP01071
															3	3	3	3	FC	PP01072
	Rectifying Boards																			
										1	1								FC	VB00442
															1	1	1	1	FC	VB00460
	Rectifying Module Sub-Assemblies																			
																1	1	1	W	FR09810
																1	1	1	FC	FR09811

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) For NEMA Type 12/IP54, two PP01068 internal fans are needed.

525-690V, Frames FR10-FR12

Notes

(1) SPX9000 drives only (FR10 and larger).

2 Rectifying board not included.
(3) See Page V6-T2-18 for details.
(4) PP00060 capacitor not included in main fan; please order separately.

Adjustable Frequency Drives

SVX9000 Drives

Technical Data and Specifications

SVX9000 Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	+10\%/-15\%
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 45-66 Hz)
Connection to power	Once per minute or less (typical operation)
High withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous output current	I_{H} rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, $\mathrm{FR9}$ and below I_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, $\mathrm{FR9}$ and below $\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}} 100 \%$ at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, FR10 and above
Overload current ($\left.\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}}\right)$	$150 \% \mathrm{l}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min .
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Initial output current (l_{H})	250\% for 2 seconds
Control Characteristics	
Control method	Frequency control (V/f) Open loop: Sensorless vector control Closed loop: SPX9000 drives only
Switching frequency Frame 4-6 Frame 7-12	Adjustable with parameter 2.6.9 $1-16 \mathrm{kHz}$; default 10 kHz $1-10 \mathrm{kHz}$; default 3.6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel reference: Resolution 0.01 Hz
Field weakening point	$30-320 \mathrm{~Hz}$
Acceleration time	0-3000 sec.
Deceleration time	0-3000 sec.
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ (FR4-FR9) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ (FR10 and up) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{L}}$ (all frames)
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $70^{\circ} \mathrm{C}$)
Relative humidity	0 to $95 \% \mathrm{RH}$, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m})$
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	NEMA 1/IP21 or NEMA 12/P54, open chassis/P20

Description	Specification
Control Connections	
Analog input voltage	0 to 10V, R = 200 kohms (-10 to 10 V joystick control) resolution 0.1%; accuracy $\pm 1 \%$
Analog input current	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V}+3 \%$, max. load 10 mA
Analog output	O(4) to 20 mA ; R_{L} max. 500 ohms; resolution 10 bit; accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	Two programmable Form C relay outputs switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Protections	
Overcurrent protection	Trip limit $4.0 \times \mathrm{l} \mathrm{I}_{\boldsymbol{H}}$ instantaneously
Overvoltage protection	Yes
Undervoltage protection	Yes
Earth fault protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input phase supervision	Trips if any of the input phases are missing
Motor phase supervision	Trips if any of the output phases are missing
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes (+24 V and +10 V reference voltages)

Standard I/O Specifications

Description	Specification
Six-digital input programmable	$24 \mathrm{~V}: " 0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kohms
Two-analog input configurable w/jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: 0 0 $(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms
Two-digital output programmable	Form C relays 250 Vac 30 Vdc 2 amp resistive
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$
One digital output programmable	Open collector 48 Vdc 50 mA

Dimensions

Approximate Dimensions in Inches (mm)

9000X Open Drives

NEMA Type 1/IP21 and NEMA Type 12/IP54, FR4, FR5 and FR6

Voltage	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	H1	H2	H3	D1	D2	D3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)	Knockouts at Inches (mm) N1 (0.D.)
FR4													
230 V	3/4-3	$\begin{gathered} 12.9 \\ -(327) \end{gathered}$	$\begin{aligned} & 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (77) \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & (126) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	0.5 (13)	0.3 (7)	11.0 (5)	3 @ 1.1 (28)
480V	1-5												
FR5													
230 V	5-7-1/2	$\begin{aligned} & 16.5 \\ & (419) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (406) \end{aligned}$	$\begin{aligned} & 15.3 \\ & (389) \end{aligned}$	$\begin{aligned} & 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & 5.6 \\ & (143) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	0.5 (13)	0.3 (7)	17.9 (8)	$\begin{aligned} & 2 @ 1.5(37) \\ & 1 @ 1.1 \text { (28) } \end{aligned}$
480V	7-1/2-15												
FR6													
230 V	10-15	$\begin{aligned} & 22.0 \\ & \text { (558) } \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 20.4 \\ & \text { (519) } \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & \text { (195) } \end{aligned}$	$\begin{aligned} & 5.8 \\ & (148) \end{aligned}$	0.6 (15.5)	0.4 (9)	40.8 (19)	3 @ 1.5 (37)
480 V	20-30												
575 V	2-25												

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54 with Flange Kit, FR4, FR5 and FR6

FR4, FR5 and FR6 with Flange Kit

W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4									
$5.0(128)$	$4.5(113)$	$13.3(337)$	$12.8(325)$	$12.9(327)$	$1.2(30)$	$0.9(22)$	$7.5(190)$	$3.0(77)$	$0.3(7)$

FR5									
$5.6(143)$	$4.7(120)$	$17.0(434)$	$16.5(420)$	$16.5(419)$	$1.4(36)$	$0.7(18)$	$8.4(214)$	$3.9(100)$	$0.3(7)$

FR6									
$7.7(195)$	$6.7(170)$	$22.0(560)$	$21.6(549)$	$22.0(558)$	$1.2(30)$	$0.8(20)$	$9.3(237)$	$4.2(106)$	$0.3(7)$

Flange Opening, FR4 to FR6

W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4							
$4.8(123)$	$4.5(113)$	-	$12.4(315)$	$12.8(325)$	-	$0.2(5)$	$0.3(7)$
FR5							
$5.3(135)$	$4.7(120)$	-	$16.2(410)$	$16.5(420)$	-	$0.2(5)$	$0.3(7)$
FR6							
$7.3(185)$	$6.7(170)$	$6.2(157)$	$21.2(539)$	$21.6(549)$	$0.3(7)$	$0.2(5)$	$0.3(7)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR7

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR8

Voltage	hp ($\mathbf{l} \mathbf{H})$	D1	H1	H2	H3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)
230 V	$40-60$	$13.5(344)$	$30.1(764)$	$28.8(732)$	$28.4(721)$	$11.5(291)$	$10(255)$	$0.7(18)$	$0.4(9)$	$127(58)$
480 V	$75-125$									
575 V	$50-75$									

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, with Flange Kit, FR7 and FR8

| W1 | W2 | W3 | W4 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | D1 | D2 | Dia. A | |
| :--- |
| FR7 | | | | | | | | | | | | | | |
| $9.3(237)$ | $6.8(175)$ | $10.6(270)$ | $10.0(253)$ | $24.9(652)$ | $24.8(632)$ | $24.8(630)$ | $7.4(189)$ | $7.4(189)$ | $0.9(23)$ | $0.8(20)$ | $10.1(257)$ | $4.6(117)$ | $0.3(6)$ | |
| FR8 | | | | | | | | | | | | | | |
| $11.2(285)$ | - | $14.0(355)$ | $13.0(330)$ | $32.8(832)$ | - | $29.3(745)$ | $10.2(258)$ | $10.4(265)$ | $1.7(43)$ | $2.2(57)$ | $13.5(344)$ | $4.3(110)$ | $0.4(9)$ | |

Flange Opening, FR7 and FR8

W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7									
$9.2(233)$	$6.9(175)$	$10.0(253)$	$24.4(619)$	$7.4(189)$	$7.4(189)$	$1.4(35)$	$1.3(32)$	$1.0(25)$	$0.3(6)$
FR8									
$11.9(301)$	-	$13.0(330)$	$31.9(810)$	$10.2(258)$	$10.4(265)$	-	-	$1.3(33)$	$0.4(9)$

2.3

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9

Voltage	hp ($\left.\mathbf{I}_{\mathbf{H}}\right)$	H1	H2	H3	D1	D2	W1	W2	R1 Dia.	R2 Dia.
230 V	$75-100$	$45.3(1150)$	$44.1(1120)$	$42.4(1076)$	$13.4(340)$	$14.3(362)$	$18.9(480)$	$15.7(400)$	$0.8(20)$	$0.4(9)$
480 V	$150-200$									
575 V	$100-175$									

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54 FR9, continued

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 (1)	D1	D2	D3
$18.9(480)$	$15.7(400)$	$6.5(165)$	$0.4(9)$	$2.1(54)$	$45.3(1150)$	$44.1(1120)$	$28.3(721)$	$8.0(205)$	$0.6(16)$	$7.4(188)$	$14.2(361.5)$	$13.4(340)$	$11.2(285)$

Note
(1) Brake resistor terminal box (H6) included when brake chopper ordered.
2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9 with Flange Kit

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
$20.9(530)$	$20.0(510)$	$19.1(485)$	$7.9(200)$	$0.2(5.5)$	$51.7(1312)$	$45.3(1150)$	$16.5(420)$	$3.9(100)$	$1.4(35)$	$0.4(9)$	$0.1(2)$	$24.9(362)$	$13.4(340)$	$4.3(109)$	$0.8(21)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR10 Freestanding

W1	W2	W3	W4	W5	W6	W7	H1	H2	H3	D1	D2	D3	D4	D5	D6	D7	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
$\begin{aligned} & 23.43 \\ & \text { (595) } \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & \hline 5.95 \\ & (151) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 30.11 \\ & (79) \end{aligned}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{aligned} & 20.18 \\ & (512.5) \end{aligned}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 17.44 \\ & (443) \end{aligned}$	$\begin{aligned} & 19.02 \\ & (483) \end{aligned}$	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & 20.08 \\ & (510) \end{aligned}$	$\begin{aligned} & 0.83 \\ & (21) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (11) \end{aligned}$	$\begin{gathered} \hline 857 \\ (389) \end{gathered}$

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
FR10 Open Chassis ©

Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4	Weight Lbs (kg)
480 V	250-350	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (425) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (30) \end{aligned}$	$\begin{aligned} & 2.6 \\ & \text { (67) } \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & 45.9 \\ & (1165) \end{aligned}$	$\begin{aligned} & 44.1 \\ & (1121) \end{aligned}$	$\begin{aligned} & 34.6 \\ & (879) \end{aligned}$	$\begin{aligned} & 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & 0.7 \\ & \text { (17) } \end{aligned}$	$\begin{aligned} & 24.7 \\ & (627) \end{aligned}$	$\begin{aligned} & 10.8 \\ & (275) \end{aligned}$	$\begin{aligned} & 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & 16.6 \\ & \text { (421) } \end{aligned}$	$\begin{aligned} & 518 \\ & (235) \end{aligned}$
575 V	200-300																	

Note
(1) 9000X FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21, FR11 Freestanding Drive

Voltage	hp (l_{H})	W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
480	400-550	$\begin{aligned} & 31.26 \\ & (794) \end{aligned}$	$\begin{aligned} & 2.40 \\ & (61) \end{aligned}$	$\begin{aligned} & 6.50 \\ & (165) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 3.43 \\ & (87) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 2.52 \\ & \text { (64) } \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{aligned} & 20.18 \\ & (512.5) \end{aligned}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 19.09 \\ & (485) \end{aligned}$	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & 0.83 \\ & (21) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.43 \\ & (9 \times 11) \end{aligned}$	$\begin{aligned} & 526 \\ & (239) \end{aligned}$

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)

FR11 Open Chassis

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Inverter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 21.77 \\ & (553) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 9.64 \\ & (244.8) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 683 \\ & (310) \end{aligned}$

Notes

9000 X FR14 is built of two FR13 modules. Please refer to SPX9000 installation manual for mounting instructions.
FR13 is built from an inverter module and a converter module. Please refer to SPX9000 installation manual for mounting instructions.
2.3

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
$\begin{aligned} & 18.74 \\ & (476) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 17.52 \\ & (445) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & \hline 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 295 \\ & (134) \end{aligned}$

Number of Input Units

480V Catalog Number	hp	Input Modules		690V Catalog Number	hp	Input Modules
SPX800A0-4A2N1	800	2				
					SPX800A0-5A2N1	800
SPX900A0-5A2N1	900	2				

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter-900/1000 hp 480V

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
27.87	5.91 (150)	26.65	$\begin{aligned} & \hline 4.57 \\ & (116) \end{aligned}$	3.35	41.54 (1055)	2.46	39.86	41.34 (1050)	0.69	14.69	0.51	0.73	6.42	2.56	1.06	1.57	5.91	5.24	0.35×0.59	0.18	0.51	0.37	443
(708)	(150)	(677)	(116)	(85)	(1055)	(62.5)	(1012.5)	(1050)					(163)	(65)		(40)	(150)	(133)		(4.6)	(13)	(9.5)	(201)

Number of Input Units

480V Catalog Number	hp	Input Modules
SPX900A0-4A2N1	900	3
SPXH10A0-4A2N1	1000	3

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)

AC Choke Dimensions

Choke Types Catalog Number	Frame Size	Choke Type ${ }^{(1)}$	Catalog Number	Frame Size	Choke Type ${ }^{(1)}$
Voltage Range 380-500V			Voltage Range 525-690V		
SPX 2504	FR10	CHK0400	SPX 2005	FR10	CHK0261
SPX 3004		CHK0520	SPX 2505		CHK0400
SPX 3504		CHK0520	SPX 3005		CHK0400
SPX 4004	FR11	$2 \times$ CHK0400	SPX 4005	FR11	CHK0520
SPX 5004		$2 \times$ CHK0400	SPX 4505		CHK0520
SPX 5504		$2 \times$ CHK0400	SPX 5005		$2 \times$ CHK0400
SPX 6004	FR12	$2 \times$ CHK0520	SPX 5505	FR12	$2 \times$ CHK0400
SPX 6504		$2 \times$ CHK0520	SPX 6005		$2 \times$ CHK0400
SPX 7004		$2 \times$ CHK0520	SPX 7005		$2 \times$ CHK0400
SPX 8004	FR13	$2 \times$ CHK0400	SPX 8005	FR13	$2 \times$ CHK0400
SPX 9004		$3 \times$ CHK0520	SPX 9005		$2 \times$ CHK0400
SPX H10 4		$3 \times$ CHK0520	SPX H10 5		$2 \times$ CHK0400
SPX H12 4	FR14	$4 \times$ CHK0520	SPX H13 5	FR14	$4 \times$ CHK0400
SPX H16 4		$6 \times$ CHK0400	SPX H15 5		$6 \times$ CHK0400

CHK0520

Note

(1) Chokes are provided with all FR10-FR14 drives.

Approximate Dimensions in Inches (mm)

CHK0400

CHK0261

SVX9000 Enclosed Drives

Product Description

- Standard Enclosedcovers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options.
- Modified Standard Enclosed-applies to specific customer requirements that vary from the standard enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Consult your Eaton representative for assistance in pricing and lead time.
- Custom Engineeredfor those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Consult your Eaton representative for assistance in pricing and lead time.

Contents

Description	Page
SVX9000 Open Drives	V6-T2-17
SVX9000 Enclosed Drives	
Product Identification	V6-T2-53
Catalog Number Selection	V6-T2-54
Product Selection	V6-T2-55
Options	V6-T2-59
Technical Data and Specifications	V6-T2-65
Wiring Diagram	V6-T2-66
Dimensions	V6-T2-67
SVX9000 VFD Pump Panels	V6-T2-78

Features

- NEMA Type 1/IP21 or

NEMA Type 12/IP54 enclosures

- Input voltage: 208V, 230V, 480 V and 575 V (consult factory)

Standards and Certifications

- UL Listed
- cUL Listed

- Complete range of control, network and power options
- Horsepower range:
- 208V-3/4 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$: 1 to 100 hp I
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- 480V-1 to $700 \mathrm{hp} \mathrm{I}_{\mathrm{H}} ;$ 1-1/2 to $800 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- HMCP padlockable

Product Identification

Enclosed 9000X Series Drive

1 Door mounted keypad (included as standard with bypass option)
2 SVX9000 variable frequency drive
3 Input disconnect (HMCP)

- Option P1

4 Input line fuses

- Option P3

5 Input contactor (included as standard with bypass option)

6 Output contactor

- Option PE (included as standard with bypass option)
7 Bypass contactor
- Option RB
- Option RA

8 Overload relay

- Option PH
- Option PI

9115 V control transformer

- Option KB

10 Bypass pilot lights and selector switches

- Option RB
- Option RA
- Option L2
- Option KF

11 Customer control and signal connection terminal block
12 Control relay

Adjustable Frequency Drives
SVX9000 Drives

Catalog Number Selection
SVX9000 Enclosed NEMA Type 1/IP21 and NEMA Type 12/IP54 Drives

Control Options	
$\begin{aligned} \text { B1 }= & 6 \text { DI, } 1 \text { ext +24 Vdc/EXT }+24 \mathrm{Vdc} \\ \text { B2 }= & 1 \text { RO (NC-NO), } 1 \text { RO (NO), } 1 \text { therm } \\ \text { B4= } & 1 \mathrm{Al} \text { (mA isolated), } 2 \text { AO (mA isolated), } \\ & 1 \text { ext }+24 \mathrm{Vdc} / E X T+24 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & \text { B5 }=3 \text { RO (NO) } \\ & \text { B8 }=1 \text { ext }+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}, 3 \mathrm{Pt} 100 \\ & \text { B9 }=1 \text { RO (NO), } 5 \mathrm{DI} 42-240 \mathrm{Vac} \text { input } \end{aligned}$

Engineered Options	
HT	High temperature rating for $50^{\circ} \mathrm{C}\left(\right.$ FR10 and above) ${ }^{(8)}$ VB

Notes

(1) Local/remote keypad is included as the standard control panel.
${ }^{(2)}$ Brake chopper is a factory installed option only, see drive options on Page V6-T2-18. External dynamic braking resistors not included. Consult factory.
(3) Includes local/remote speed reference switch.
(4) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(5) See Pages V6-T2-61 and V6-T2-62 for descriptions.
(6) See Pages V6-T2-59 and V6-T2-60 for complete descriptions.
(7) Applicable only with FR10 and FR11 freestanding designs.
(8) Consult Eaton for availability.

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or
greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted local/remote keypad and enclosure.
- If dynamic brake chopper or control/communication option is desired, change the appropriate code in the base catalog number.
- Select enclosed options. Add the codes as suffixes to the base catalog number in alphabetical and numeric order.
- Read all footnotes.

208V Drives

Input Base Drives

Enclosure Size ${ }^{1}$	hp	Current (A)	NEMA Type 1/IP21	
			Frame Size	Base Catalog Number ${ }^{(2)}$
High Overload Drive and Enclosure				
0	3/4	3.7	4	SVXF0711EA
	1	4.8		SVX00111EA
	1-1/2	6.6		SVXF1511EA
	2	7.8		SVX00211EA
	3	11		SVX00311EA
0	5	17.5	5	SVX00511EA
	7-1/2	25		SVX00711EA
1	10	31	6	SVX01011EA
	15	48		SVX01511EA
2	20	61	7	SVX02011DA
	25	75		SVX02511DA
	30	88		SVX03011DA
3	40	114	8	SVX04011DA
4	50	143	8	SVX05011DA
5	60	170	8	SVX06011DA
	75	211	9	SVX07511DA
	100	273		SVX10011DA
Low Overload Drive and Enclosure				
0	1	4.8	4	SVX00111BA
	1-1/2	6.6		SVXF1511BA
	2	7.8		SVX00211BA
	3	11		SVX00311BA
	5	17.5	5	SVX00511BA
	7-1/2	25		SVX00711BA
	10	31		SVX01011BA
1	15	48	6	SVX01511BA
	20	61		SVX02011BA
2	25	75	7	SVX02511AA
	30	88		SVX03011AA
	40	114		SVX04011AA
3	50	-	8	SVX05011AA
4	60	170	8	SVX06011AA
5	(3)	$205{ }^{3}$	8	SVX07511AA
	(3)	261 (3)	9	SVX10011AA

NEMA Type 12/IP54	
Frame Size	Base Catalog Number ${ }^{(2)}$
4	SVXF0721EA
	SVX00121EA
	SVXF1521EA
	SVX00221EA
	SVX00321EA
5	SVX00521EA
	SVX00721EA
6	SVX01021EA
	SVX01521EA
7	SVX02021DA
	SVX02521DA
	SVX03021DA
8	SVX04021DA
8	SVX05021DA
8	SVX06021DA
9	SVX07521DA
	SVX10021DA
4	SVX00121BA
	SVXF1521BA
	SVX00221BA
	SUX00321BA
5	SVX00521BA
	SVX00721BA
	SVX01021BA
6	SVX01521BA
	SVX02021BA
7	SVX02521AA
	SVX03021AA
	SVX04021AA
8	SVX05021AA
8	SVX06021AA
8	SVX07521AA
9	SVX10021AA

Notes

For brake chopper options, see Page V6-T2-63.
(1) See enclosure dimensions starting on Page V6-T2-67.
(2) Includes drive, local/remote keypad and enclosure.
(3) These units are current rated ($75 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 205 \mathrm{amps}, 100 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 261 \mathrm{amps}$). They are not hp rated
2.3

Adjustable Frequency Drives
SVX9000 Drives

230V Drives

SVX9000 Enclosed Drives	Input Base Drives						
	Enclosure Size ${ }^{1}$	hp	Current (A)	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{(2)}$
	High Overload Drive and Enclosure						
	0	3/4	3.7	4	SVXF0712EA	4	SVXF0722EA
		1	4.8		SVX00112EA		SVX00122EA
		1-1/2	6.6		SVXF1512EA		SVXF1522EA
		2	7.8		SVX00212EA		SVX00222EA
		3	11		SVX00312EA		SVX00322EA
		5	17.5	5	SVX00512EA	5	SVX00522EA
		7-1/2	25		SVX00712EA		SVX00722EA
	1	10	31	6	SVX01012EA	6	SVX01022EA
		15	48		SVX01512EA		SVX01522EA
	2	20	61	7	SVX02012DA	7	SVX02022DA
		25	75		SVX02512DA		SVX02522DA
		30	88		SVX03012DA		SVX03022DA
	3	40	114	8	SVX04012DA	8	SVX04022DA
	4	50	140	8	SVX05012DA	8	SVX05022DA
	5	60	170	8	SVX06012DA	8	SVX06022DA
		75	205	9	SVX07512DA	9	SVX07522DA
		100	261		SVX10012DA		SVX10022DA
	Low Overl	ad Dris	and Enclos				
	0	1	4.8	4	SVX00112BA	4	SVX00122BA
		1-1/2	6.6		SVXF1512BA		SVXF1522BA
		2	7.8		SVX00212BA		SVX00222BA
		3	11		SVX00312BA		SVX00322BA
		5	17.5	5	SVX00512BA	5	SVX00522BA
		7-1/2	25		SVX00712BA		SVX00722BA
		10	31		SVX01012BA		SVX01022BA
	1	15	48	6	SVX01512BA	6	SVX01522BA
		20	61		SVX02012BA		SVX02022BA
	2	25	75	7	SVX02512AA	7	SVX02522AA
		30	88		SVX03012AA		SVX03022AA
		40	114		SVX04012AA		SVX04022AA
	3	50	140	8	SVX05012AA	8	SVX05022AA
	4	60	170	8	SVX06012AA	8	SVX06022AA
	5	75	205	8	SVX07512AA	8	SVX07522AA
		(3)	261 (3)	9	SVX10012AA	9	SVX10022AA

Notes

For brake chopper options, see Page V6-T2-63
(1) See enclosure dimensions starting on Page V6-T2-67
(2) Includes drive, local/remote keypad and enclosure.
(3) This unit is current rated (100 I L hp $100 \mathrm{amps}, 261 \mathrm{I}_{\mathrm{L}} \mathrm{hp}$). It is not hp rated

480V Drives

SVX9000 Enclosed Drives	Input Base Drives						
				NEMA Type 1/IP21		NEMA Type 12/IP54	
	Enclosure Size ${ }^{1}$	hp	Current (A)	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{2}$
	High Overload Drive and Enclosure						
	0	1	2.2	4	SVX00114EA	4	SVX00124EA
		1-1/2	3.3		SVXF1514EA		SVXF1524EA
		2	4.3		SVX00214EA		SVX00224EA
		3	5.6		SVX00314EA		SVX00324EA
		5	7.6		SVX00514EA		SVX00524EA
		7-1/2	12	5	SVX00714EA	5	SVX00724EA
		10	16		SVX01014EA		SVX01024EA
		15	23		SVX01514EA		SVX01524EA
	1	20	31	6	SVX02014EA	6	SVX02024EA
		25	38		SVX02514EA		SVX02524EA
		30	46		SVX03014EA		SVX03024EA
	2	40	61	7	SVX04014DA	7	SVX04024DA
		50	72		SVX05014DA		SVX05024DA
		60	87		SVX06014DA		SVX06024DA
	3	75	105	8	SVX07514DA	8	SVX07524DA
		100	140		SVX10014DA		SVX10024DA
	4	125	170	8	SVX12514DA	8	SVX12524DA
	5	150	205	9	SVX15014DA	9	SVX15024DA
		200	245		SVX20014DA		SVX20024DA
	6,83(4)	250	300	10	SVX25014DA	10	SVX25064DA
		300	385		SVX30014DA		SVX30064DA
		350	460		SVX35014DA		SVX35064DA
	8,9(4)	400	520	11	SVX40014DA	11	SVX40064DA
		500	590		SVX50014DA		SVX50064DA
		550	650		SVX55014DA		SVX55064DA
	©	600	730	12	SVX60014DA	12	SVX60064DA
		650	820		SVX65014DA		SVX65064DA
		700	920		SVX70014DA		SVX70064DA

Notes

For brake chopper options, see Page V6-T2-63
(1) See enclosure dimensions starting on Page V6-T2-67
(2) Includes drive, local/remote keypad and enclosure.
(3) The smaller enclosure Size 6 accommodates only power options, input disconnect (P1) and input line fuses (P3).

Bypass and other options require Size 8. Adding any standard control option will not require the larger enclosure. (4) For other options, consult factory.
(5) The smaller enclosure Size 8 accommodates only power options, input disconnect (P1) and input line fuses (P3). Bypass and other options require Size 9. Adding any standard control option will not require the larger enclosure. (6) Consult Eaton.
2.3

SVX9000 Enclosed Drives	Input Base Drives, continued						
			NEMA Type 1/IP21			NEMA Type 12/IP54	
	Enclosure Size ${ }^{(1)}$	hp	Current (A)	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{(2)}$
	Low Overload Drive and Enclosure						
	0	1-1/2	3.3	4	SVXF1514BA	4	SVXF1524BA
		2	4.3		SVX00214BA		SVX00224BA
		3	5.6		SVX00314BA		SVX00324BA
		5	7.6		SVX00514BA		SVX00524BA
		7-1/2	12		SVX00714BA		SVX00724BA
		10	16	5	SVX01014BA	5	SVX01024BA
		15	23		SVX01514BA		SVX01524BA
		20	31		SVX02014BA		SVX02024BA
	1	25	38	6	SVX02514BA	6	SVX02524BA
		30	46		SVX03014BA		SVX03024BA
		40	61		SVX04014BA		SVX04024BA
	2	50	72	7	SVX05014AA	7	SVX05024AA
		60	87		SVX06014AA		SVX06024AA
		75	105		SVX07514AA		SVX07524AA
	3	100	140	8	SVX10014AA	8	SVX10024AA
	4	125	170	8	SVX12514AA	8	SVX12524AA
		150	205		SVX15014AA		SVX15024AA
	5	200	261	9	SVX20014AA	9	SVX20024AA
		250	300		SVX25014AA		SVX25024AA
	6, $8^{3(4)}$	300	385	10	SVX30014AA	10	SVX30064AA
		350	460		SVX35014AA		SVX35064AA
		400	520		SVX40014AA		SVX40064AA
	8,9(4)	500	590	11	SVX50014AA	11	SVX50064AA
		550	650		SVX55014AA		SVX55064AA
		600	730		SVX60014AA		SVX60064AA
	©	650	820	12	SVX65014AA	12	SVX65064AA
		700	920		SVX70014AA		SVX70064AA
		800	1030		SVX80014AA		SVX80064AA

Notes

For brake chopper options, see Page V6-T2-63
(1) See enclosure dimensions starting on Page V6-T2-67.
(2) Includes drive, local/remote keypad and enclosure.
(3) The smaller enclosure Size 6 accommodates only power options, input disconnect (P1) and input line fuses (P3). Bypass and other options require Size 8. Adding any standard control option will not require the larger enclosure.
(4) For other options, consult factory.
(5) The smaller enclosure Size 8 accommodates only power options, input disconnect (P1) and input line fuses (P3). Bypass and other options require Size 9 . Adding any standard control option will not require the larger enclosure.
(6) Consult Eaton.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	\square	\square	\square	\square	-	\square	\square
6 DI, 1 DO, 2 AI, 1AO, 1 +10 Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	■	■	■	■	-	\square	-
Extended I/O Cards										
2 RO, therm-SPX only	B	OPTA3	A3	-	\square	\square	\square	-	\square	\square
Encoder low volt +5V/15V/24V—SPX only	C	OPTA4	A4	-	\square	\square	\square	-	\square	\square
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$-SPX only	C	OPTA5	A5	-	\square	\square	\square	-	\square	\square
Double encoder-SPX only	C	OPTA7	A7	-	\square	-	\square	-	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$-SPX only	A	OPTA8	A8	-	\square	\square	\square	-	\square	\square
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)-SPX only	C	OPTAE	AE	-	-	-	-	-	■	-
$6 \mathrm{DI}, 1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	\square	\square
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	■	\square	-	■	-	\square	■
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	\square
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	-	\square	\square	\square	-	\square	\square
Modbus TCP	D, E	OPTCI	CI	\square	\square	\square	\square	-	\square	\square
BACnet	D, E	OPTCJ	CJ	-	\square	\square	\square	-	\square	\square
Ethernet IP	D, E	OPTCK	CK	\square	\square	\square	\square	-	\square	\square
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	\square						
LonWorks	D, E	OPTC4	C4	\square	\square	\square	\square	-	\square	\square
Profibus DP (D9 connector)	D, E	OPTC5	C5	-	\square	\square	\square	-	\square	\square
CanOpen (slave)	D, E	OPTC6	C6	-	\square	\square	\square	\square	\square	\square
DeviceNet	D, E	OPTC7	C7	\square						
Modbus (D9 type connector)	D, E	OPTC8	C8	-	\square	\square	\square	-	\square	\square
Adapter-SPX only	D, E	OPTD1	D1	-	\square	\square	\square	-	\square	\square
Adapter-SPX only	D, E	OPTD2	D2	-	\square	\square	\square	-	\square	\square
RS-232 with D9 connection	D, E	OPTD3	D3	\square	\square	\square	-	-	\square	-
Keypad										
9000X Series local/remote keypad	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad kit (keypad not included)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the $9000 \times$ Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network

 CommunicationsThe BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps
communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

SVX Conversion Kit

Frame 4-7 ©

Frame Size	Enclosure Size	Delivery Code	Catalog Number
FR4	0	FB10	OPTCON-SVXFR4-SZOO
	1		OPTCON-SVXFR4-SZ01
FR5	0	FB10	OPTCON-SVXFR5-SZOO
	1		OPTCON-SVXFR5-SZ01
FR6	1	FB10	OPTCON-SVXFR6-SZ01
	2		OPTCON-SVXFR6-SZ02
FR7	2	FB10	OPTCON-SVXFR7-SZ02

Note
(1) The kit consists of a flange kit, adapter plate(s), hardware, remote keypad kit and SVX9000 decal.

Control/Communication Option Descriptions

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the SVX9000 with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the speed potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the SVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K3	3-15 PSIG Follower—Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8 Vdc or a 1-9 Vdc signal interface with the SVX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via $6 \mathrm{ft}(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ in $(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations-Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to k (keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include keypad, I/O and fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch-Provides a door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START/STOP Pushbuttons-Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KB	115V Control Transformer, 550 VA -Provides a fused control power transformer with additional 550 VA at 115 V for customer use.	Control
KF	Bypass Test Switch for RB and RA—Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The test switch is mounted on the inside of the enclosure door.	Addl. bypass
K0	Standard Elapsed Time Meter-Provides a door-mounted elapsed run time meter.	Control
L1	Power On and Fault Pilot Lights-Provide a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in inverter mode and an amber light that indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. bypass
LA	Green RUN Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ g r e e n ~ r u n ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
LD	Green STOP Light ($22 \mathrm{mm)-Provides} \mathrm{a} \mathrm{green} \mathrm{light} \mathrm{that} \mathrm{indicates} \mathrm{the} \mathrm{drive} \mathrm{is} \mathrm{stopped}$.	Light
LE	Red RUN Pilot Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ r e d ~ r u n ~ p i l o t ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
LF	Red STOP Light (22 mm) —Provides a red stop light that indicates the drive is stopped.	Light
LJ	White Power On Light ($\mathbf{2 2} \mathbf{~ m m) — T h e ~} 22 \mathrm{~mm}$ white light that illuminates when the drive assembly is powered.	Light
LU	Misc. Light ($\mathbf{2 2 ~ m m) ~ - ~ P r o v i d e s ~ a ~ m i s c . ~ " u s e r ~ d e f i n e d " ~ p i l o t ~ l i g h t . ~ U s e r ~ t o ~ d e f i n e ~ l i g h t ~ f u n c t i o n ~ a n d ~ c o l o r . ~}$	Light
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0} \mathbf{k A I C}$-High Interrupting Motor Circuit Protector (HMCP) that provides a means of short circuit protection for the power cables between it and the SVX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SVX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P2	Disconnect Switch—Disconnect switch option is applicable only with NEMA Type 1/IP21 and NEMA Type 12/IP54 freestanding drives. Allows a convenient means of disconnecting the SVX9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0} \mathbf{~ k A I C - P r o v i d e s ~ h i g h - l e v e l ~ f a u l t ~ p r o t e c t i o n ~ o f ~ t h e ~ S V X 9 0 0 0 ~ i n p u t ~ p o w e r ~ c i r c u i t ~ f r o m ~ t h e ~ l o a d ~ s i d e ~ o f ~ t h e ~ f u s e s ~ t o ~ t h e ~ i n p u t ~ s i d e ~ o f ~ t h e ~}$ power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor-Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
PE	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at $10 \mathrm{~A}, 600 \mathrm{Vac}$ are provided for customer use. Bypass options $\mathbf{R B}$ and $\mathbf{R A}$ include an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
PF	Output Filter-Used to reduce the transient voltage (DV/DT) at the motor terminals. The output filter is recommended for cable lengths exceeding $100 \mathrm{ft}(30 \mathrm{~m})$ with a drive of 3 hp and above, for cable lengths of $33 \mathrm{ft}(10 \mathrm{~m})$ with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a brake chopper circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0} \mathbf{f t}$) $\mathbf{1 0 0 0} \mathbf{V / H S}$ DV/DT Filter—Used to reduce transient voltage (DV/DT) and peak voltages at the motor terminals. This option is comprised of a 0.5% line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the output filter (See option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600 \mathrm{ft}(91-183 \mathrm{~m})$. This option can not be used with the brake chopper circuit. The output filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay-Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the bypass configurations for overload current protection in the bypass mode. The overload relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output

Adjustable Frequency Drives

SVX9000 Drives

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options, continued

Option	Description	Option Type
PI	Dual Overload Relays-This option is recommended when a single drive is operating two motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass-This option is recommended when a single drive is operating two motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. bypass
RA	Manual HOA Bypass Controller-The manual HAND/OFF/AUTO (HOA)-3-contactor—bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page V6-T2-66).	Bypass
RB	Manual IOB Bypass Controller-The manual INVERTER/OFF/BYPASS (IOB)—3-contactor—bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page V6-T2-66).	Bypass
RC	Auto Transfer HOA Bypass Controller-The manual HAND/OFF/AUTO (HOA)—3-contactor—bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp, an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page V6-T2-66). Door-mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller-The auto INVERTER/OFF/BYPASS (IOB)—3-contactor—bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page V6-T2-66). Door-mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
S5	Floor Stand 22 in-Converts a Size 1 or 2, normally wall mounted enclosure to a floor standing enclosure with a height of 22 in (558.8 mm).	Enclosure
S6	Floor Stand $12 \mathbf{i n - C o n v e r t s ~ a ~ S i z e ~ 2 , ~ n o r m a l l y ~ w a l l ~ m o u n t e d ~ e n c l o s u r e ~ t o ~ a ~ f l o o r ~ s t a n d i n g ~ e n c l o s u r e ~ w i t h ~ a ~ h e i g h t ~ o f ~} 12$ in (304.8 mm).	Enclosure
S7	10 in Expansion-In a Size 5 enclosure, the extension allows for bottom cable entry and additional space for customer mounted components. NOTE: Enclosure expansion rated NEMA Type 1/IP21 only.	Enclosure
S8	$\mathbf{2 0}$ in Expansion-In a Size 5 enclosure, the extension allows for bottom cable entry and additional space for customer mounted components. When the output filter (option PF) is selected for a drive using a Size 5 enclosure, this expansion box is required and included in the option pricing. Enclosure expansion rated NEMA Type 1/IP21 only.	Enclosure
S9	Space Heater-Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures 0 and 1 , and a 400 W heater is installed in enclosures $2-5$. Requires a customer supplied 115 V remote supply source.	Enclosure

Enclosed Drive Options

Brake Chopper Options

The brake chopper circuit option is used for applications that require dynamic braking. Dynamic braking resistors are not included with drive
purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

For brake chopper circuit selection and adder-NEMA Type 1/IP21, NEMA Type 12/ IP54, consult the factory.

Conformal (Varnished)
Coating (2)

Chassis Frame	Delivery Code
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP
FR13	FP
FR14	FP

208 V and 230 V Control Options-3/4-100 hp (3)

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
$3-15$ psig follower	K3
HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	K4
MANUAL/AUTO ref switch $(22 \mathrm{~mm})$	K5
START/STOP pushbuttons $(22 \mathrm{~mm})$	K6
115 Volt control transformer 550 VA	KB
Standard elapsed time meter	K0

208 V and 230 V Light Options $-3 / 4-100 \mathrm{hp}{ }^{3}$

Description	Catalog Number Suffix
Power on/fault pilot lights $(22 \mathrm{~mm})$	L1
Green RUN light $(22 \mathrm{~mm})$	LA
Green STOP light $(22 \mathrm{~mm})$	LD
Red RUN light $(22 \mathrm{~mm})$	LE
Red STOP light $(22 \mathrm{~mm})$	LF
Power on light $(22 \mathrm{~mm})$	LJ
Misc. light $(22 \mathrm{~mm})$	LU

480V Control Options-1-800 hp (3)

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
$3-15$ psig follower	K3
HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	K4
MANUAL/AUTO ref switch $(22 \mathrm{~mm})$	K5
START/STOP pushbuttons $(22 \mathrm{~mm})$	K6
115 Volt control transformer 550 VA	KB
Standard elapsed time meter	K0

480V Light Options - 1-800 hp (3)

Description	Catalog Number Suffix
Power on/fault pilot lights $(22 \mathrm{~mm})$	L1
Green RUN light $(22 \mathrm{~mm})$	LA
Green STOP light $(22 \mathrm{~mm})$	LD
Red RUN light $(22 \mathrm{~mm})$	LE
Red STOP light $(22 \mathrm{~mm})$	LF
Power on light $(22 \mathrm{~mm})$	LJ
Misc. light $(22 \mathrm{~mm})$	LU

Notes

(1) External dynamic braking resistors not included. Consult factory.
(2) See Product Selection on Pages V6-T2-55 to V6-T2-58, 208V, 230V and 480V. Consult the factory for adder
(3) Consult factory for adder information.

208V and 230V Bypass Options, 3/4-100 hp (®)

Description	Catalog Number Suffix
Bypass test switch for RA, RB land RC, RD—230V)	KF
Bypass pilot lights for RA, RB options	L2
Dual overloads for bypass	PN
Manual HOA bypass controller	RA
Manual IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD

480V Bypass Options, 1-800 hp (12)

Description	Catalog Number Suffix
Bypass test switch for RA, RB, RC, RD	KF
Bypass pilot lights for RA, RB options	L2
Dual overloads for bypass	PN
Manual HOA bypass controller	RA
Manual IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD

208V and 230V Enclosure Options, Sizes 0-5 (2)

Description	Catalog Number Suffix
Floor stand 22 in $(558.8 \mathrm{~mm})$	$\mathbf{S 5}$
Floor stand 12 in $(304.8 \mathrm{~mm})$	$\mathbf{S 6}$
10 in $(254 \mathrm{~mm})$ expansion ${ }^{(3)}$	$\mathbf{S 7}$
20 in $(508 \mathrm{~mm})$ expansion	$\mathbf{S 8}$
Space heater ${ }^{(4)}$	$\mathbf{S 9}$

480V Enclosure Options, Sizes 0-9 (2)

Description	Catalog Number Suffix
Floor stand 22 in $(558.8 \mathrm{~mm})$	S5
Floor stand 12 in $(304.8 \mathrm{~mm})$	S6
10 in $(254 \mathrm{~mm})$ expansion ${ }^{(3)}$	S7
20 in $(508 \mathrm{~mm})$ expansion	$\mathbf{S 8}$
Space heater ${ }^{(4)}$	$\mathbf{S 9}$

Notes

(1) See Page V6-T2-62 for details.
(2) Consult factory for adder information.
(3) See Page V6-T2-67 for dimensions.
(4) Requires customer supplied 115 Vac supply.
(5) Not required for 208 V and 230 V applications.
(6) Output filter may be required whenever the distance from the drive to the motor exceeds $100 \mathrm{ft}(30 \mathrm{~m})$. Refer to Page V6-T2-61, option PF for further details.".
(7) Heater packs not included.
(8) Applicable with FR10 and FR11 freestanding designs only.

Technical Data and Specifications

9000X Enclosed Drives

Description	NEMA Type 1/IP21 or NEMA Type 12/IP54 Specification
Primary Design Features	
$45-66 \mathrm{~Hz}$ input frequency	Standard
Output: AC volts maximum	Input voltage base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current ($\left.\right\|_{H}$)	250\% for 2 seconds
Overload (1 minute [$\left[\begin{array}{l}H\end{array} / L \mathrm{~L}\right]$)	150\%/110\%
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL
Protection Features	
Incoming line fuses	Optional
AC input circuit disconnect	Optional
Line reactors	Standard
Phase rotation insensitive	Standard
EMI filter	Standard
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Standard

Description	NEMA Type 1/IP21 or NEMA Type 12/IP54 Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
0-10 Vdc potentiometer/voltage signal	Standard
4-20 mA Isolated	Configurable
4-20 mA Differential	Configurable
3-15 psig	Optional
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Optional
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	1 (2 relays Form C)
Open collector outputs	1
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {TM }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
Lonworks®	Optional
Johnson Controls Metasys ${ }^{\text {™ }}$ N2	Optional

9000X Enclosed Drives, continued

Description	NEMA Type 1/IP21 or NEMA Type 12/IP54 Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Optional (1)
Dynamic braking	Standard
DC braking	Programmable
PID setpoint controller	Standard
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	7
Jog at preset speed	Selectable
Thread/preset speeds	Standard
Automatic restart	Standard
Coasting motor start	Optional
Coast or ramp stop selection	$1-16$ kHz
Elapsed time meter	Carrier frequency adjustment

Standard Conditions for Application and Service

Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), non-condensing	95%
Altitude (maximum without derate)	$3300 \mathrm{ft}(1000 \mathrm{~m})$
Line voltage variation	$+10 /-15 \%$
Line frequency variation	$45-66 \mathrm{~Hz}$
Efficiency	$>96 \%$
Power factor (displacement)	>0.94

Wiring Diagram

Power Diagram for Bypass Options RB and RA

Standard I/O Specifications

Description	Specification
Six-digital input programmable	24V: "0" $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{kohms}$
Two-analog input configurable w/jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms
Two-digital output programmable	Form C relays 250 Vac 30 Vdc 2 amp resistive
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$
One digital output programmable	Open collector 48 Vdc 50 mA

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}} \geq 200$ kohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250$ ohms
Digital input	24 V : "0" $\leq 10 \mathrm{~V}, \mathrm{"1}{ }^{\text {" }}$ 18V, $\mathrm{B}_{\mathrm{i}}>5$ kohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)-20 mA, $\mathrm{R}_{\mathrm{L}}=500$ kohms resolution 10 bit, accuracy $\leq \pm 2 \%$
Analog voltage, output	0 (2)-10V, $\mathrm{R}_{\mathrm{L}} \geq 1$ kohms, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output	
Maximum switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Maximum switching load	8A/24 Vdc, 0.4A/300 Vdc, $2 \mathrm{kVA} / 250 \mathrm{Vac}$
Maximum continuous load	2 Arms
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7$ kohms
Encoder input	24V: "0" $\leq 10 \mathrm{~V}, " 1$ " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=2.2$ kohms 5 V : "0" $\leq 2 \mathrm{~V}, " 1 " \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=330$ ohms

Note
(1) Some horsepower units include dynamic braking chopper as standard-refer to individual drive sections.

Dimensions

Approximate Dimensions in Inches (mm)

9000X Enclosed Drives

Size 0

For reference only, dimensions are subject to change.

Wide	HighB	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting D							Door Height	Min. Air Space	
A					E	E1	F	G	G1	H	J	K
19.9 (504)	29.0 (737)	16.4 (416)	18.3 (465)	-	-	-	27.4 (695)	-	-	25.4 (644)	4.0 (102)	3.0 (76)
Cable Entry L	M	N	P	R			CB Handle T	U	V	W	Max. Ap Shipping Lbs (kg)	eight
5.0 (127)	-	-	6.0 (152)	9.6 (245)	26.4		1.5 (38)	6.3 (160)	4.3 (108)	5.3 (134)	200 (91)	

2.3

Approximate Dimensions in Inches (mm)

Size 1

NEMA Type 1/IP21, NEMA Type 12/IP54
NEMA Type 12/IP54 Includes Cover Plates Over Louvers

NEMA Type 1/IP21, NEMA Type 12/IP54
with Floor Stand

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting						Door Height A	B	C

$\begin{aligned} & \text { Floor S } \\ & \text { X } \end{aligned}$	Y Y	Z	AA	BB	CC	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP	RR	SS	TT	UU	VV
$\begin{aligned} & 56.0 \\ & (1422) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (108) \end{aligned}$	$\begin{aligned} & 11.1 \\ & (281) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 55.2 \\ & (1402) \end{aligned}$	$\begin{aligned} & 26.0 \\ & (660) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (90) \end{aligned}$	$\begin{aligned} & 5.5 \\ & (141) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (76) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & 5.4 \\ & (136) \end{aligned}$	$\begin{aligned} & 1.1 \\ & (28) \end{aligned}$	$\begin{aligned} & 8.8 \\ & (224) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (137) \end{aligned}$	-	-	-	-	-	-

Approximate Dimensions in Inches (mm)

Size 2

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting						Door Height A	B	C	D

$\begin{aligned} & \text { Floor S } \\ & \text { X } \end{aligned}$	tand	Z	AA	BB	CC	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP	RR	SS	TT	UU	VV
$\begin{aligned} & 69.0 \\ & (1753) \end{aligned}$	$\begin{aligned} & 4.8 \\ & \text { (121) } \end{aligned}$	$\begin{aligned} & 13.6 \\ & (344) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (19) \end{aligned}$	$\begin{aligned} & 68.2 \\ & \text { (1732) } \end{aligned}$	$\begin{aligned} & 26.0 \\ & (660) \end{aligned}$	$\begin{aligned} & 4.8 \\ & \text { (121) } \end{aligned}$	$\begin{aligned} & 6.8 \\ & \text { (172) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & (76) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & 5.0 \\ & (127) \end{aligned}$	$\begin{aligned} & 1.1 \\ & (28) \end{aligned}$	$\begin{aligned} & 11.3 \\ & (288) \end{aligned}$	$\begin{aligned} & 79.0 \\ & (2007) \end{aligned}$	$\begin{aligned} & 78.2 \\ & (1986) \end{aligned}$	-	-	-	-	-

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
Size 3

NEMA Type 1/IP21, NEMA Type 12/IP54 NEMA Type 12/IP54 Includes Cover Plates Over Louvers

Bottom View

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting						Door Height Min. Air Space A B	C	D	D1
B1	E	E1	F	G	G1	H	J	K				
$26.4(671)$	$77.0(1956)$	$19.4(493)$	$19.5(495)$	$3.3(83)$	$23.0(584)$	$1.5(38)$	$11.7(298)$	$5.5(140)$	$0.9(24)$	$76.4(1939)$	$4.0(102)$	$3.0(76)$

Cable Entry					Door Clearance S	CB Handle		V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
L	M	N	P	R		T	U								
$\begin{aligned} & 5.3 \\ & (133) \end{aligned}$	$\begin{aligned} & 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 1.3 \\ & \text { (32) } \end{aligned}$	$\begin{aligned} & 12.9 \\ & (328) \end{aligned}$	$\begin{aligned} & 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (203) \end{aligned}$	$\begin{aligned} & 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & 6.8 \\ & (173) \end{aligned}$	$\begin{aligned} & 79.5 \\ & (2018) \end{aligned}$	$\begin{aligned} & 13.40 \\ & (340) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 1.3 \\ & (32) \end{aligned}$	$\begin{aligned} & 26.0 \\ & (660) \end{aligned}$	690 (313)

Approximate Dimensions in Inches (mm)
Size 4

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting						Door Height	Min. Air Space		
A	B	C	D	D1	E	E1	F	G	G1	H	J	K
$26.4(671)$	$90.0(2286)$	$19.4(493)$	$19.5(495)$	$3.3(83)$	$23.0(584)$	$1.5(38)$	$11.7(298)$	$5.5(140)$	$0.9(24)$	$89.4(2270)$	$4.0(102)$	$3.0(76)$

Cable Entry					Door Clearance S	CB Handle		V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
L	M	N	P	R		T	U								
$\begin{aligned} & 5.3 \\ & \text { (133) } \end{aligned}$	$\begin{aligned} & 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & 13.8 \\ & (351) \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { (25) } \end{aligned}$	$\begin{aligned} & \hline 11.2 \\ & (286) \end{aligned}$	$\begin{aligned} & 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (204) \end{aligned}$	$\begin{aligned} & 4.8 \\ & \text { (121) } \end{aligned}$	-	$\begin{aligned} & 92.5 \\ & (2349) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 1.3 \\ & \text { (32) } \end{aligned}$	-	-	825 (375)

2.3

Approximate Dimensions in Inches (mm)

Size 5

For reference only, dimensions are subject to change.

Approximate Dimensions in Inches (mm)
Size 5-1P

For reference only, dimensions are subject to change.

2.3

Approximate Dimensions in Inches (mm)
Size 5-2P

For reference only, dimensions are subject to change.

Approximate Dimensions in Inches (mm)
Size 6

For reference only, dimensions are subject to change. See Page V6-T2-57, notes 3 and 5 for enclosure and option selection.

Wide	High	Deep	Mounting						Door Height	Min. Air Space	
A	B	C	D	D1	E	E1	F	G	G1	H	J
$30.0(762)$	$90.0(2286)$	$26.0(660)$	$26.5(673)$	$1.8(46)$	-	-	$17.3(438)$	$5.5(140)$	-	$84.4(2143)$	$4.0(102)$

Cable L	M	N	P	R	Door	T	U	V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
$\begin{aligned} & 23.5 \\ & (597) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \end{aligned}$	$\begin{aligned} & 4.5 \\ & (114) \end{aligned}$	$\begin{aligned} & 19.3 \\ & (490) \end{aligned}$	-	$\begin{aligned} & 26.2 \\ & (667) \end{aligned}$	$\begin{aligned} & 24.8 \\ & (629) \end{aligned}$	-	-	-	$\begin{aligned} & 93.9 \\ & (2386) \end{aligned}$	-	-	-	-	1500 (681)

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
Size 8

For reference only, dimensions are subject to change. See Page V6-T2-57, notes 3 and 5 for enclosure and option selection.

Wide	High	Deep	Mounting						Door Height	Min. Air Space		
A	B	C	D	D1	E	E1	F	G	G1	H	J	K
$48.0(1219)$	$90.0(2286)$	$24.0(610)$	$42.2(1072)$	$3.0(77)$	-	-	-	$5.5(139)$	-	$84.4(2143)$	$4.0(102)$	-

Cab L	M	N	P	R	S	T	U	V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
$\begin{aligned} & 9.5 \\ & (241) \end{aligned}$	$\begin{aligned} & 37.5 \\ & \text { (952) } \end{aligned}$	$\begin{aligned} & 12.5 \\ & (318) \end{aligned}$	$\begin{aligned} & 7.7 \\ & (196) \end{aligned}$	$\begin{aligned} & 8.3 \\ & (210) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (32) \end{aligned}$	$\begin{aligned} & 31.0 \\ & (787) \end{aligned}$	$\begin{aligned} & 21.5 \\ & (545) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	-	$\begin{aligned} & 93.5 \\ & (2375) \end{aligned}$	-	-	-	-	2000 (908)

Approximate Dimensions in Inches (mm)

Size 9

For reference only, dimensions are subject to change. See Page V6-T2-57, notes 3 and 5 for enclosure and option selection.

| Wide | High | Deep | Mounting | | | | | | | | Door Height | Min. Air Space |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | B | C | D | D1 | E | E1 | F | G | G1 | H | J | K |
| $60.0(1524)$ | $90.0(2286)$ | $260.1(664)$ | $22.9(582)$ | $2.0(51)$ | $30.0(762)$ | $44.3(1125)$ | $10.6(270)$ | $10.6(270)$ | $8.2(208)$ | - | $4.0(102)$ | - |

Cable	M	N	P	R	S	T	U	V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
$\begin{aligned} & 8.5 \\ & (216) \end{aligned}$	$\begin{aligned} & 32.7 \\ & (831) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (305) \end{aligned}$	$\begin{aligned} & 11.9 \\ & (303) \end{aligned}$	$\begin{aligned} & 9.8 \\ & (249) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & 43.5 \\ & (1105) \end{aligned}$	$\begin{aligned} & 15.0 \\ & (381) \end{aligned}$	$\begin{aligned} & 7.5 \\ & (191) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{aligned} & 93.5 \\ & (2375) \end{aligned}$	$\begin{aligned} & 27.4 \\ & (696) \end{aligned}$	$\begin{aligned} & 290.1 \\ & (738) \end{aligned}$	$\begin{aligned} & 270.1 \\ & (687) \end{aligned}$	-	2500 (1135)

Adjustable Frequency Drives
SVX9000 Drives

SVX9000 VFD Pump Panels

Contents

Description	Page
SVX9000 Open Drives	V6-T2-17
SVX9000 Enclosed Drives	V6-T2-52
SVX9000 VFD Pump Panels	
Catalog Number Selection	V6-T2-79
Product Selection	V6-T2-80
Options	V6-T2-85
Technical Data and Specifications	V6-T2-89
Wiring Diagrams	V6-T2-91
Dimensions	V6-T2-92

Product Identification

SVX9000 Pump Application

Catalog Number Selection

SVX9000 Enclosed NEMA Type 12/IP54/3R Drive

Notes

(1) Consult factory.
(2) Local/remote keypad is included as the standard control panel.
(3) Brake chopper is a factory installed option only, see drive options on Page V6-T2-18. External dynamic braking resistors not included. Consult factory.
(4) Includes local/remote speed reference switch.
(5) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(6) See Page V6-T2-87 for descriptions.
(7) See Pages V6-T2-85 and V6-T2-86 for complete descriptions.
(8) Bypass options applicable only in the pump panel three-phase design.

Adjustable Frequency Drives
SVX9000 Drives

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or
greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted local/remote keypad and enclosure.
- If dynamic brake chopper or control/communication option is desired, change the appropriate code in the base catalog number.
- Select enclosed options. Add the codes as suffixes to the base catalog number in alphabetical and numeric order.
- Read all footnotes.

208V Drives

Pump Panel Style (Three-Phase)

Enclosure Size ${ }^{\text {(1) }}$	hp	NEMA Type 12/IP54		NEMA Type 3R	
		Frame Size	Base Catalog Number (2)	Frame Size	Base Catalog Number ${ }^{(2)}$
High Overload Drive and Enclosure					
A	3/4	4	SVXF0721EP	4	SVXF0731EP
	1		SVX00121EP		SVX00131EP
	1-1/2		SVXF1521EP		SVXF1531EP
	2		SVX00221EP		SVX00231EP
	3	5	SVX00321EP	5	SVX00331EP
	5		SVX00521EP		SVX00531EP
	7-1/2		SVX00721EP		SVX00731EP
	10	6	SVX01021EP	6	SVX01031EP
B	15		SVX01521EP		SVX01531EP
	20	7	SVX02021DP	7	SVX02031DP
	25		SVX02521DP		SVX02531DP
C	30		SVX03021DP		SVX03031DP
	40	8	SVX04021DP	8	SVX04031DP
	50		SVX05021DP		SVX05031DP
D	60		SVX06021DP		SVX06031DP
	75	9	SVX07521DP	9	SVX07531DP
	100		SVX10021DP		SVX10031DP
Low Overload Drive and Enclosure					
A	1	4	SVX00121BP	4	SVX00131BP
	1-1/2		SVXF1521BP		SVXF1531BP
	2		SVX00221BP		SVX00231BP
	3		SVX00321BP		SVX00331BP
	5	5	SVX00521BP	5	SVX00531BP
	7-1/2		SVX00721BP		SVX00731BP
	10		SVX01021BP		SVX01031BP
	15	6	SVX01521BP	6	SVX01531BP
B	20		SVX02021BP		SVX02031BP
	25	7	SVX02521AP	7	SVX02531AP
	30		SVX03021AP		SVX03031AP
C	40		SVX04021AP		SVX04031AP
	50	8	SVX05021AP	8	SVX05031AP
	60		SVX06021AP		SVX06031AP
D	75		SVX07521AP		SVX07531AP
	100	9	SVX10021AP	9	SVX10031AP

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.

230V Drives

SVX9000 Enclosed Drives	Pump Panel Style (Three-Phase)					
			NEMA Type 12/IP54		NEMA Type 3R	
	Enclosure Size ${ }^{(1)}$	hp	Frame Size	Base Catalog Number ${ }^{2}$	Frame Size	Base Catalog Number ${ }^{2}$
	High Overload Drive and Enclosure					
	A	3/4	4	SVXF0722EP	4	SVXF0732EP
		1		SVX00122EP		SVX00132EP
		1-1/2		SVXF1522EP		SVXF1532EP
		2		SVX00222EP		SVX00232EP
		3	5	SVX00322EP	5	SVX00332EP
		5		SVX00522EP		SVX00532EP
		7-1/2		SVX00722EP		SVX00732EP
		10	6	SVX01022EP	6	SVX01032EP
	B	15		SVX01522EP		SVX01532EP
		20	7	SVX02022DP	7	SVX02032DP
		25		SVX02522DP		SVX02532DP
	C	30		SVX03022DP		SVX03032DP
		40	8	SVX04022DP	8	SVX04032DP
		50		SVX05022DP		SVX05032DP
	D	60		SVX06022DP		SVX06032DP
		75	9	SVX07522DP	9	SVX07532DP
		100		SVX10022DP		SVX10032DP
	Low Overload Drive and Enclosure					
	A	1	4	SVX00122BP	4	SVX00132BP
		1-1/2		SVXF1522BP		SVXF1532BP
		2		SVX00222BP		SVX00232BP
		3		SVX00322BP		SVX00332BP
		5	5	SVX00522BP	5	SVX00532BP
		7-1/2		SVX00722BP		SVX00732BP
		10		SVX01022BP		SVX01032BP
		15	6	SVX01522BP	6	SVX01532BP
	B	20		SVX02022BP		SVX02032BP
		25	7	SVX02522AP	7	SVX02532AP
		30		SVX03022AP		SVX03032AP
	C	40		SVX04022AP		SVX04032AP
		50	8	SVX05022AP	8	SVX05032AP
		60		SVX06022AP		SVX06032AP
	D	75		SVX07522AP		SVX07532AP
		100	9	SVX10022AP	9	SVX10032AP

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.
2.3

Adjustable Frequency Drives
SVX9000 Drives

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.

480V Drives

SVX9000 Enclosed Drives	Pump Panel Style (Three-Phase)					
			NEMA Type 12/IP54		NEMA Type 3R	
	Enclosure Size ${ }^{1}$	hp	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{(2)}$
O-	High Overload Drive and Enclosure					
1	A	1	4	SVX00124EP	4	SVX00134EP
		1-1/2		SVXF1524EP		SVXF1534EP
蔵		2		SVX00224EP		SVX00234EP
Tut		3		SVX00324EP		SVX00334EP
		5		SVX00524EP		SVX00534EP
		7-1/2	5	SVX00724EP	5	SVX00734EP
		10		SVX01024EP		SVX01034EP
		15		SVX01524EP		SVX01534EP
		20	6	SVX02024EP	6	SVX02034EP
		25		SVX02524EP		SVX02534EP
	B	30	7	SVX03024EP	7	SVX03034EP
		40		SVX04024DP		SVX04034DP
		50		SVX05024DP		SVX05034DP
		60		SVX06024DP		SVX06034DP
	C	75	8	SVX07524DP	8	SVX07534DP
		100		SVX10024DP		SVX10034DP
		125		SVX12524DP		SVX12534DP
	D	150	9	SVX15024DP	9	SVX15034DP
		200		SVX20024DP		SVX20034DP
	Consult factory	250	10	SVX25024DP	10	SVX25034DP
		300		SVX30024DP		SVX30034DP
		350		SVX35024DP		SVX35034DP
	Low Overload Drive and Enclosure					
	A	1-1/2	4	SVXF1524BP	4	SVXF1534BP
		2		SVX00224BP		SVX00234BP
		3		SVX00324BP		SVX00334BP
		5		SVX00524BP		SVX00534BP
		7-1/2		SVX00724BP		SVX00734BP
		10	5	SVX01024BP	5	SVX01034BP
		15		SVX01524BP		SVX01534BP
		20		SVX02024BP		SVX02034BP
		25	6	SVX02524BP	6	SVX02534BP
		30		SVX03024BP		SVX03034BP
	B	40	7	SVX04024BP	7	SVX04034BP
		50		SVX05024AP		SVX05034AP
		60		SVX06024AP		SVX06034AP
		75		SVX07524AP		SVX07534AP
	C	100	8	SVX10024AP	8	SVX10034AP
		125		SVX12524AP		SVX12534AP
		150		SVX15024AP		SVX15034AP
	D	200	9	SVX20024AP	9	SVX20034AP
		250		SVX25024AP		SVX25034AP
	Consult factory	300	10	SVX30024AP	10	SVX30034AP
		400		SVX40024AP		SVX40034AP

[^5]2.3

Adjustable Frequency Drives
SVX9000 Drives

SVX9000 Enclosed Drives	Pump Panel Style (Single-Phase)					
			NEMA Type 12/IP54		NEMA Type 3R	
	Enclosure Size ${ }^{(1)}$	hp	$\begin{aligned} & \text { Frame } \\ & \text { Size } \end{aligned}$	Base Catalog Number ${ }^{2}$	Frame Size	Base Catalog Number (2)
$2 \sqrt{2}=$	Low Overload Drive and Enclosure					
	A	3/4	4	SVXF072KBP	4	SVXF073KBP
		1		SVX0012KBP		SVX0013KBP
范圈		2		SVX0022KBP		SVX0023KBP
		3		SVX0032KBP		SVX0033KBP
		5	5	SVX0052KBP	5	SVX0053KBP
		7-1/2		SVX0072KBP		SVX0073KBP
		10		SVX0102KBP		SVX0103KBP
		15	6	SVX0152KBP	6	SVX0153KBP
		20		SVX0202KBP		SVX0203KBP
	B	25	7	SVX0252KAP	7	SVX0253KAP
		30		SVX0302KAP		SVX0303KAP
	C	40	8	SVX0402KAP	8	SVX0403KAP
		50		SVX0502KAP		SVX0503KAP
		60		SVX0602KAP		SVX0603KAP

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	■	\square	■	\square	-	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	■	\square	-	\square	-	\square	\square
Extended I/O Cards										
$6 \mathrm{DI}, 1$ ext +24 Vdc/EXT +24 Vdc	B, C, D, E	OPTB1	B1	-	-	-	-	-	\square	\square
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	■	■	■	-	-	■	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	■	■
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	■	\square	\square	\square	-	\square	\square
Modbus TCP	D, E	OPTCI	CI	\square	\square	\square	\square	-	\square	\square
BACnet	D, E	OPTCJ	CJ	-	-	-	\square	\square	\square	\square
Ethernet IP	D, E	OPTCK	CK	\square						
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	\square	\square	\square	\square	-	\square	\square
LonWorks	D, E	OPTC4	C4	\square						
Profibus DP (D9 connector)	D, E	OPTC5	C5	\square						
CanOpen (slave)	D, E	OPTC6	C6	\square	\square	-	\square	\square	\square	\square
DeviceNet	D, E	OPTC7	C7	\square	\square	\square	\square	-	\square	\square
Modbus (D9 type connector)	D, E	OPTC8	C8	\square						
RS-232 with D9 connection	D, E	OPTD3	D3	\square	■	■	■	■	■	■
Keypad										
9000X Series local/remote keypad	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad kit	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000 X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CanOpen (Slave) Communications

The CanOpen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Control/Communication Option Descriptions

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the SVX9000 with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a 0-10V signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Withhout the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the	
Speed Potentiometer or a remote speed signal.		

VFD Pump Panel Options

Brake Chopper Options (1)
208V and 230V: NEMA Type 12/IP54/3R, I I_{H} hp $3 / 4$ to 100 ; IL hp 1 to 100
480V: NEMA Type 12/IP54/3R, I_{H} hp 1 to 400; I_{L} hp $1-1 / 2$ to 400
208V and 230V Control Options, 3/4-100 hp (2)

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
Manual/auto reference switch $(22 \mathrm{~mm})$	K5
START and STOP pushbuttons $(22 \mathrm{~mm})$	K6

208V, 230V and 480V Enclosure Options, Sizes A-D (2)

Description	Catalog Number Suffix
Floor stand 22 in $(558.8 \mathrm{~mm})$	S5
Space heater without CPT	S9
Space heater with CPT	SA
Socket type control relay	SB
On-delay timer	SE
Off-delay timer	SF

208 and 230V Power Options, 3/4-100 hp (2)

Description	Catalog Number Suffix
Two auxiliary contacts installed	K9
Input disconnect (HMCP) 100 kAIC	P1
Input line fuses 200 kAIC	P3
Input power surge protection	P7
TVSS transient voltage surge suppressor	P8
Output contactor	PE

480V Power Options, 1-400 hp (2)

Description	Catalog Number Suffix
Two auxiliary contacts installed	K9
Input disconnect (HMCP) 100 kAIC	P1
Input line fuses 200 kAIC	P3
Input power surge protection	P7
TVSS transient voltage surge suppressor	P8
Output contactor	PE

208 and 230V Bypass Options, 3/4-100 hp (23

Description	Catalog Number Suffix
Bypass pilot lights for RA option	L2 $^{\oplus}{ }^{(4)}$
Manual HOA bypass controller	RA ${ }^{\oplus}$

480V Bypass Options, 1-400 hp (23)

Description	Catalog Number Suffix
Bypass pilot lights for RA option	L2 $^{(4)}$
Manual HOA bypass controller	RA ${ }^{\oplus}{ }^{4}$

Technical Data and Specifications

9000X VFD Pump Panels

Description	NEMA Type 12/IP54 or NEMA Type 3R Specification	
Primary Design Features		
45-66 Hz input frequency	Standard	
Output (AC volts maximum)	Input voltage base	
Output frequency range	$0-320 \mathrm{~Hz}$	
Initial output current ($\\|_{H}$)	250\% for 2 seconds	
Overload (1 minute [$\mathrm{L}_{\mathrm{H}} / \mathrm{L}$] $]$	150\%/110\%	
Enclosure space heater	Optional	
Oversize enclosure	Standard	
Output contactor	Optional	
Bypass motor starter	Optional	
Listings	UL, cUL	
Protection Features		
Incoming line fuses	Optional	
AC input circuit disconnect	Optional	
Line reactors	Standard	
Phase rotation insensitive	Standard	
EMI filter	Standard-Thru Frame 9	
Input phase loss protection	Standard	
Input overvoltage protection	Standard	
Line surge protection	Standard	
Output short circuit protection	Standard	
Output ground fault protection	Standard	
Output phase protection	Standard	
Overtemperature protection	Standard	
DC overvoltage protection	Standard	
Drive overload protection	Standard	
Motor overload protection	Standard	
Programmer software	Optional	
Local/remote keypad	Standard	
Keypad lockout	Standard	
Fault alarm output	Standard	
Built-in diagnostics	Standard	

Description	NEMA Type 12/IP54 or NEMA Type 3R Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA isolated	Configurable
4-20 mA differential	Configurable
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Optional
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	1 (2 relays Form C)
Open collector outputs	1
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {TM }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
Lonworks ${ }^{\text {® }}$	Optional
Johnson Controls Metasys ${ }^{\text {™ }}$ N2	Optional

9000X VFD Pump Panels, continued

Description	NEMA Type 12/IP54 or NEMA Type 3R Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Optional (1)
Dynamic braking	Standard
DC braking	Programmable
PID setpoint controller	Standard
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	Standard
Jog at preset speed	7
Thread/preset speeds	Selectable
Automatic restart	Standard
Coasting motor start	Standard
Coast or ramp stop selection	Optional
Elapsed time meter	$1-16 \mathrm{kHz}$
Carrier frequency adjustment	0.96
Standard Conditions for Application and Service	
Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), non-condensing	95%
Altitude (maximum without derate)	3300 ft $(1000 \mathrm{~m})$
Line voltage variation	$+10 /-15 \%$
Line frequency variation	$45-66 \mathrm{~Hz}$
Efficiency	96%
Power factor (displacement)	

Standard I/O Specifications

Description	Specification
Six-digital input programmable	24V: "0" $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kohms
Two-analog input configurable w/jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms
Two-digital output programmable	Form C relays 250 Vac 30 Vdc 2 amp resistive
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$
One digital output programmable	Open collector 48 Vdc 50 mA

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}} \geq 200$ kohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250 \mathrm{ohms}$
Digital input	$24 V$: "0" $\leq 10 \mathrm{~V}, ~ " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)- $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500$ kohms, resolution 10 bit, accuracy $\leq+2 \%$
Analog voltage, output	0 (2) $-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k}$ kohms, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output	
Maximum switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Maximum switching load	8A/24 Vdc, 0.4A/300 Vdc, $2 \mathrm{kVA} / 250 \mathrm{Vac}$
Maximum continuous load	2 Arms
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7$ kohms

Note

(1) Some horsepower units include dynamic braking chopper as standard—refer to individual drive sections.

Wiring Diagrams

Power Diagram for Bypass Option RA

A2 Board Control Wiring

A9 Board Control Wiring

SVX9000 Pump Panel Bypass Power Wiring

SVX9000 Pump Panel Disconnect Power Wiring

2.3

Adjustable Frequency Drives
SVX9000 Drives

Dimensions

Approximate Dimensions in Inches (mm)

SVX9000 Pump Application Drives

Enclosure Box A NEMA Type 12/IP54

Voltage AC	$\operatorname{lip}_{\left(I_{H}\right)}$	$\begin{gathered} \mathrm{hp}_{\left(\mathrm{I}_{\mathrm{L}}\right)} \end{gathered}$	H	H1	H2	W	W1	D	D1	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase											
208 V	3/4-10	1-15	$\begin{gathered} 29.00 \\ -(736.6) \end{gathered}$	$\begin{aligned} & 27.00 \\ & (685.8) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	120 (54)	160 (73)
230 V	3/4-10	1-15									
480 V	1-25	1-30									
Single-Phase											
230 V	-	3/4-10	$\begin{gathered} 29.00 \\ -(736.6) \end{gathered}$	$\begin{aligned} & 27.00 \\ & (685.8) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	120 (54)	160 (73)
480 V	-	3/4-20									

Approximate Dimensions in Inches (mm)
Enclosure Box B NEMA Type 12/IP54

Voltage AC	$\begin{aligned} & \text { hp } \\ & \left(I_{H}\right) \end{aligned}$	$\underset{\left(I_{L}\right)}{\mathbf{h p}^{\prime}}$	H	H1	H2	W	W1	D	D1	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase											
208 V	15-25	20-30	$\begin{aligned} & 40.00 \\ & -(1016.0) \end{aligned}$	$\begin{aligned} & 38.00 \\ & (965.2) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	185 (84)	229 (104)
230 V	15-25	20-30									
480 V	30-60	40-75									
Single-Phase											
230 V	-	15-20	$\begin{aligned} & \hline 40.00 \\ & (1016.0) \end{aligned}$	$\begin{aligned} & 38.00 \\ & (965.2) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & \hline 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	185 (84)	229 (104)
480 V	-	25-30									

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
Enclosure Box C NEMA Type 12/IP54
2

Voltage AC	$\operatorname{hp}_{\left(I_{H}\right)}$	$\begin{aligned} & \text { hp } \\ & \left(\mathbf{I L}_{\mathrm{L}}\right) \end{aligned}$	H	H1	H2	H3	H4	W	W1	D	D1	Approx. Shipping Weight Lbs (kg)
Three-Phase												
208 V	30-50	40-60	$\begin{aligned} & \hline 52.00 \\ & (1320.8) \end{aligned}$	$\begin{aligned} & 50.00 \\ & (1270.0) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & 72.00 \\ & (1828.8) \end{aligned}$	$\begin{aligned} & 71.19 \\ & (1808.2) \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 16.78 \\ & (426.2) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	(1)
230 V	30-50	40-60										
480 V	75-125	100-150										
Single-Phase												
230 V	-	25-40	$\begin{aligned} & \hline 52.00 \\ & (1320.8) \end{aligned}$	$\begin{aligned} & \hline 50.00 \\ & (1270.0) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 72.00 \\ & (1828.8) \end{aligned}$	$\begin{aligned} & \hline 71.19 \\ & (1808.2) \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 16.78 \\ & (426.2) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	(1)
480 V	-	40-60										

Note

(1) Consult factory.

Approximate Dimensions in Inches (mm)
Enclosure Box A NEMA Type 3R

Voltage AC	$\begin{aligned} & \text { hp } \\ & \left(I_{H}\right) \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \left(\mathbf{I L}_{L}\right) \end{aligned}$	H	H1	H2	H3	W	W1	W2	W3	D	D1	D2	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase															
208 V	3/4-10	1-15	$\begin{aligned} & 33.00 \\ & (838.2) \end{aligned}$	$\begin{aligned} & \hline 31.36 \\ & (796.5) \end{aligned}$	$\begin{aligned} & 29.67 \\ & (753.6) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & \hline 21.05 \\ & (534.7) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & \hline 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & \hline 2.07 \\ & (52.6) \end{aligned}$	$\begin{aligned} & 17.24 \\ & (437.9) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	170 (77)	215 (98)
230 V	3/4-10	1-15													
480 V	1-25	1-30													
Single-Phase															
230 V	-	3/4-10	$\begin{gathered} 33.00 \\ -(838.2) \end{gathered}$	$\begin{aligned} & \hline 31.36 \\ & (796.5) \end{aligned}$	$\begin{aligned} & 29.67 \\ & (753.6) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & \hline 21.05 \\ & (534.7) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 2.07 \\ & (52.6) \end{aligned}$	$\begin{aligned} & 17.24 \\ & (437.9) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & \hline 3.31 \\ & (840.1) \end{aligned}$	170 (77)	215 (98)
480 V	-	3/4-20													

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
Enclosure Box B NEMA Type 3R

Voltage AC	$\operatorname{hp}_{\left(I_{H}\right)}$	$\begin{aligned} & \text { hp } \\ & \left(I_{L}\right) \end{aligned}$	H	H1	H2	H3	W	W1	W2	W3	D	D1	D2	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase															
208 V	15-25	20-30	$\begin{aligned} & 46.09 \\ & (1170.7) \end{aligned}$	$\begin{aligned} & 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & 36.35 \\ & (923.3) \end{aligned}$	$\begin{aligned} & 26.31 \\ & (668.3) \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	3.31 (840.1)	$\begin{aligned} & 235 \\ & (107) \end{aligned}$	$\begin{aligned} & 290 \\ & (132) \end{aligned}$
230 V	15-25	20-30													
480 V	30-60	40-75													
Single-Phase															
230 V	-	15-20	$\begin{aligned} & 46.09 \\ & (1170.7) \end{aligned}$	$\begin{aligned} & 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 26.31 \\ & (668.3) \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	$\begin{aligned} & 235 \\ & (107) \end{aligned}$	$\begin{aligned} & 290 \\ & (132) \end{aligned}$
480 V	-	25-30													

Approximate Dimensions in Inches (mm)
Enclosure Box C NEMA Type 3R

Voltage AC	$\operatorname{hp}_{\left(I_{H}\right)}$	$\operatorname{hp}_{\left(I_{L}\right)}$	H	H1	H2	H3	H4	H5	W	W1	W2	W3	D	D1	D2	Approx. Weight Lbs (kg)
Three-Phase																
208	30-50	40-60	$\begin{aligned} & 58.09 \\ & (1475.5) \end{aligned}$	$\begin{aligned} & 56.45 \\ & (1433.8) \end{aligned}$	$\begin{aligned} & 54.77 \\ & (1391.2) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & 78.09 \\ & (1983.5) \end{aligned}$	$\begin{aligned} & 77.64 \\ & (1972.1) \end{aligned}$	$\begin{aligned} & 37.73 \\ & \text { (958.3) } \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.77 \\ & (426.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	(1)
230	30-50	40-60														
480	75-125	100-150														
Single-Phase																
230 V	-	25-40	$\begin{aligned} & 58.09 \\ & (1475.5) \end{aligned}$	$\begin{aligned} & \hline 56.45 \\ & (1433.8) \end{aligned}$	$\begin{aligned} & 54.77 \\ & (1391.2) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 78.09 \\ & (1983.5) \end{aligned}$	$\begin{aligned} & 77.64 \\ & (1972.1) \end{aligned}$	$\begin{aligned} & 37.73 \\ & \text { (958.3) } \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.77 \\ & (426.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	(1)
480 V	-	40-60														

(1) Consult factory.

SPX9000 Drives

Product Description

The SPX9000 Series Adjustable Frequency Drives from Eaton's electrical sector are specifically designed for high performance applications. Equipped with high processing power, the SPX9000 can use information from an encoder or a resolver in order to provide very precise motor control. Sensorless vector and simple frequency control are also supported. Typical applications requiring high performance are: masterslave drives, positioning applications, winder tension control and synchronization.

The core of the SPX9000 is a fast microprocessor, providing high dynamic performance for applications where good motor handling and reliability are required. It can be used both in open loop applications as well as in applications requiring encoder feedback.

The SPX9000 supports fast drive-to-drive communication It also offers an integrated data logger functionality for analysis of dynamic events without the need of additiona hardware. Simultaneous fast monitoring of several drives can be done by using the 9000Xdrive tool and CAN communication. In applications where reliability and quality are essential for high-performance, the SPX9000 is the logical choice.

Contents

Description	Page
SPX9000 Drives	
Features and Benefits	V6-T2-99
Standards and Certifications	V6-T2-99
Catalog Number Selection	V6-T2-100
Product Selection	V6-T2-101
Accessories	V6-T2-106
Options	V6-T2-107
Replacement Parts	V6-T2-112
Technical Data and Specifications	V6-T2-120
Dimensions	V6-T2-121

The Eaton family of drives includes HVX9000, H-Max, M-Max, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload (l_{H}) or low overload ($\left.\right|_{\llcorner }$). I indicates 110\% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

Features and Benefits

- Speed error <0.01\%, depending on the encoder
- Incremental or absolute encoder support
- Encoder voltages of 5 V (RS-422), 15 V or 24 V , depending on the option card
- Full torque control at all speeds, including zero
- Torque accuracy <2\%; <5\% down to zero speed
- Starting torque $>200 \%$, depending on motor and drive sizing
- Integrated datalogger for system analysis
- Fast multiple drive monitoring with PC
- Full capability for master/ slave configurations
- High-speed bus (12 Mbit/s) for fast inter-drive communication
- High-speed applications (up to 7200 Hz) possible
- Robust design—proven 500,000 hours MTBF
- Integrated 3\% line reactors standard on drives from FR4 through FR9
- Line reactor is included but is separated from chassis
- EMI/RFI Filters H standard up to $200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}$, $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 230 \mathrm{~V}$
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
- Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
- Copy/paste function allows transfer of parameter settings from one drive to the next
- Standard NEMA Type 12/ IP54 keypad on all drives
- Hand-held auxiliary 240 power supply allows programming/monitoring of control module without applying full power to the drive
- The SPX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" precision application programs consisting of:
- Basic
- Standard
- Local/remote
- Multi-step speed control
- PID control
- Multi-purpose control
- Pump and fan control with auto change
- Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake chopper standard from: 1-30 hp/380-500V 3/4-15 hp/208-230V
- NEMA Type 1/IP21 enclosures available Frame Sizes FR4-FR11, NEMA Type 12/IP54 enclosures available Frame Sizes FR4FR10 (FR10 and FR11 freestanding drives)
- Open chassis FR10 and greater
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Standards and Certifications

Product

- IEC 61800-2

Safety

- UL 508C

EMC (at default settings)

- Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
- UL Listed

Adjustable Frequency Drives
SPX9000 Drives

Catalog Number Selection

SPX9000 Adjustable Frequency Drives

Power Module

Notes

(1) All 230 V drives and 480 V drives up to $200 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ are only available with input option 1 (EMC level H). 480 V drives $250 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ or larger are available with input option $\mathbf{2}$ (EMC level N). 575 V drives $200 \mathrm{hp}\left(l_{H}\right)$ or larger are available with input option $\mathbf{2} .575 \mathrm{~V}$ drives up to 150 hp (l_{H}) are available with input option $\mathbf{4}$ (EMC level L). 480 V and 690 V freestanding drives are available with input option $\mathbf{4}$ (EMC level L).
(2) 480 V drives up to $30 \mathrm{hp}\left(l_{H}\right)$ are only available with brake chopper option $\mathbf{B} .480 \mathrm{~V}$ drives $40 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ or larger come standard with brake chopper option \mathbf{N}. 230 V drives up to $15 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ are only available with brake chopper option \mathbf{B}. 230 V drives 20 hp and larger come standard with brake chopper option \mathbf{N}. All 575 V drives come standard without brake chopper option (\mathbf{N}). $\mathbf{N}=\mathbf{N o}$ brake chopper.
(3) 480V drives 250-350 hp $\left(l_{H}\right)$ and 690 V drives $200-300 \mathrm{hp}\left(\mathrm{l}_{H}\right)$ are available with enclosure style $\mathbf{0}$ (chassis). 480V and 690V FR10 freestanding drives are available with $\mathbf{1}$ (NEMA Type 1/IP21) or $\mathbf{2}$ (NEMA Type 12/IP54). FR11 freestanding drives are only available with enclosure style 1 (NEMA Type 1/IP21).
(4) Factory promise delivery. Consult sales office for availability.

Product Selection

230V Drives

SPX9000 Open Drives	208-240V, NEMA Type 1/IP21 Drives						
	Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{L}_{\text {L }}$	Catalog Number
	FR4	FP	3/4	3.7	1	4.8	SPXF07A1-2A1B1
			1	4.8	1-1/2	6.6	SPX001A1-2A1B1
			1-1/2	6.6	2	7.8	SPXF15A1-2A1B1
			2	7.8	3	11	SPX002A1-2A1B1
			3	11	-	12.5	SPX003A1-2A1B1
	FR5	FP	-	12.5	5	17.5	SPX004A1-2A1B1
			5	17.5	7-1/2	25	SPX005A1-2A1B1
			7-1/2	25	10	31	SPX007A1-2A1B1
	FR6	FP	10	31	15	48	SPX010A1-2A1B1
			15	48	20	61	SPX015A1-2A1B1
	FR7	FP	20	61	25	75	SPX020A1-2A1N1
			25	75	30	88	SPX025A1-2A1N1
			30	88	40	114	SPX030A1-2A1N1
	FR8	FP	40	114	50	140	SPX040A1-2A1N1
			50	140	60	170	SPX050A1-2A1N1
			60	170	75	205	SPX060A1-2A1N1
	FR9	FP	75	205	100	261	SPX075A1-2A1N1
			100	261	-	-	SPX100A1-2A1N1

208-240V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (I_{L})	Current (IL_{L})	Catalog Number
FR4	FP	3/4	3.7	1	4.8	SPXF07A2-2A1B1
		1	4.8	1-1/2	6.6	SPX001A2-2A1B1
		1-1/2	6.6	2	7.8	SPXF15A2-2A1B1
		2	7.8	3	11	SPX002A2-2A1B1
		3	11	-	12.5	SPX003A2-2A1B1
FR5	FP	-	12.5	5	17.5	SPX004A2-2A1B1
		5	17.5	7-1/2	25	SPX005A2-2A1B1
		7-1/2	25	10	31	SPX007A2-2A1B1
FR6	FP	10	31	15	48	SPX010A2-2A1B1
		15	48	20	61	SPX015A2-2A1B1
FR7	FP	20	61	25	75	SPX020A2-2A1N1
		25	75	30	88	SPX025A2-2A1N1
		30	88	40	114	SPX030A2-2A1N1
FR8	FP	40	114	50	140	SPX040A2-2A1N1
		50	140	60	170	SPX050A2-2A1N1
		60	170	75	205	SPX060A2-2A1N1
FR9	FP	75	205	100	261	SPX075A2-2A1N1
		100	261	-	-	SPX100A2-2A1N1

480V Drives

380-500V, NEMA Type 1/IP21 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{I}_{\mathbf{L}}\right)$	Catalog Number
FR10	W	250	330	300	385	SPX250A1-4A4N1
	FP	300	385	350	460	SPX300A1-4A4N1
W	350	460	400	520	SPX350A1-4A4N1	
FR11	FP	400	520	500	590	SPX400A1-4A4N1
	FP	500	590	550	650	SPX500A1-4A4N1
	FP	550	650	600	730	SPX550A1-4A4N1

Note
Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), Disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.

380-500V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{I}_{\text {L }}$)	Catalog Number
FR4	W	1	2.2	1-1/2	3.3	SPX001A2-4A1B1
	FP	1-1/2	3.3	2	4.3	SPXF15A2-4A1B1
	FP	2	4.3	3	5.6	SPX002A2-4A1B1
	W	3	5.6	5	7.6	SPX003A2-4A1B1
	W	5	7.6	-	9	SPX005A2-4A1B1
	FP	-	9	7-1/2	12	SPX006A2-4A1B1
FR5	W	7-1/2	12	10	16	SPX007A2-4A1B1
		10	16	15	23	SPX010A2-4A1B1
		15	23	20	31	SPX015A2-4A1B1
FR6	W	20	31	25	38	SPX020A2-4A1B1
		25	38	30	46	SPX025A2-4A1B1
		30	46	40	61	SPX030A2-4A1B1
FR7	FP	40	61	50	72	SPX040A2-4A1N1
		50	72	60	87	SPX050A2-4A1N1
		60	87	75	105	SPX060A2-4A1N1
FR8	FP	75	105	100	140	SPX075A2-4A2N1
		100	140	125	170	SPX100A2-4A1N1
		125	170	150	205	SPX125A2-4A1N1
FR9	FP	150	205	200	261	SPX150A2-4A1N1
		200	245	250	300	SPX200A2-4A1N1

380-500V, NEMA Type 12/IP54 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{l}_{\mathbf{L}}\right)$	Catalog Number
FR10	$F P$	250	330	300	385	SPX250A2-4A4N1
	$F P$	300	385	350	460	SPX300A2-4A4N1
	$F P$	350	460	400	520	SPX350A2-4A4N1

380-500V, Open Chassis Drives

Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp ($\mathrm{L}_{\text {L }}$)	Current ($\mathrm{l}_{\text {L }}$)	Catalog Number
FR10	W	250	330	300	385	SPX250A0-4A2N1
		300	385	-	460	SPX300A0-4A2N1
		350	460	400	520	SPX350A0-4A2N1
FR11	FP	400	520	500	590	SPX400A0-4A2N1
		500	590	-	650	SPX500A0-4A2N1
		-	650	600	730	SPX550A0-4A2N1
FR12	FP	600	730	-	820	SPX600A0-4A2N1
		-	820	700	920	SPX650A0-4A2N1
		700	920	800	1030	SPX700A0-4A2N1
FR13	FP	800	1030	900	1150	SPX800A0-4A2N1
		900	1150	1000	1300	SPX900A0-4A2N1
		1000	1300	1200	1450	SPXH10A0-4A2N1
FR14	FP	1200	1600	1500	1770	SPXH12A0-4A2N1
		1600	1940	1800	2150	SPXH16A0-4A2N1

Notes
Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.
(1) FR10-FR14 includes 3\% line reactor, but it is not integral to chassis.

575V Drives

525-690V, NEMA Type 1/IP21 Freestanding Drives

Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{I}_{\text {L }}$)	Catalog Number
FR10	FP	200	208	250	261	SPX200A1-5A4N1
		250	261	300	325	SPX250A1-5A4N1
		300	325	400	385	SPX300A1-5A4N1
FR11	FP	400	385	450	460	SPX400A1-5A4N1
		450	460	500	502	SPX450A1-5A4N1
		500	502	550	590	SPX500A1-5A4N1

Note
Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.

525-690V, NEMA Type 12/IP54 Drives

	Frame Size	Delivery Code	hp (H_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current (l_{L})	Catalog Number
	FR6	F1	2	3.3	3	4.5	SPX002A2-5A4N1
B6- 9			3	4.5	-	5.5	SPX003A2-5A4N1
4			-	5.5	5	7.5	SPX004A2-5A4N1
			5	7.5	7-1/2	10	SPX005A2-5A4N1
			7-1/2	10	10	13.5	SPX007A2-5A4N1
			10	13.5	15	18	SPX010A2-5A4N1
			15	18	20	22	SPX015A2-5A4N1
			20	22	25	27	SPX020A2-5A4N1
			25	27	30	34	SPX025A2-5A4N1
	FR7	FP	30	34	40	41	SPX030A2-5A4N1
			40	41	50	52	SPX040A2-5A4N1
	FR8	FP	50	52	60	62	SPX050A2-5A4N1
			60	62	75	80	SPX060A2-5A4N1
			75	80	100	100	SPX075A2-5A4N1
	FR9	FP	100	100	125	125	SPX100A2-5A4N1
			125	125	150	144	SPX125A2-5A4N1
			150	144	-	170	SPX150A2-5A4N1
			-	170	200	208	SPX175A2-5A4N1

525-690V, NEMA Type 12/IP54 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{I}_{\mathbf{L}}\right)$	Catalog Number
FR10	FP	200	208	250	261	SPX200A2-5A4N1
		250	261	300	325	SPX250A2-5A4N1
	300	325	400	385	SPX300A2-5A4N1	

525-690V, Open Chassis Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp ($\mathrm{L}_{\text {L }}$)	Current (I_{L})	Catalog Number
FR10	FP	200	208	250	261	SPX200A0-5A2N1
		250	261	300	325	SPX250A0-5A2N1
		300	325	400	385	SPX300A0-5A2N1
FR11	FP	400	385	450	460	SPX400A0-5A2N1
		450	460	500	502	SPX450A0-5A2N1
		500	502	-	590	SPX500A0-5A2N1
FR12	FP	-	590	600	650	SPX550A0-5A2N1
		600	650	700	750	SPX600A0-5A2N1
		700	750	800	820	SPX700A0-5A2N1
FR13	FP	800	820	900	920	SPX800A0-5A2N1
		900	920	1000	1030	SPX900A0-5A2N1
		1000	1030	1250	1180	SPXH10A0-5A2N1
FR14	FP	1350	1300	1500	1500	SPXH13A0-5A2N1
		1500	1500	2000	1900	SPXH15A0-5A2N1
		2000	1900	2300	2250	SPXH20A0-5A2N1

Notes

Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.
(1) FR10-FR14 includes 3% line reactor, but it is not integral to chassis.

Adjustable Frequency Drives

SPX9000 Drives

Accessories

Demo Drive and Power Supply

Demo Drive and Power Supply

Description	Catalog Number
$9000 X$ demo drive	9000XDEMO
Hand-held 24V auxiliary power supply—Used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	$\mathbf{9 0 0 0 X A U X 2 4 V}$

NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 kit option is used to convert a NEMA Type 1/IP21 to a NEMA Type 12/IP54 drive. The NEMA Type 12/IP54
kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

NEMA Type 12/IP54 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)			Approximate Weight Lb (kg)	Catalog Number
		Length	Width	Height		
FR4	W	13 (330)	7 (178)	4 (102)	4 (1.8)	OPTN12FR4
FR5		16 (406)	8 (203)	7 (178)	$5(2.3)$	OPTN12FR5
FR6		21 (533)	10 (254)	5 (127)	7 (3.2)	OPTN12FR6

Flange Kits

Flange Kit NEMA Type

12/IP54

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12/IP54 fan components. Metal shroud not included.

Flange kits for NEMA Type 12/IP54 enclosure drive rating are determined by rating of drive.			Flange Kit NEMA Type 12/ IP54-Frames 4-9 (1)		
			Frame Size	Delivery Code	Catalog Number
Flange Kit NEMA Type 12/ IP54-Frames 4, 5 and 6 (1)			FR4	FP	OPTTHR4
			FR5		OPTTHR5
Frame Size	Delivery Code	Catalog Number	FR6		OPTTHR6
			FR7		OPTTHR7
FR4	W	OPTTHRFR4	FR8		OPTTHR8
FR5		OPTTHRFR5	FR9		OPTTHR9
FR6		OPTTHRFR6			

Note

(1) For installation of an SPX9000 NEMA Type 1/IP21 drive into a NEMA Type 12/IP54 oversized enclosure.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	■	\square	\square	■	-	■	■
6 DI, 1 DO, 2 AI, 1A0, $1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	■	-	■	■	-	-	-
Extended I/O Cards										
2 RO, therm	B	OPTA3	A3	-	■	■	■	-	\square	■
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA4	A4	-	\square	\square	\square	-	\square	\square
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA5	A5	-	\square	\square	\square	-	\square	\square
Double encoder-SPX only	C	OPTA7	A7	\square	\square	\square	\square	-	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	\square	\square	\square	-	-	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA1	-	■	■	-	-	-	-	■
3 DI (encoder 10-24V), out +15V/+24V, 2 DO (pulse+direction)-SPX only	C	OPTAE	AE	■	■	\square	-	-	-	-
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTAFA1	-	■	■	\square	-	-	■	■
$6 \mathrm{DI}, 1$ ext +24 Vdc/EXT +24 Vdc	B, C, D, E	OPTB1	B1	-	-	-	-	-	\square	■
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	-
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	■	-	-	-	■	■
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	■	\square
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
SPI, absolute encoder	C	OPTBB	BB	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.

Adjustable Frequency Drives

SPX9000 Drives

2

Option Boards

Option Board Kits, continued

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	-	\square	\square	-	-	-	-
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	-	\square	\square	-	-	-	-
BACnet	D, E	OPTCJ	CJ	\square	\square	\square	\square	\square	-	-
Ethernet IP	D, E	OPTCK	CK	\square	\square	-	-	\square	\square	-
Profibus DP	D, E	OPTC3	C3	-	\square	\square	-	-	-	-
LonWorks	D, E	OPTC4	C4	-	\square	\square	-	\square	-	-
Profibus DP (D9 connector)	D, E	OPTC5	C5	-	\square	\square	\square	-	-	-
CanOpen (slave)	D, E	OPTC6	C6	-	\square	\square	-	-	-	-
DeviceNet	D, E	OPTC7	C7	\square	\square	\square	\square	\square	-	-
Modbus (D9 type connector)	D, E	OPTC8	C8	-	\square	-	-	-	-	\square
Adapter-SPX only	D, E	OPTD1	D1	\square						
Adapter-SPX only	D, E	OPTD2	D2	-	\square	\square	-	-	-	\square
RS-232 with D9 connection	D, E	OPTD3	D3	-	\square	\square	\square	\square	\square	-
Keypad										
9000X Series local/remote keypad (replacement keypad)	-	KEYPAD- LOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

[^6]
Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a $9-$-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

PROFIBUS Network Communications

The PROFIBUS Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a PROFIBUS-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CANopen (Slave) Communications

The CANopen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2

 Network CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network

Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network

 CommunicationsThe Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Adjustable Frequency Drives

SPX9000 Drives

Control Panel Options

Factory Options

Description	Factory Installed	Field Installed NEMA Type 1/IP21 Catalog Number
Local/Remote Keypad SVX9000 Control Panel—This option is standard on all drives and consists of an RS-232 connection, backlit alphanumeric LCD display with nine indicators for the RUN status and two indicators for the control source. The nine pushbuttons on the panel are used for panel programming and monitoring of all SVX9000 parameters. The panel is detachable and isolated from the input line potential. Include LOC/REM key to choose control location.	A	KEYPAD-LOC/REM
Keypad Remote Mounting Kit-This option is used to remote mount the SVX9000 keypad. The		
footprint is compatible to the SV9000 remote mount kit. Includes 10 ft cable, keypad holder and		
mounting hardware.		

SPX9000 Drive Options

Brake Chopper Options
The brake chopper circuit option is used for applications that require dynamic braking. Dynamic braking resistors are not included with drive
purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

For brake chopper circuit selection and adder-NEMA Type 1/IP21, NEMA Type 12/ IP54, Chassis, consult the factory. Delivery code is FP.

Conformal (Varnished) Coating ${ }^{2}$ Chassis Frame	Delivery Code
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP
FR13	FP
FR14	FP

Conformal Coated

 Board Kits ${ }^{\text {(3) }}$| Field Installed
 Catalog Number | Factory Installed
 Option Designator |
| :--- | :--- |
| OPT_V ${ }^{\oplus}$ | ${ }^{\oplus}$ |

Notes

(1) Consult factory.
(2) See Product Selection on Pages V6-T2-101 to V6-T2-105, 208-240V, 380-500V, 525-690V. Consult the factory for adder
(3) See option catalog numbers on Page V6-T2-107.
(4) Replace "_-" with the correct catalog number from Page V6-T2-107. Example: OPTC2V.
(6) Construct catalog numbers for factory installed per Catalog Number Selection on Page V6-T2-100.

Control/Communication Options

Available Control/Communications Options

Option	Description	Option Type
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the SPX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations—Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include keypad, $1 / 0$ and fieldbus.	Control
KB	115V Control Transformer, 550 VA-Provides a fused control power transformer with additional 550 VA at 115 V for customer use.	Control
L1	Power On and Fault Pilot Lights-Provide a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
P2	Disconnect Switch—Disconnect switch option is applicable only with NEMA Type 1/IP21 and NEMA Type 12/IP54 Freestanding drives. Allows a convenient means of disconnecting the SPX9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input

SPX Freestanding Options

480 V and 690 V Control Options, 200-550 hp ©

Description	Catalog Number Suffix
Door-mounted speed potentiometer with HOA selector switch	K2
HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	K4
115 volt control transformer 550 VA	KB

480 V and 690V Light Options, 200-550 hp ©

Description	Catalog Number Suffix
Power on/fault pilot lights	L1

Input Options, 200-550 hp (1)

Description	Catalog Number Suffix
Disconnect switch	P2 $^{(2)}$

Notes

(1) Consult factory for adder information.
(2) Applicable with FR10 and FR11 freestanding designs only.

Adjustable Frequency Drives

SPX9000 Drives

Replacement Parts

SPX9000 Drives Spare Units

208-690V, Frames 4-12

Description	Catalog Number
Control unit-Includes the control board, blue base housing, installed SVX9000 software program and blue flip cover.	CSBSO0000000000
Does not include any OPT boards or keypad. See Page V6-T2-107 for standard and option boards and keypad.	

SPX9000 Drives Replacement Parts

208-240V, Frames FR4-FR8

Note

(1) IL only; has no corresponding I_{H} rated hp rating.

208-240V, Frames FR4-FR8, continued

Frame hp (I_{H}):	4 $3 / 4$	1	1-1/2	2	3	5 $5{ }^{\text {® }}$	5	7-1/2	6 10	15	7 20	25	30	8 40	50	60	Delivery Code	Catalog Number
Cooling Fans																		
	1	1	1	1	1												W	PP01060
						1	1	1									W	PP01061
									1	1							W	PP01062
											1	1	1				W	PP01063
														1	1	1	FC	PP01123 ${ }^{\text {2 }}$
	1	1	1	1	1												W	PP01086
						1	1	1	1	1							FC	PP01088
											1	1	1				W	PP01049
														1	2	2	FC	CP01180
														1	1	1	FC	PP08037
IGBT Modules																		
	1	1															W	CP01304
			1														W	CP01305
				1	1	1											W	CP01306
							1										W	CP01307
								1									W	CP01308
									1								W	PP01022
										1							W	PP01023
											1						W	PP01024
												1					W	PP01025
													1				W	PP01029
														1			W	PP01026
															1	1	W	PP01027
Choppers/Rectifiers																		
									1								W	CP01367
										1							W	CP01368
Diode/Thyristor Modules																		
											3	3	3				W	PP01035
														3	3	3	W	CP01268
Rectifying Boards																		
											1	1	1				W	VB00242
														1	1	1	W	VB00227

Note

(2) PP00061 capacitor not included in main fan; please order separately.

Adjustable Frequency Drives
SPX9000 Drives

380-500V, Frames FR4-FR9

Electrolytic Capacitors																					
2	2	2	2																	W	PP01000
				2	2															W	PP01001
						2	2													W	PP01002
								2												W	PP01003
									2	2	2									W	PP01004
												2	2	2	4	4	4	8	8	W	PP01005
Cooling Fans																					
1	1	1	1	1	1															W	PP01060
						1	1	1												W	PP01061
									1	1	1									W	PP01062
												1	1	1						W	PP01063
															1	1	1			FC	PP01123 ${ }^{\text {2 }}$
																		1	1	FC	PP01080 (3)
1	1	1	1	1	1															W	PP01086
						1	1	1												FC	PP01088
									1	1	1	1	1	1						W	PP01049
															1	1	1			FC	CP01180
																		$1{ }^{4}$	2	W	PP01068
																		1	1	FC	PP09051

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) PPOO061 capacitor not included in main fan; please order separately.
${ }^{3}$ PP00011 capacitor not included in main fan; please order separately.
(4) For FR9 NEMA Type 12/IP54 you need two PP01068 internal fans.

380-500V, Frames FR4-FR9, continued

Notes

(1) IL only; has no corresponding I_{H} rated hp rating.
${ }^{2}$ 2 See Page V6-T2-100 for details.

Adjustable Frequency Drives
SPX9000 Drives

380-500V, Frames FR10-FR12

	10			11			12				
$\text { hp }\left(I_{H}\right):$	250	300	350	400	500	550	600	650	700	Delivery Code	Catalog Number
Control Board											
	1	1	1	1	1	1	1	1	1	W	VB00561
Shunt Boards											
6										FC	VB00537
		6								FC	VB00497
		6					12	12	12	FC	VB00498
				9						FC	VB00538
				9						FC	VB00513
						9				FC	VB00514
Driver Boards											
				3	3	3				FC	VB00489
	1	1	1				2	2	2	FC	VB00487
Driver Adapter Board											
	1	1	1				2	2	2	FC	VB00330
ASIC Board											
	1	1	1	1	1	1	2	2	2	FC	VB00451
Feedback Interface Board											
							2	2	2	FC	VB00448
Star Coupler Board											
							1	1	1	FC	VB00336
Power Modules											
	1	1	1	2	2	2	2	2	2	FC	FR10820 ${ }^{(1)}$
	2	2	2							FC	FR10828
1										FC	FR10-250-4-ANS ${ }^{2}{ }^{2}$
		1								FC	FR10-300-4-ANS ${ }^{2}{ }^{2}$
		1					2	2	2	FC	FR10-350-4-ANS ${ }^{2}{ }^{2}$
				3						FC	FR11-400-4-ANS ${ }^{(2)}$
				3						FC	FR11-500-4-ANS ${ }^{2}{ }^{2}$
						3				FC	FR11-550-4-ANS ${ }^{(2)}$
Electrolytic Capacitors											
	2	2	2	3	3	3	4	4	4	FC	PP00060
	12	12	12	18	18	18	24	24	24	FC	PP01005
Fuses											
	1	1	1	1	1	1	2	2	2	FC	PP01094
	2	2	2	2	2	2	4	4	4	FC	PP01095
Cooling Fans and Isolation Transformers											
	2	2	2	3	3	3	4	4	4	FC	VB00299
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(3)}$
	2	2	2				4	4	4	FC	PP01068
	1	1	1	1	1	1	2	2	2	FC	PP01096
	1	1	1				2	2	2	FC	FR10844
	1	1	1	3	3	3	2	2	2	FC	FR10845
	1	1	1				2	2	2	FC	FR10846
	1	1	1	3	3	3	2	2	2	FC	FR10847
Rectifying Board											
	1	1	1	2	2	2	2	2	2	FC	VB00459

Notes

(1) Rectifying board not included.
(2) See Page V6-T2-100 for details.
(3) PP00060 capacitor not included in main fan; please order separately.

525-690V, Frames FR6-FR9

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) See Page V6-T2-100 for details.

Adjustable Frequency Drives

SPX9000 Drives

525-690V, Frames FR6-FR9, continued

Frame hp (I_{H}):	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	7 30	40	8 50	60	75	9 100	125	150	200 (1)	Delivery Code	Catalog Number
Cooling Fans																				
	1	1	1	1	1														W	PP01061
						1	1	1	1										W	PP01062
										1	1								W	PP01063
												1	1	1					FC	PP01123
	1	1	1	1	1	1	1	1	1	1	1								W	PP01049
												1	1	1					FC	CP01180
															1	1	1	$1{ }^{2}$	W	PP01068
															1	1	1	1	FC	PP01080
Fan Power Supply																				
																1	1	1	FC	VB00299
IGBT Modules																				
	3	3	3	3	3	3	3	3	3										FC	PP01091
										1	1								FC	PP01089
												1	1	1					FC	PP01127
IGBT/Diode (Brake)																				
	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	FC	PP01040
	Diode Module																			
	1	1	1	1	1	1	1	1	1										FC	PP01092
	Diode/Thyristor Modules																			
										3	3								FC	PP01071
															3	3	3	3	FC	PP01072
	Rectifying Boards																			
										1	1								FC	VB00442
															1	1	1	1	FC	VB00460
	Rectifying Module Sub-Assemblies																			
																1	1	1	W	FR09810
																1	1	1	FC	FR09811

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) For NEMA Type 12/IP54, two PP01068 internal fans are needed.

525-690V, Frames FR10-FR12

Frame hp (I_{H}):	$\begin{array}{l\|l\|} \hline 10 \\ \hline 250 \\ \hline \end{array}$	300	350	$\begin{aligned} & 11 \\ & 400 \end{aligned}$	500	550	$\begin{aligned} & \hline 12 \\ & \hline 600 \\ & \hline \end{aligned}$	650	700	Delivery Code	Catalog Number	2
Component Boards												
	1	1	1	1	1	1	1	1	1	W	VB00561	
	1	1	1	1	1	1	2	2	2	FC	VB00451	
6										FC	VB00545	
		6								FC	VB00510	
		6					12	12	12	FC	VB00511	
	1	1	1				2	2	2	FC	VB00330	
	1	1	1				2	2	2	FC	VB00487	
				3	3	3				FC	VB00489	
				9						FC	VB00546	
				9						FC	VB00547	
						9				FC	VB00512	
							2	2	2	FC	VB00448	
							1	1	1	FC	VB00336	
Power Modules												
	1	1	1	2	2	2	2	2	2	FC	FR10821 ${ }^{1}$	
	2	2	2							FC	FR10829	
1										FC	FR10-200-5-ANS ${ }^{2}{ }^{2}$	
		1								FC	FR10-250-5-ANS ${ }^{(2)}$	
		1					2	2	2	FC	FR10-300-5-ANS ${ }^{(2)}$	
				3						FC	FR11-400-5-ANS ${ }^{2}{ }^{2}$	
				3						FC	FR11-450-5-ANS ${ }^{2}{ }^{2}$	
						3				FC	FR11-500-5-ANS ${ }^{2}{ }^{2}$	
Electrolytic Capacitors												
	2	2	2	3	3	3	4	4	4	FC	PP00060	
	12	12	12	18	18	18	24	24	24	FC	PP01099	
Fuses												
	1	1	1	1	1	1	2	2	2	FC	PP01094	
	2	2	2	2	2	2	4	4	4	FC	PP01095	
Cooling Fans and Isolation Transformers												
	2	2	2	3	3	3	4	4	4	FC	VB00299	
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(3)}$	
	2	2	2				4	4	4	FC	PP01068	
	1	1	1	1	1	1	2	2	2	FC	PP01096	
	1	1	1				2	2	2	FC	FR10844	
	1	1	1	3	3	3	2	2	2	FC	FR10845	
	1	1	1				2	2	2	FC	FR10846	
	1	1	1	3	3	3	2	2	2	FC	FR10847	
Fan Power Supply												
							1	1	1	FC	VB00299	
Rectifying Boards												
	1	1	1	2	2	2	2	2	2	FC	VB00460	

Notes

(1) Rectifying board not included.
(2) See Page V6-T2-100 for details.
(3) PP00060 capacitor not included in main fan; please order separately.

Adjustable Frequency Drives
SPX9000 Drives

Technical Data and Specifications

SPX9000 Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	+10\%/-15\%
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 45-66 Hz)
Connection to power	Once per minute or less (typical operation)
High withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to $V_{\text {in }}$
Continuous output current	I_{H} rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, FR 9 and below L_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, $\mathrm{FR9}$ and below $\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}} 100 \%$ at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, FR10 and above
Overload current ($\left.\mathrm{I}_{\mathrm{H}} / \mathrm{L}_{\mathrm{L}}\right)$	150\% $\mathrm{I}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min .
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Initial output current (IH_{H})	250\% for 2 seconds
Control Characteristics	
Control method	Frequency control (V/f) Open loop: sensorless vector control Closed loop: frequency control Closed loop: vector control
Switching frequency	Adjustable with parameter 2.6.9
Frame 4-6	1 to 16 kHz ; default 10 kHz
Frame 7-12	1 to 10 kHz ; default 3.6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel reference: Resolution 0.01 Hz
Field weakening point	30 to 320 Hz
Acceleration time	0 to 3000 sec .
Deceleration time	0 to 3000 sec .
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right) \mathrm{I}_{H}$ (FR4-FR9) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{L}_{\mathrm{L}}(\mathrm{FR} 10$ and up) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{L}_{\mathrm{L}}$ (all frames)
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above 3280 ft (1000 m); max. $9842 \mathrm{ft}(3000 \mathrm{~m})$
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	NEMA 1/IP21 or NEMA 12/IP54, open chassis/IP20

Description	Specification
Control Connections	
Analog input voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200$ kohms (-10 to 10 V joystick control) resolution 0.1%; accuracy $\pm 1 \%$
Analog input current	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V}+3 \%$, max. load 10 mA
Analog output	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. 500 ohms; resolution 10 bit; Accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	2 programmable Form C relay outputs switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Protections	
Overcurrent protection	Trip limit $4.0 \times \mathrm{I}_{H}$ instantaneously
Overvoltage protection	Yes
Undervoltage protection	Yes
Earth fault protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input phase supervision	Trips if any of the input phases are missing
Motor phase supervision	Trips if any of the output phases are missing
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes (+24V and +10 V reference voltages)
High Performance Features	
Speed error	$<0.01 \%$, depending on the encoder
Encoder support	Incremental or absolute
Encoder voltages	5 V (RS-422), 15V or 24 V , depending on the option card
Torque control	Full torque control at all speeds, including zero
Torque accuracy	$<2 \%$; <5\% down to zero speed
Starting torque	>200\%, depending on motor and drive sizing
Master/slave configurations	Full capability
System analysis	Integrated data logger
PC communication	Fast multiple drive monitoring with PC
Inter-drive communication	High-speed bus (12 Mbits/s)
High-speed applications	Up to 7200 Hz

Dimensions

Approximate Dimensions in Inches (mm)
9000X Drives
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR4, FR5 and FR6

Voltage	hp (H_{H})	H1	H2	H3	D1	D2	D3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)	Knockouts at Inches (mm) N1 (0.D.)
FR4													
230 V	3/4-3	$\begin{array}{r} 12.9 \\ -(327) \end{array}$	$\begin{aligned} & \hline 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & 3.0 \\ & \text { (77) } \end{aligned}$	$\begin{aligned} & 5.0 \\ & (126) \end{aligned}$	$\begin{aligned} & 5.04 \\ & (128) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.3 \\ & (7) \end{aligned}$	11.0 (5)	3 at 10.1 (28)
480 V	1-5												
FR5													
230 V	5-7-1/2	$\begin{array}{r} 16.5 \\ -(419) \end{array}$	$\begin{aligned} & 16.0 \\ & (406) \end{aligned}$	$\begin{aligned} & \hline 15.3 \\ & (389) \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & 5.7 \\ & (144) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.3 \\ & (7) \end{aligned}$	17.9 (8)	$\begin{aligned} & 2 \text { at } 1.5(37) \\ & 1 \text { at } 10.1 \text { (28) } \end{aligned}$
480 V	7-1/2-15												
FR6													
230 V	10-15	$\begin{gathered} \hline 22.0 \\ -(558) \end{gathered}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 20.4 \\ & \text { (519) } \end{aligned}$	$\begin{aligned} & 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & 4.2 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & 7.7 \\ & (195) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 0.4 \\ & \text { (9) } \end{aligned}$	40.8 (19)	3 at 1.5 (37)
480 V	20-30												
575 V	2-25												

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54 with Flange Kit, FR4, FR5 and FR6

FR4, FR5 and FR6 with Flange Kit

W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4									
$5.0(128)$	$4.5(113)$	$13.3(337)$	$12.8(325)$	$12.9(327)$	$1.2(30)$	$0.9(22)$	$7.5(190)$	$3.0(77)$	$0.3(7)$

FR5									
$5.6(143)$	$4.7(120)$	$17.0(434)$	$16.5(420)$	$16.5(419)$	$1.4(36)$	$0.7(18)$	$8.4(214)$	$3.9(100)$	$0.3(7)$

FR6									
$7.7(195)$	$6.7(170)$	$22.0(560)$	$21.6(549)$	$22.0(558)$	$1.2(30)$	$0.8(20)$	$9.3(237)$	$4.2(106)$	$0.3(7)$

Flange Opening, FR4 to FR6

W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4							
$4.8(123)$	$4.5(113)$	-	$12.4(315)$	$12.8(325)$	-	$0.2(5)$	$0.3(7)$
FR5							
$5.3(135)$	$4.7(120)$	-	$16.2(410)$	$16.5(420)$	-	$0.2(5)$	$0.3(7)$
FR6							
$7.3(185)$	$6.7(170)$	$6.2(157)$	$21.2(539)$	$21.6(549)$	$0.3(7)$	$0.2(5)$	$0.3(7)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR7

Voltage	hp (l_{H})	H1	H2	H3	D1	D2	D3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)	Knockouts at Inches (mm) N1 (0.D.)
230 V	20-30	24.8 (630)	24.2 (614)	23.2 (590)	10.1 (257)	3.0 (77)	7.3 (184)	9.3 (237)	7.5 (190)	0.7 (18)	0.4 (9)	77.2 (35)	3 at 1.5 (37)
480 V	40-60												
575 V	30-40												

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR8

Voltage	hp $\left(\mathbf{(} \mathbf{H}_{\mathbf{H}}\right)$	D1	H1	H2	H3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs $(\mathbf{k g})$
230 V	$40-60$	$13.5(344)$	$300.1(764)$	$28.8(732)$	$28.4(721)$	$11.5(291)$	$10(255)$	$0.7(18)$	$0.4(9)$	$127(58)$
480 V	$75-125$									
575 V	$50-75$									

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, with Flange Kit, FR7 and FR8

| W1 | W2 | W3 | W4 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | D1 | D2 | Dia. A | |
| :--- |
| FR7 | | | | | | | | | | | | | | |
| $9.3(237)$ | $6.8(175)$ | $10.6(270)$ | $10.0(253)$ | $25.6(652)$ | $24.9(632)$ | $24.8(630)$ | $7.4(189)$ | $7.4(189)$ | $0.9(23)$ | $0.8(20)$ | $10.1(257)$ | $4.6(117)$ | $0.3(6)$ | |
| FR8 | | | | | | | | | | | | | | |
| $11.2(285)$ | - | $14.0(355)$ | $13.0(330)$ | $32.8(832)$ | - | $29.3(745)$ | $10.2(258)$ | $10.4(265)$ | $1.7(43)$ | $2.2(57)$ | $13.5(344)$ | $4.3(110)$ | $0.4(9)$ | |

Flange Opening, FR7 and FR8

W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7									
$9.2(233)$	$6.9(175)$	$10.0(253)$	$24.4(619)$	$7.4(189)$	$7.4(189)$	$1.4(35)$	$1.3(32)$	$1.0(25)$	$0.3(6)$
FR8									
$11.9(301)$	-	$13.0(330)$	$31.9(810)$	$10.2(258)$	$10.4(265)$	-	-	$1.3(33)$	$0.4(9)$

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9

Voltage	hp ($\left.\mathbf{I}_{\mathbf{H}}\right)$	H1	H2	H3	D1	D2	W1	W2	R1 Dia.	R2 Dia.
230 V	$75-100$	$45.3(1150)$	$44.1(1120)$	$42.4(1076)$	$13.4(340)$	$14.3(362)$	$18.9(480)$	$15.7(400)$	$0.8(20)$	$0.4(9)$
480 V	$150-200$									
575 V	$100-175$									

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9, continued

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 (1)	D1	D2	D3
$18.9(480)$	$15.7(400)$	$6.5(165)$	$0.4(9)$	$2.1(54)$	$45.3(1150)$	$44.1(1120)$	$28.3(721)$	$8.0(205)$	$0.6(16)$	$7.4(188)$	$14.2(361.5)$	$13.4(340)$	$11.2(285)$

Note
(1) Brake resistor terminal box (H6) included when brake chopper ordered.

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9 with Flange Kit

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3
$20.9(530)$	$20.0(510)$	$19.1(485)$	$7.9(200)$	$0.2(5.5)$	$51.7(1312)$	$45.3(1150)$	$16.5(420)$	$3.9(100)$	$1.4(35)$	$0.4(9)$	$0.1(2)$	$24.9(362)$	$13.4(340)$	$4.3(109)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR10 Freestanding

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
FR10 Open Chassis ©

Voltage	hp (l_{H})	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4	Weight Lbs (kg)
480 V	250-350	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (425) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (30) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (67) \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & 45.9 \\ & (1165) \end{aligned}$	$\begin{aligned} & 44.1 \\ & (1121) \end{aligned}$	$\begin{aligned} & 34.6 \\ & (879) \end{aligned}$	$\begin{aligned} & 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & 0.7 \\ & \text { (17) } \end{aligned}$	$\begin{aligned} & 24.7 \\ & \text { (627) } \end{aligned}$	$\begin{aligned} & 10.8 \\ & (275) \end{aligned}$	$\begin{aligned} & 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & 16.6 \\ & (421) \end{aligned}$	$\begin{aligned} & 518 \\ & (235) \end{aligned}$
575 V	200-300																	

Note
(1) SPX9000X FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21, FR11 Freestanding Drive

Voltage	$\begin{aligned} & h p \\ & \left(I_{H}\right) \end{aligned}$	W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
480V	400-550	$\begin{array}{r} 31.26 \\ (794) \end{array}$	$\begin{aligned} & 2.40 \\ & (61) \end{aligned}$	$\begin{aligned} & 6.50 \\ & (165) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 3.43 \\ & \text { (87) } \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{aligned} & 20.18 \\ & (512.5) \end{aligned}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 19.09 \\ & (485) \end{aligned}$	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & 0.83 \\ & \text { (21) } \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.43 \\ & (9 \times 11) \end{aligned}$	$\begin{aligned} & 526 \\ & (239) \end{aligned}$
690V	400-500																				

2.4

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
FR11 Open Chassis

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Inverter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 21.77 \\ & (553) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 9.64 \\ & (244.8) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	683 (310)

Notes

9000X FR14 is built of two FR13 modules. Please refer to SPX9000 installation manual for mounting instructions.
FR13 is built from an inverter module and a converter module. Please refer to SPX9000 installation manual for mounting instructions.

Adjustable Frequency Drives

SPX9000 Drives

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
$\begin{aligned} & 18.74 \\ & (476) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 17.52 \\ & (445) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & \hline 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	295 (134)

Number of Input Units

480 V Catalog Number	hp	Input Modules	690V Catalog Number	hp	Input Modules
SPX800A0-4A2N1	800	2	SPX800A0-5A2N1	800	2
			SPX900AO-5A2N1	900	2
			SPXH10A0-5A2N1	1000	2

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter-900/1000 hp 480V

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & \hline 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & \hline 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & \hline 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & \hline 0.37 \\ & (9.5) \end{aligned}$	443 (201)

Number of Input Units

480V Catalog Number	hp	Input Modules
SPX900A0-4A2N1	900	3
SPXH10A0-4A2N1	1000	3

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)

AC Choke Dimensions

Choke Types Catalog Number	Frame Size	Choke Type ${ }^{(1)}$	Catalog Number	Frame Size	Choke Type ${ }^{(1)}$
Voltage Range 380-500V			Voltage Range 525-690V		
SPX 2504	FR10	CHK0400	SPX 2005	FR10	CHK0261
SPX 3004		CHK0520	SPX 2505		CHK0400
SPX 3504		CHK0520	SPX 3005		CHK0400
SPX 4004	FR11	$2 \times$ CHK0400	SPX 4005	FR11	CHK0520
SPX 5004		$2 \times$ CHK0400	SPX 4505		CHK0520
SPX 5504		$2 \times$ CHK0400	SPX 5005		$2 \times$ CHK0400
SPX 6004	FR12	$2 \times \mathrm{CHK0520}$	SPX 5505	FR12	$2 \times$ CHK0400
SPX 6504		$2 \times$ CHK0520	SPX 6005		$2 \times$ CHK0400
SPX 7004		$2 \times$ CHK0520	SPX 7005		$2 \times$ CHK0400
SPX 8004	FR13	$2 \times$ CHK0400	SPX 8005	FR13	$2 \times$ CHK0400
SPX 9004		$3 \times$ CHK0520	SPX 9005		$2 \times$ CHK0400
SPX H10 4		$3 \times$ CHK0520	SPX H10 5		$2 \times$ CHK0400
SPX H12 4	FR14	$4 \times$ CHK0520	SPX H13 5	FR14	$4 \times$ CHK0400
SPX H16 4		$6 \times$ CHK0400	SPX H15 5		$6 \times$ CHK0400

CHK0520

Note

(1) Chokes are provided with all FR10-FR14 drives.

Approximate Dimensions in Inches (mm)

CHK0400

CHK0261

Product Overview

H-Max Family Introduction

Eaton's H-Max ${ }^{\text {M }}$ Series VFD is the next generation of drives specifically engineered for HVAC pump and fluid control applications. The H-Max family of products boasts industry leading energy efficiency algorithms for your applications. Not only are the drives ultra-efficientthey contain software that minimizes motor winding energy loses in your applications. Designed for easy installation, simple startup, and long life; the H-Max Series drive family provides exceptional value to our customers,

Product Range

Open Style Drives:

- 0.75-125 hp at 230 Vac
- $1.5-250 \mathrm{hp}$ at 480 Vac

Note: Available in NEMA 1 or NEMA 12 designs.

IntelliPass/IntelliDisconnect Drives:

- $1-30$ hp at 208 Vac
- $1-30$ hp at 230 Vac
- 1-75 hp at 480 Vac

Note: Available in NEMA 1, NEMA 12, or NEMA 3R enclosures.

Contents

Description
H-Max Series Drives
H-Max Drives
V6-T2-139
H-Max IntelliPass and IntelliDisconnect Drives V6-T2-149

Application Description

The H-Max Series drive was designed specifically for HVAC pump and fluid control applications. It is intended to be used on variable torque loads with the intent of moving air or liquids. With this in mind, the H-Max drive has onboard I/O pre-programmed to meet the common needs for these applications. The H-Max drive supports items such as standard speed control, PID functionality, as well as multi-motor applications. The drive easily supports interlock, second motor parameter set, as well as fire mode functionality.

Key Feature

Active Energy Control Algorithm
Eaton's H-Max Series drives have been designed to provide industry leading energy saving solutions. Not only is the drive ultra-efficient, the drive seeks the most efficient operating point of the motor, minimizing energy loss in the windings per the given load requirements. This is an Eaton protected control algorithm exclusive to H-Max drives.

H-Max Drives

Product Description

Eaton's H-Max Series VFD has software and hardware designed specifically for the HVAC, pump industry. The ultra-efficient DC capacitor and power structure allows the drive to consume less energy, lowering greenhouse gases.
The I/O configuration is designed with wiring ergonomics in mind by including removable terminal blocks. The main, easily removable, control board used for all drive frames with six digital IN, two analog IN, one analog OUT, three relay OUT accepts two additional I/O or communication board. In addition, the control board has built-in RS-485 and Ethernet communication.

These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.
In addition to the Active Energy Control Algorithm to maximize motor efficiency, the drive boasts an ultraefficient DC capacitor and power structure to allow less energy consumption, lowering greenhouse gases.

Features and Benefits

 Hardware- Thin metal capacitor design-ultra-efficient drive operation and extended self life (up to five years without reforming)
- Integrated 5\% DC link choke with Input surge protection—protects against voltage spikes and provides a clean wave form to the motor
- EMI/RFI filters standard on all drives-meets EMC Category 2 for commercial applications
- Real-time clock—supports calendaring and PLC functionality
- Graphic LCD display and keypad-supports simple menu navigation as well as on-screen diagnostics and troubleshooting
- HAND-OFF-AUTO and drive-bypass selector on keypad-simplifies control
- Standard I/O: 6DI, 2AI, 1AO, 2 Form C RO (NO/ NC), 1 Form A RO (NO)supports requirements for most installations

Contents

- Onboard RS 485: Modbus, N2, BACnet-meets needs of most communication requirements
- Onboard Ethernet: BACnet/ IP, Modbus/TCP—meets needs of most communication requirements
- Two expansion slotsintended to support additional I/O or communication protocols as necessary
- Quick disconnect terminals for I/O connectionssupports fast easy installation

Software

- Active energy controlminimizes energy losses in your motor resulting in industry leading energy efficiency for your application
- Quick Start Wizard upon initial power up-supports fast easy installation
- Copy/paste functionality on drive keypad-allows for fast setup of multiple drives
- Pre-programmed I/Osupports fast easy installation for most applications

Standards and Certifications Product

- IEC 61800-5-1
- CE
- cUL

Safety

- UL 508C
- EN 61800-5-1
- CE
- cUL

- C-Tick Mark

C

Adjustable Frequency Drives

H-Max Series Drives

Catalog Number Selection

H-Max Series Drives

Notes
All boards are varnished (conformed coated). Corrosion resistant.
Battery included in all drives for real-time clock.
Keypad kit includes HOA bypass.
Keypad kit includes HOA, back reset for Europe application
EMI/RFI filters included.
DC link choke included.

Product Selection

H-Max Series Drives-230 Vac

NEMA Type 1/IP21

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings			
			Drive kW $230 \mathrm{Vac} / 50 \mathrm{~Hz}$	230 Vac NEC Amps	Low Overload Full Load Amps at $5 \mathbf{0}^{\circ} \mathrm{C}$	Catalog Number
4	3.7	0.75	0.55	3.2	2.6	HMX32AG3D721-N
	4.8	1	0.75	4.2	3.7	HMX32AG4D821-N
	6.6	1.5	1.1	6.6	4.8	HMX32AG6D621-N
	8	2	1.5	6.8	6.6	HMX32AG8D021-N
	11	3	2.2	9.6	8	HMX32AG61121-N
	12.5	4	3	N/A	11	HMX32AG01221-N
5	18	5	4	15.2	12.5	HMX32AG01821-N
	24	7.5	5.5	22	18	HMX32AG02421-N
	31	10	7.5	28	24	HMX32AG03121-N
6	48	15	11	42	31	HMX32AG04821-N
	62	20	15	54	48	HMX32AG06221-N
7	75	25	18.5	68	62	HMX32AG07521-N
	88	30	22	80	75	HMX32AG08821-N
	105	40	30	104	88	HMX32AG10521-N
8	140	50	37	130	105	HMX32AG14021-N
	170	60	45	154	140	HMX32AG17021-N
	205	75	55	192	170	HMX32AG20521-N
9	261	100	75	248	205	HMX32AG26121-N
	310	125	90	N/A	261	HMX32AG31021-N

NEMA Type 12/IP54

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings		Low Overload Full Load Amps at $5 \mathbf{0}^{\circ} \mathrm{C}$	Catalog Number
			Drive kW $230 \mathrm{Vac} / 50 \mathrm{~Hz}$	230 Vac NEC Amps		
4	3.7	0.75	0.55	3.2	2.6	HMX32AG3D722-N
	4.8	1	0.75	4.2	3.7	HMX32AG4D822-N
	6.6	1.5	1.1	6.6	4.8	HMX32AG6D622-N
	8	2	1.5	6.8	6.6	HMX32AG8D022-N
	11	3	2.2	9.6	8	HMX32AG01122-N
	12.5	4	3	N/A	11	HMX32AG01222-N
5	18	5	4	15.2	12	HMX32AG01822-N
	24	7.5	5.5	22	18	HMX32AG02422-N
	31	10	7.5	28	24	HMX32AG03122-N
6	48	15	11	42	31	HMX32AG04822-N
	62	20	15	54	48	HMX32AG06222-N
7	75	25	18.5	68	62	HMX32AG07522-N
	88	30	22	80	75	HMX32AG08822-N
	105	40	30	104	88	HMX32AG10522-N
8	140	50	37	130	105	HMX32AG14022-N
	170	60	45	154	140	HMX32AG17022-N
	205	75	55	192	170	HMX32AG20522-N
9	261	100	75	248	205	HMX32AG26122-N
	310	125	90	N/A	261	HMX32AG31022-N

Note

(1) For sizing reference

Adjustable Frequency Drives
H-Max Series Drives

H-Max Series Drives-480 Vac

NEMA Type 1

NEMA Type 1/IP21

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings		Low Overload Full Load Amps at $50^{\circ} \mathrm{C}$	Catalog Number
			Drive kW $400 \mathrm{Vac} / 50 \mathrm{~Hz}$	480 Vac NEC Amps ${ }^{(1)}$		
4	3.4	1.5	1.1	2.1	2.6	HMX34AG3D421-N
	4.8	2	1.5	3.4	3.4	HMX34AG4D821-N
	5.6	3	2.2	5.6	4.8	HMX34AG5D621-N
	8.0	4	3.0	N/A	5.6	HMX34AG8D021-N
	9.6	5	4	7.6	8	HMX34AG9D621-N
	12	7.5	5.5	11	9.6	HMX34AG01221-N
5	16	10	7.5	14	12	HMX34AG01621-N
	23	15	11	21	16	HMX34AG02321-N
	31	20	15	27	23	HMX34AG03121-N
6	38	25	18.5	34	31	HMX34AG03821-N
	46	30	22	40	38	HMX34AG04621-N
	61	40	30	52	46	HMX34AG06121-N
7	72	50	37	65	61	HMX34AG07221-N
	87	60	45	77	72	HMX34AG08721-N
	105	75	55	96	87	HMX34AG10521-N
8	140	100	75	124	105	HMX34AG14021-N
	170	125	90	156	140	HMX34AG17021-N
	205	150	110	180	170	HMX34AG20521-N
9	261	200	132	240	205	HMX34AG26121-N
	310	250	160	302	261	HMX34AG31021-N

NEMA Type 12/IP54

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings		Low Overload Full Load Amps at $50^{\circ} \mathrm{C}$	Catalog Number
			Drive kW $400 \mathrm{Vac} / 50 \mathrm{~Hz}$	480 Vac NEC Amps		
4	3.4	1.5	1.1	2.1	2.6	HMX34AG3D422-N
	4.8	2	1.5	3.4	3.4	HMX34AG4D822-N
	5.6	3	2.2	5.6	4.8	HMX34AG5D622-N
	8.0	4	3.0	N/A	5.6	HMX34AG8D022-N
	9.6	5	4	7.6	8	HMX34AG9D622-N
	12	7.5	5.5	11	9.6	HMX34AG01222-N
5	16	10	7.5	14	12	HMX34AG01622-N
	23	15	11	21	16	HMX34AG02322-N
	31	20	15	27	23	HMX34AG03122-N
6	38	25	18.5	34	31	HMX34AG03822-N
	46	30	22	40	38	HMX34AG04622-N
	61	40	30	52	46	HMX34AG06122-N
7	72	50	37	65	61	HMX34AG07222-N
	87	60	45	77	72	HMX34AG08722-N
	105	75	55	96	87	HMX34AG10522-N
8	140	100	75	124	105	HMX34AG14022-N
	170	125	90	156	140	HMX34AG17022-N
	205	150	110	180	170	HMX34AG20522-N
9	261	200	132	240	205	HMX34AG26122-N
	310	250	160	302	261	HMX34AG31022-N

Note

(1) For sizing reference

Onboard Network Communications

Johnson Controls

Metasys N2

H-Max Series provides communication between the drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. N2 can be selected and programmed by the drive keypad.

BACnet

H-Max Series provides communication to BACnet networks. Data transfer is master-slave/token passing (MS/TP) RS-485.

BACnet IP

100 base T interface.
Modbus TCP
Ethernet based protocol.

Modbus RTU

H-Max Series provides communication to Modbus RTU RS-485 as a slave on a Modbus network. Other communication parameters include an address range from 1-247; a parity of None, Odd or Even; and the stop bit is 1 .

H-Max Series Option Board Kits Available for Slot B

The factory issued relay option board can be replaced with the following option
boards to customize the drive for your application needs.

The standard board provides 2 Form C RO (NO/NC) and 1 Form A RO (NO).

Option Boards Mounted in Slot B

Option Kit Description	Option Kit Catalog Number
$1 / 0$ expander card, 2 RO and thermistor input	Relay Board 2

H-Max Series Option Board Kits Available for Slots D and E

The H-Max Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your
application needs. The drive's control unit is designed to accept a total of two option boards.

The H-Max Series factoryinstalled standard board configuration includes an I/O board and a relay output board.

Option Boards Mounted in Slots D and E

Option Kit Description	Option Kit Catalog Number
$6 \times \mathrm{DI} / \mathrm{DO}$, each digital input can be individually programmed as digital output	XMX-IO-B1-A
1 RO Form C (NO/NC), 1RO Form A (NO), 1 thermistor	XMX-IO-B2-A
$1 \times$ Al, $2 \times \mathrm{AO}$ (isolated)	XMX-IO-B4-A
$3 \times$ RO Form A (NO)	XMX-IO-B5-A
1 RO Form A (NO), 5DI 42-240 Vac input	XMX-IO-B9-A
$1 \times$ AO, $1 \times$ DO, $1 \times$ RO	XMX-IO-BF-A
LonWorks ${ }^{\circledR}$	XMX-COM-C4-A

NEMA Type 1 to NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 Kit consists of a drive cover, option kit is used to convert a fan kit and plugs. NEMA Type 1 to a NEMA Type 12 drive.

NEMA Type 12/IP54 Cover

Option Kit Description	Option Kit Catalog Number
FS4-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS4-N12KIT
FS5-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS5-N12KIT
FS6-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS6-N12KIT

Accessories

Flange Kits

The flange kit is used when the power section heat sink is mounted through the back panel of an enclosure.

Flange Kit NEMA Type 1/IP21

Includes flange, mounting brackets, and screws.

Flange Kit NEMA Type 12/IP54

Includes flange, mounting components, air shroud brackets, NEMA Type 12 fan screws and plugs.

Frames FS4-FS9 ©(2

Description	Catalog Number
NEMA Type 12/IP54	FS4-Flange-N12KIT
FS4 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	FS5-Flange-N12KIT
FS5 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	FS6-Flange-N12KIT
FS6 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	FS7-Flange-N12KIT
FS7 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	

Keypad Accessories

Remote Mounting Keypad Kit
Frames FS4-FS9

Description	Catalog Number
Remote mounting keypad kit—bezel and cable	OPTRMT-BP-HMAX

Drive Demo
H-Max Series Drive Demo
Demos and Power Supply

Description	Catalog Number
H-Max Series drive demo	H-MAX-DEMO
H-Max Series bypass demo	H-MAX-BYPASS-DEMO
Hand-held 24V auxiliary power supply—used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	$\mathbf{9 0 0 0 X A U X 2 4 V}$
Notes	
(1) For installation of a NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.	
(2) Frame size 8 and 9 must be ordered from the factory as a flange mount unit.	

Replacement Parts

Control Board/Keypad

Description	Current Catalog Number
H-Max Series graphic bypass, HOA	KeypadbypassH0A
H-Max Series graphic back, HOA	KeypadbackH0A
PC Cable	Catalog Number
Description	REM-USB-Down
Remote download USB to RJ-45 cable with software driver disk	
Replacement Relay Board in Slot B	Catalog
Number	
Description	Relay board 1
Replacement relay boardqty Form C relay, qty 1 Form A relay	

Main Fan

Description	Catalog Number
FS4 main fan	FS4-Main Fan
FS5 main fan	FS5-Main Fan
FS6 main fan	FS6-Main Fan
FS7 main fan	FS7-Main Fan

Internal Fan

Description	Catalog Number
FS4 internal fan (IP54/NEMA 12)	FS4-Internal Fan
FS5 internal fan (IP54/NEMA 12)	FS5-Internal Fan
FS6 internal fan (IP54/NEMA 12)	FS6-Internal Fan
FS7 internal fan (IP54/NEMA 12)	FS7-Internal Fan

Adjustable Frequency Drives
H-Max Series Drives

Technical Data and Specifications

H-Max Series Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	200-240 Vac, 380-480 Vac, -10\%/+10\%
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 47-66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to $\mathrm{V}_{\text {in }} / \mathrm{U}_{\text {in }}$ line voltage in
Continuous output current	Ambient temperature max. $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$
L overload	$1.1 \times \mathrm{I}_{\mathrm{L}}(1 \mathrm{~min} . / 10 \mathrm{~min}$.
Overload current	110\% (1 min./10 min.)
Initial output current	150\% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Control Characteristics	
Control method	Frequency control (V/f) open loop sensorless vector control
Switching frequency	$\begin{aligned} & \text { 1-310 amps } \\ & \text { FS4-9: default } 6 \mathrm{kHz} \end{aligned}$
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \%$ Panel reference: Resolution 0.01 Hz
Field weakening point	8 to 320 Hz
Acceleration time	0.1 to 3000 seconds
Deceleration time	0.1 to 3000 seconds
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$
Ambient Conditions	
Ambient operating temperature	FS4-FS9: $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ (Drive can operate at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, see Pages V6-T2-141 and V6-T2-142)
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95\% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 60721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 60721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft (1000 m); 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m}) ; 380-480 \mathrm{~V}$
Vibration	FS4-FS9: EN 61800-5-1, EN 60068-2-6; 5 to 150 Hz, displacement amplitude 1 mm (peak) at 5 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 61800-5-1, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. $15 \mathrm{G}, 11 \mathrm{~ms}$ (in package)
Enclosure class	NEMA Type 1/IP21 or NEMA Type 12/IP54 (keypad required for IP54/Type 12)
Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent- +EMC 2: EN61800-3 (2004) Category C2 Delivered with Class C2 EMC filtering as default.

Description	Specification
Control Connections	
Analog input voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200$ kohms differential Resolution 0.1\%; Accuracy $\pm 1 \%$ Dip switch selection (voltage/current)
Analog input current	O(4) to 20 mA ; $\mathrm{B}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 10 \%$, max. 250 mA
Output reference voltage	+10V $+3 \%$, max. load 10 mA
Analog output	$0-10 \mathrm{~V}, 0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. 500 ohms; Resolution 10 bit; Accuracy $\pm 2 \%$ Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	$\begin{aligned} & \text { RS485 }=\text { off } \\ & \text { A01 }=\text { current } \\ & \text { A12 }=\text { current } \\ & \text { A11 }=\text { voltage } \end{aligned}$
Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated (varnished) boards	Yes (prevents corrosion)

Wiring Diagram

Control Input/Output, PID Application

Standards

- Digital inputs D1-D6, relay out, analog in/out are freely programmed
- The user can assign a single input to multiple functions

Includes

- Six digital input
- Two analog input
- One analog output
- Three relay output
- RS-485
- Ethernet (BACnet and Modbus)

Reliability

- Pretested components
- Conformal coated (varnished) boards
- $40^{\circ} \mathrm{C}$ rated
- 110% overload for one minute
- Eaton Electrical Services \& Systems national network of AF drive specialists
2.5

Adjustable Frequency Drives
H-Max Series Drives

Dimensions

Approximate Dimensions in Inches (mm)
2
H-Max Series Frames FS4-FS7

Voltage	hp	kW	Amps	D	H1	Hole Center-to-Center H2	H3	W1	W2	W3	Weight in Lbs (kg)
FS4											
230 Vac	0.75-4	0.55-3.0	3.7-12.5	$\begin{aligned} & 7.77 \\ & \text { (197.3) } \end{aligned}$	$\begin{aligned} & 12.89 \\ & (327.5) \end{aligned}$	$\begin{aligned} & 12.32 \\ & (313.0) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285.0) \end{aligned}$	$\begin{aligned} & 5.04 \\ & (128.0) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 13.2 \\ & (6) \end{aligned}$
480 Vac	1.5-7.5	1.1-5.5	3.4-12								
FS5											
230 Vac	5-10	4-7.5	18-31	$\begin{aligned} & \hline 8.73 \\ & (221.6) \end{aligned}$	$\begin{aligned} & 16.50 \\ & (419.0) \end{aligned}$	$\begin{aligned} & 15.98 \\ & (406.0) \end{aligned}$	$\begin{aligned} & 15.04 \\ & (382.0) \end{aligned}$	$\begin{aligned} & \hline 5.67 \\ & (144.0) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115.0) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 22.0 \\ & (10) \end{aligned}$
480 Vac	10-20	7.5-15	16-31								
FS6											
230 Vac	15-20	11-15	48-62	$\begin{aligned} & \hline 9.29 \\ & (236.0) \end{aligned}$	$\begin{aligned} & 21.93 \\ & \text { (557.0) } \end{aligned}$	$\begin{aligned} & 21.28 \\ & (540.5) \end{aligned}$	$\begin{aligned} & 20.24 \\ & (514.0) \end{aligned}$	$\begin{aligned} & 7.68 \\ & (195.0) \end{aligned}$	$\begin{aligned} & 5.83 \\ & (148.0) \end{aligned}$	$\begin{aligned} & 5.83 \\ & (148.0) \end{aligned}$	$\begin{aligned} & 44.1 \\ & (20) \end{aligned}$
480 Vac	25-40	18.5-30	38-61								
FS7											
230 Vac	25-30	18.5-30	75-105	$\begin{aligned} & \hline 10.49 \\ & (266.5) \end{aligned}$	$\begin{aligned} & 25.98 \\ & (660.0) \end{aligned}$	$\begin{aligned} & 25.39 \\ & (645.0) \end{aligned}$	$\begin{aligned} & 24.29 \\ & (617.0) \end{aligned}$	$\begin{aligned} & 9.06 \\ & (230.0) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (190.0) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (190.0) \end{aligned}$	$\begin{aligned} & 82.6 \\ & (37.5) \end{aligned}$
480 Vac	50-75	37-55	72-105								

H-Max Series Frames FS8 and FS9

Voltage	hp	kW	Amps	D	H1	Hole Center-to-Center H2	H3	W1	W2	W3	Weight in Lbs (kg)
FS8											
230 Vac	50-75	37-55	140-205	$\begin{aligned} & 13.76 \\ & (349.6) \end{aligned}$	$\begin{aligned} & 38.02 \\ & \text { (965.7) } \end{aligned}$	$\begin{aligned} & 37.26 \\ & (946.4) \end{aligned}$	$\begin{aligned} & \hline 37.26 \\ & (946.4) \end{aligned}$	$\begin{aligned} & 11.42 \\ & (290.1) \end{aligned}$	$\begin{aligned} & 9.29 \\ & (236.0) \end{aligned}$	$\begin{aligned} & 1.42 \\ & (36.0) \end{aligned}$	$\begin{aligned} & 154.3 \\ & (70) \end{aligned}$
480 Vac	100-150	75-110									
FS9											
230 Vac	100-120	75-90	261-310	$\begin{aligned} & \hline 14.63 \\ & (371.6) \end{aligned}$	$\begin{aligned} & 33.09 \\ & (890.4) \end{aligned}$	$\begin{aligned} & 31.89 \\ & (810.0) \end{aligned}$	$\begin{aligned} & 31.89 \\ & (810.0) \end{aligned}$	$\begin{aligned} & 18.90 \\ & (480.0) \end{aligned}$	$\begin{aligned} & 15.75 \\ & (400.0) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40.0) \end{aligned}$	$\begin{aligned} & 238.1 \\ & (108) \end{aligned}$
480 Vac	200-250	132-160									

Note: For flange dimension, please reference User Manual.

H-Max IntelliPass and IntelliDisconnect Drives

H-Max IntelliPass and IntelliDisconnect Drives

Product Description

The IntelliPass electronic bypass is a two or optional three contactor design using a $24 \mathrm{Vdc} \boldsymbol{X T}$ Series contactor with an optional manual override switch that allows the unit to run in bypass without the H-Max Series drive.

The IntelliPass software parameters utilize engineering units common to the HVAC industry. Onboard startup wizard guarantees flawless commissioning with plug-andplay screen entry. Available in NEMA Type 1 and 12 with optional pre-engineered operator devices to meet all customized specification requirements.
The IntelliPass construction features allow for easy installation, reliable operation and serviceability with additional onboard wire space and removable conduit plates with knockouts.

Features and Benefits

Industry leading energy saving solution-uses the Eaton H-Max drive with Active Energy Control algorithm.
Built to be as tough as the application-Eaton's robust design boasts an industrial grade enclosure and industry proven components.

- PSG Industrial Power Supply
- XT Contactor
- 22 mm Pilot Devices

Contents

Description		Page
H-Max Drives .	V6-T2-139	

Designed with Our Customers in Mind

- Removable top and bottom entry panels
- Door mounted graphic display and keypad
- Easily accessible connection terminals with removable I/O terminal connections

Engineered Product Solution

- The Eaton H-Max

IntelliPass and IntelliDisconnect products are available with a variety of factory tested and certified options meeting or exceeding UL508C requirements

Standards and Certifications
 Product
 - IEC 61800-5-1
 - CE
 - cUt
 Safety
 - UL 508C
 - EN 61800-5-1
 - CE
 - cUL

- Plenum Rated

Adjustable Frequency Drives

H-Max Series Drives

Catalog Number Selection

H-Max Series IntelliPass and IntelliDisconnect Drives

Standard Onboard Communications
RS-485 Communications
BACnet MS/TP = Master slave/token protocol (Universal BACnet) RS-485 Modbus RTU RS-485, ASCII or RTU, remote terminal unit 32 nodes N2 $=$ Johnson Controls Metasys N2 network
Onboard Ethernet-Based Communications (port left side of keypad)
BACnet//P Ethernet industrial protocol Modbus/TCP Transmission control protocol (Ethernet-based)

Notes
IntelliPass-two contactor electronic bypass standard.
All boards are varnished. Corrosion resistant.
Battery included in all drives for real-time clock. Three year lifetime.
Keypad kit includes HOA bypass.
EMI/RFI filters included.
DC link choke included.

Product Selection

H-Max Series IntelliPass NEMA Type 1—Two Contactor Bypass Standard

230 Vac

FS			
Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.2	HMX4D232BA
	2	7.5	HMX7D532BA
5	3	9.6	HMX9D632BA
	5	15.2	HMX01632BA
	7.5	22	HMX02232BA
6	10	28	HMX02832BA
7	20	42	HMX04232BA
	25	68	HMX06832NA

480 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	2.1	HMX2D134BA
	2	3.4	HMX3D434BA
	3	5.6	HMX5D634BA
	7.5	9.6	HMX9D634BA
5	10	11	HMX01134BA
6	15	21	HMX01434BA
7	20	27	HMX02134BA
	30	34	HMX02734BA
	40	50	HMX03434BA
	50	65	HMX04034BA
	75	96	HMX06534NA

Notes

For Wiring Diagrams, see Page V6-T2-157.
For NEMA 12 or 3R enclosures, see Catalog Number Selection on Page V6-T2-150
Call Technical Support for NEMA 3R specifics. Enclosure size and weight differ from NEMA 1 and 12 products.
2.5

Adjustable Frequency Drives
H-Max Series Drives

H-Max Series IntelliDisconnect NEMA Type 1-Main Disconnect Standard

230 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.2	HMX4D2A2BA
	2	7.5	HMX7D5A2BA
	3	9.6	HMX9D6A2BA
5	5	15.2	HMX016A2BA
	7.5	22	HMX022A2BA
10	28	HMX028A2BA	
7	15	42	HMX042A2BA
	20	54	HMX068A2NA

480 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	2.1	HMX2D1A4BA
	2	3.4	HMX3D4A4BA
	3	5.6	HMX5D6A4BA
	5	9.6	HMX9D6A4BA
	7.5	11	HMX011A4BA
5	10	14	HMX014A4BA
	15	21	HMX021A4BA
	20	27	HMX027A4BA
6	25	34	HMX034A4BA
	30	40	HMX040A4BA
	40	52	HMX052A4BA
7	50	65	HMX065A4NA
	60	77	HMX077A4NA
	75	96	HMX096A4NA

Notes

For Wiring Diagrams, see Page V6-T2-157.
For NEMA 12 or 3R enclosures, see Catalog Number Selection on Page V6-T2-150.
Call Technical Support for NEMA 3R specifics. Enclosure size and weight differ from NEMA 1 and 12 products.

Onboard Network Communications

Johnson Controls

Metasys N2

H-Max Series provides communication between the drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. N2 can be selected and programmed by the drive keypad.

BACnet

H-Max Series provides communication to BACnet networks. Data transfer is master-slave/token passing (MS/TP) RS-485.

BACnet IP

100 base T interface.
Modbus TCP
Ethernet based protocol.

H-Max Series Option Board Kits Available for Slots D and E

The H-Max Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your
application needs. The drive's control unit is designed to accept a total of two option boards.

Modbus RTU

H-Max Series provides communication to Modbus RTU RS-485 as a slave on a Modbus network. Other communication parameters include an address range from 1-247; a parity of None, Odd or Even; and the stop bit is 1 .

The H-Max Series factoryinstalled standard board configuration includes an I/O board and a relay output board.

Option Boards Mounted in Slots D and E

Option Kit Description	Option Kit Catalog Number
$6 \times \mathrm{DI} / \mathrm{DO}$, each digital input can be individually programmed as digital output	XMX-IO-B1-A
1 RO Form C (NO/NC), 1RO Form A (NO), 1 thermistor	XMX-IO-B2-A
$1 \times$ AI, $2 \times \mathrm{AO}$ (isolated)	XMX-IO-B4-A
$3 \times$ RO Form A (NO)	XMX-IO-B5-A
1 RO Form A (NO), 5DI 42-240 Vac input	XMX-IO-B9-A
LonWorks ${ }^{\circledR}$	XMX-COM-C4-A
$1 \times$ AO, $1 \times$ DO, $1 \times$ RO	XMX-IO-BF-A

NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 option kit is used to convert a NEMA Type 1 to a NEMA Type 12 drive.

Kit consists of a drive cover, fan kit and plugs.

NEMA Type 12/IP54 Cover

Option Kit Description	Option Kit Catalog Number
FS4-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS4-N12KIT
FS5-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS5-N12KIT
FS6-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS6-N12KIT

Adjustable Frequency Drives

H-Max Series Drives

Extended I/O Options in Slot D and E
2

Description	Suffix Number
$6 \times \mathrm{DI} / \mathrm{DO}$, Each digital input can be individually programmed as digital output	B1
1 RO (NC/NO), 1RO (NO), 1 Thermistor	B2
$1 \times \mathrm{Al}, 2 \times \mathrm{AO}$ (isolated)	B4
$3 \times \mathrm{RO}$	B5
1 RO (NO), 5 DI 42-240 Vac input	B9
Expander IO, 1 AO, $1 \mathrm{DO}, 1$ RO	BF

Optional Communications
in Slot D and E

Description	Suffix Number
LonWorks $^{\circledR}$	C4

EMC Upgrade	
	Option
Description	Suffix Number
Standard	EMC C2

Keypad Options

Description	Suffix Number
None available	-

IntelliDisconnect Options

Description	Suffix Number
Pilot lights (Power ON, RUN, Fault)	L3
Fused drive isolation (cannot be used with PE)	P3
Output contactor (cannot be used with P3)	PE
Space heater w/transformer (Type 3R only)	SA

IntelliPass Bypass Options

Description	Suffix Number
Pilot lights (Power ON, RUN, Fault)	L4
Fused drive isolation (can not be used with P6)	P3
Third contactor drive isolation (cannot be used with P3 or IS)	P6
Manual bypass switch located on front door	M1
Space heater w/transformer (Type 3R only)	SA
Auxiliary contacts	K9
Isolation switch	IS

Standard Onboard Communications

Description	Suffix Number
RS-485 Communications	
BACnet MS/TP = Master slave/token protocol (Universal BACnet) RS-485	BACnet
Modbus RTU RS-485, ASCII or RTU, remote terminal unit 32 nodes	Modbus
Johnson Controls Metasys N2 network	N2
Onboard Ethernet-Based Communications (port left side of keypad)	
BACnet/IP Ethernet industrial protocol	BACnet
Modbus/TCP Transmission control protocol (Ethernet-based)	Modbus

Technical Data and Specifications

Primary Design Features

Description	IntelliPass	IntelliDisconnect
CB MMP	Standard	Standard
2 contactor bypass	Standard	N/A
Mechanical interlock	Standard	N/A
Electrical interlock	Standard	N/A
Third contactor (isolation)	Optional	N/A

Description	IntelliPass	IntelliDisconnect
solation switch	Optional	N/A
Top entry (power)	Standard	Standard
Bottom entry (power)	Standard	Standard
Output contactor	Standard	Optional

H-Max Series Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	208, 230, $480 \mathrm{Vac},-10 \% /+10 \%$
Input frequency ($\mathrm{fin}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 47-66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	65 kAIC combination
Output Ratings	
Output voltage	0 to $\mathrm{V}_{\text {in }} / U_{\text {in }}$ line voltage in
Continuous output current	Ambient temperature max. $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$
L overload	$1.1 \times \mathrm{L}_{\mathrm{L}}(1 \mathrm{~min} . / 10 \mathrm{~min}$.
Overload current	110\% (1 min./10 min.)
Initial output current	150\% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Control Characteristics	
Control method	Frequency control (V/f) open loop sensorless vector control
Switching frequency	1-310 amps; adjustable with parameter 2.6.9 FS4-FS7: default 6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \%$ Panel reference: Resolution 0.01 Hz
Field weakening point	8 to 320 Hz
Acceleration time	0.1 to 3000 seconds
Deceleration time	0.1 to 3000 seconds
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$
Ambient Conditions	
Ambient operating temperature	FS4-FS7: $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ (Drive can operate at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95\% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 60721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 60721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m}) ; 380-480 \mathrm{~V}$
Vibration	FS4-FS7: EN 61800-5-1, EN 60068-2-6; 5 to 150 Hz, displacement amplitude 1 mm (peak) at 5 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 61800-5-1, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. $15 \mathrm{G}, 11 \mathrm{~ms}$ (in package)
Enclosure class	NEMA Type 1/IP21 or NEMA Type 12/IP54 (keypad required for IP54/Type 12)

Description	Specification
Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent-

Analog input voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200$ kohms differential Resolution 0.1\%; Accuracy $\pm 1 \%$ Dip switch selection (voltage/current)
Analog input current	O(4) to 20 mA ; $\mathrm{B}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 10 \%$, max. 250 mA
Output reference voltage	+10V $+3 \%$, max. load 10 mA
Analog output	$0-10 \mathrm{~V}$, 0(4) to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. 500 ohms; Resolution 10 bit; Accuracy $\pm 2 \%$; Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	$\begin{aligned} & \text { RS485 = off } \\ & \text { A01 }=\text { current } \\ & \text { A12 }=\text { current } \\ & \text { A11 }=\text { voltage } \end{aligned}$

Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated	Yes (prevents corrosion)
(varnished) board	

Adjustable Frequency Drives

H-Max Series Drives

Wiring Diagrams

Control Input/Output, PID Application

Standards

- Digital inputs D1-D6, relay out, analog in/out are freely programmed
- The user can assign a single input to multiple functions

Includes

- Six digital input
- Two analog input
- One analog output
- Three relay output
- RS-485
- Ethernet

Reliability

- Pretested components
- Conformal coated (varnished) boards
- $40^{\circ} \mathrm{C}$ rated
- 110% overload for one minute
- Eaton Electrical Services \& Systems national network of AF drive specialists

H-Max Series Drives

H-Max Series IntelliPass

H-Max Series IntelliDisconnect Power Wiring

2.5

Adjustable Frequency Drives

H-Max Series Drives

Dimensions

Approximate Dimensions in Inches (mm)
H-Max Series IntelliPass and IntelliDisconnect Drives

Consult factory or use manual for final dimensions.

Frame Size	Voltage	Horsepower (I_{L})	H1	H2	H3	H4	C	W1	W2	W3	D1	D2	Weight in Lbs (kg)
FS4	208	1-3	$\begin{aligned} & 29.69 \\ & -(754.1) \end{aligned}$	$\begin{aligned} & 37.12 \\ & \text { (942.9) } \end{aligned}$	$\begin{aligned} & 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 31.00 \\ & (914.4) \end{aligned}$	$\begin{aligned} & 3.00 \\ & (76.2) \end{aligned}$	$\begin{aligned} & 7.88 \\ & (200.2) \end{aligned}$	$\begin{aligned} & 6.33 \\ & (160.8) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 11.40 \\ & (289.6) \end{aligned}$	$\begin{aligned} & 9.27 \\ & (235.5) \end{aligned}$	45 (20.41)
	230	1-3											
	480	1-7.5											
FS5	208	5-10	$\begin{aligned} & 37.00 \\ & (939.8) \end{aligned}$	$\begin{aligned} & 34.47 \\ & (875.5) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 38.31 \\ & (973.0) \end{aligned}$	$\begin{aligned} & 3.00 \\ & (76.2) \end{aligned}$	$\begin{aligned} & 9.40 \\ & (238.8) \end{aligned}$	$\begin{aligned} & 7.75 \\ & \text { (196.9) } \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 13.17 \\ & (334.6) \end{aligned}$	57.5 (26.10)
	230	5-10											
	480	10-20											
FS6	208	15-20	$\begin{aligned} & 45.08 \\ & (1145.0) \end{aligned}$	$\begin{aligned} & 40.28 \\ & (1023.1) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 46.4 \\ & (1178.6) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 10.90 \\ & (276.9) \end{aligned}$	$\begin{aligned} & 9.35 \\ & (327.5) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 15.75 \\ & (400.0) \end{aligned}$	$\begin{aligned} & 13.62 \\ & (346.0) \end{aligned}$	98.0 (44.45)
	230	15-20											
	480	25-40											
FS7	208	25-30	$\begin{aligned} & \hline 58.32 \\ & (1481.3) \end{aligned}$	$\begin{aligned} & \hline 56.30 \\ & (1430.0) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & \hline 59.46 \\ & (1510.3) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (127.0) \end{aligned}$	$\begin{aligned} & 13.98 \\ & (355.1) \end{aligned}$	$\begin{aligned} & 12.35 \\ & (313.7) \end{aligned}$	$\begin{aligned} & \hline 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 15.50 \\ & (393.7) \end{aligned}$	$\begin{aligned} & 13.55 \\ & (244.2) \end{aligned}$	165.0 (74.84)
	230	25-30											
	480	50-75											

Note: C distance is spacing required to mount multiple drives.

Product Description

The CFX9000 Clean Power Drives from Eaton's electrical sector use tuned passive filters to significantly reduce line harmonics at the drive input terminals.
The CFX9000 drive also delivers True Power Factorin addition to reducing harmonic distortion, the CFX9000 drive prevents transformer overheating and overloading of breakers and feeders, which enables the application of adjustable frequency drives on generators and other high impedance power systems.

Contents

Description	Page
CFX9000 Drives	
Application Description	V6-T2-160
Features and Benefits	V6-T2-166
Standards and Certifications	V6-T2-166
Product Identification	V6-T2-166
Catalog Number Selection	V6-T2-167
Product Selection	V6-T2-168
Options	V6-T2-175
Technical Data and Specifications	V6-T2-180
Wiring Diagram	V6-T2-182
Dimensions	V6-T2-183

The 9000X family of drives includes HVX9000, SVX9000, SLX9000, and SPX9000. 9000X Series drive ratings are rated for either high overload $\left(I_{H}\right)$ or low overload (I_{L}). I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150\% overload capacity for 1 minute out of 10 minutes.

CFX9000 Enclosed Products

- Standard Enclosedcovers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options. Available configurations are listed on Pages V6-T2-166 to V6-T2-181.
- Modified Standard Enclosed-applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Contact your local sales office for assistance in pricing and lead time.
- Custom Engineered-for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Contact your local sales office for assistance in pricing and lead time.

Application Description

Designed to meet the IEEE ${ }^{\circledR}$
519-1992 requirements for harmonic distortion, the CFX9000 is an excellent

What Are Harmonics?

Take a perfect wave with a fundamental frequency of 60 Hz , which is close to what is supplied by the power company.

Perfect Wave

Add a second wave that is five times the fundamental frequency300 Hz (typical of frequency added to the line by a fluorescent light).
Second Wave

Combine the two waves. The result is a $\mathbf{6 0 ~ H z ~ s u p p l y ~ r i c h ~ i n ~}$ fifth harmonics.
Resulting Supply

What Causes Harmonics?

Harmonics are the result of nonlinear loads that convert AC line voltage to DC. Examples of equipment that are non-linear loads are listed below:

- AC variable frequency drives
- DC drives
- Fluorescence lighting, computers, UPS systems
- Industrial washing machines, punch presses, welders, etc.

How Can Harmonics Due to VFDs Be Diminished?
By applying drives from the Eaton Clean Power Drives Family; The HCX9000, CFX9000 and CPX9000.

What Are Linear Loads?

Linear loads are primarily devices that run across the line and do not add harmonics. Motors are prime examples. The downside to having large motor linear loads is that they draw more energy than a VFD, because of their inability to control motor speed. In most applications there is a turn down valve used with the motor which will reduce the flow of the material, without significantly reducing the load to the motor. While this provides some measure of speed control, it is extremely inefficient.

How Does a VFD Convert Three-Phase AC to a Variable Output Voltage and Frequency?

The six-pulse VFD: The majority of all conventional drives that are built consist of a six-pulse configuration. The figure below represents a sixdiode rectifier design that converts three-phase utility power to DC. The inverter section uses IGBTs to convert DC power to a simulated AC sine wave that can vary in frequency from $0-400 \mathrm{~Hz}$.

The six-pulse VFD drive creates harmonic current distortion. The harmonic current that is created is energy that can not be used by customers and causes external heat and losses to all components including other drives that are on the same power distribution. The figure is a 100 hp drive with 45 A of damaging harmonic current.

100 hp Six-Diode Rectifier Design

100 hp Six-Pulse Nonproductive Harmonic Current

Six-Pulse Nonproductive Harmonic Current
Six-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=6.10 \%$	$\mathrm{I}_{19}=1.77 \%$
$\mathrm{I}_{5}=22.5 \%$	$\mathrm{I}_{13}=4.06 \%$	$\mathrm{I}_{23}=1.12 \%$
$\mathrm{I}_{7}=9.38 \%$	$\mathrm{I}_{17}=2.26 \%$	$\mathrm{I}_{25}=0.86 \%$

Power $=100 \mathrm{hp}$
Harmonic current = 45 amps

Guidelines of Meeting IEEE Std. 519-1992

 Harmonic Distortion LimitsThe IEEE 519-1992
Specification is a standard that provides guidelines for commercial and industrial
users that are implementing medium and low voltage equipment.

Maximum Harmonic Current Distortion in \% of the Fundamental (120V through 69,000V)

$\mathrm{Isc} / \mathbf{l}_{\mathrm{L}}$	Harmonic Order (Odd Harmonics)			23<h<35	35<h	TDD
	$\mathrm{h}<11$	$11 \leq h<17$	17<h<23			
<20	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

The ratio $I s c / I_{L}$ is the ratio of the short-circuit current available at the point of common coupling (PCC), to the maximum fundamental load current. Consequently, as the size of the user load decreases with respect to the size of the system, the percentage of harmonic current that the user is allowed to inject into the utility system increases.

Notes

TDD = Total demand distortion is the harmonic current distortion in percent of the maximum demand load current (15 or 30 minute demand).
$I_{S C}=$ Maximum short circuit current at the PCC not counting motor contribution.
$I_{L}=$ Maximum demand load current for all of the connected loads (fundamental frequency component) at the PCC. All of the limits are measured at a point of common coupling.

Adjustable Frequency Drives
CFX9000 Drives

One-Line Diagram for Harmonic Analysis
2

The best way to estimate AFD harmonic contribution to an electrical system is to perform a harmonic analysis based on known system characteristics. The one line in this figure would provide the data to complete the calculations.

Terms

- PCC (Point of Common Coupling) is defined as the electrical connecting point between the utility and multiple customers per the specifications in IEEE 519
- POA (Point of Analysis) is defined as where the harmonic calculations are taken

An oscilloscope can make all measurements at the PCC or POA to do an on-site harmonic evaluation.

Harmonic Reduction Methods to Meet IEEE 519

1. Line Reactor

A line reactor is a three-phase series inductance on the line side of an AFD. If a line reactor is applied on all AFDs, it is possible to meet IEEE guidelines where $10-25 \%$ of system loads are AFDs, depending on the stiffness of the line and the value of line reactance. Line reactors are available in various values of percent impedance, most typically $1-1.5 \%, 3 \%$ and 5%.

Note: The 9000X drives come standard with a nominal 3% input impedance.

Line Reactor

Advantages

- Low cost
- Can provide moderate reduction in voltage and current harmonics
- Available in various values of percent impedance
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- May not reduce harmonic levels to below IEEE 5191992 guidelines
- Voltage drop due to IR loss

2. Passive Filters

Tuned harmonic filters involve the series connection of an inductor with the shunt connection of an inductor and capacitor to form a low impedance path to ground for
a specific range of frequencies. This path presents an alternative to the flow of harmonic currents back into the utility source.

CFX9000 Drive with Integrated Passive Filter

100 hp CFX9000 480V Drive with Integrated Passive Filter

100 hp CFX9000 480V Drive with Integrated Passive Filter Passive Filter

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=0.24 \%$	$\mathrm{I}_{19}=0.50 \%$
$\mathrm{I}_{5}=3.76 \%$	$\mathrm{I}_{13}=1.1 \%$	$\mathrm{I}_{23}=0.55 \%$
$\mathrm{I}_{7}=1.65 \%$	$\mathrm{I}_{17}=0.80 \%$	$\mathrm{I}_{25}=0.80 \%$
Power $=100 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{C}}=8.6$ Amps		
Advantages		

Advantages

- Low cost for smaller horsepower applications
- More effective harmonic attenuation than 12-pulse drives
- Provides increased input protection for AFD from line transients

Disadvantages

- Capacitors age over time, unlike magnetics
- Not as effective as 18-pulse drives
- Challenging to retrofit with bypass applications

3. 12-Pulse Converters

A 12-pulse converter incorporates two separate AFD input semiconductor bridges, which are fed from 30° phase shifted power sources with identical impedance. The sources may be two isolation transformers, where one is a delta/wye design (which provides the phase shift) and
the second a delta/delta design (which does not phase shift). The 12-pulse arrangement allows the harmonics from the first converter to cancel the harmonics of the second. Up to approximately 85% reduction of harmonic current and voltage distortion may be achieved (over standard
six-pulse converter). This permits a facility to use a larger percentage of AFD loads under IEEE 519-1992 guidelines than allowable using line reactors or DC chokes. A harmonic analysis is required to guarantee compliance with guidelines.

Basic 12-Pulse Rectifier with "Phase Shifting" Transformer

100 hp 480 V Drive with 12-Pulse Rectifier

100 hp 480 V Drive with 12-Pulse Rectifier
12-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=4.19 \%$	$\mathrm{I}_{19}=0.06 \%$
$\mathrm{I}_{5}=1.25 \%$	$\mathrm{I}_{13}=2.95 \%$	$\mathrm{I}_{23}=0.87 \%$
$\mathrm{I}_{7}=0.48 \%$	$\mathrm{I}_{17}=0.21 \%$	$\mathrm{I}_{25}=0.73 \%$
Power $=100 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{c}}=20$ Amps		
Advantages		

Advantages

- Reasonable cost, although significantly more than reactors or chokes
- Substantial reduction (up to approx. 85\%) in voltage and current harmonics
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- Impedance matching of phase shifted sources is critical to performance
- Transformers often require separate mounting or larger AFD enclosures
- May not reduce distribution harmonic levels to below IEEE 519-1992 guidelines
- Cannot retrofit for most AFDs

4. Clean Power Drives

When the total load is comprised of non-linear load such as drives, and the ratio is $I_{S C} / I_{L}$, the greatest harmonic mitigation is required. Under these conditions, the currents drawn from the supply need to be sinusoidal and "clean" such that system interference and additional
losses are negligible. Eaton's CPX9000 clean power drive uses a phase-shifting auto-transformer with delta-connected winding that carries only the ampere-turns caused by the difference in load currents. This results in nine separate phases. In this type of configuration, the
total kVA rating of the transformer magnetic system was only 48\% that of the motor load. A traditional isolated transformer system, with multipulse windings, would require the full kVA rating to be supported, which is more common in an MV step-down transformer.

The integrated 18-pulse clean power drive, with near sine wave input current and low harmonics will meet the requirements of IEEE 5191992 under all practical operating conditions. The comparisons with six-pulse passive filter and 12-pulse systems are shown on Pages V6-T2-161, V6-T2-163 and below.

Basic 18-Pulse Rectifier with Phase-Shifting Auto-Transformer

100 hp 480 V Drive with 18-Pulse Rectifiers

100 hp 480V Drive with 18-Pulse Rectifiers
18-Pulse Clean Power

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=0.24 \%$	$\mathrm{I}_{19}=1.00 \%$
$\mathrm{I}_{5}=0.16 \%$	$\mathrm{I}_{13}=0.10 \%$	$\mathrm{I}_{23}=0.01 \%$
$\mathrm{I}_{7}=0.03 \%$	$\mathrm{I}_{17}=0.86 \%$	$\mathrm{I}_{25}=0.01 \%$
Power $=100 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{c}}=5.9$ Amps		

Advantages

- Effectively guarantees compliance with IEEE 5191992
- Provides increased input protection for AFD and its semiconductors from line transients
- Up to 4 times the harmonic reduction of 12 -pulse methods
- Smaller transformer than isolation transformer used in 12-pulse converter
- Minimizes ripple current in capacitors, doubling expected capacitor life

Disadvantages

- Not as cost effective as some other methods at small (<50) horsepower

Adjustable Frequency Drives
CFX9000 Drives

Features and Benefits

New CFX9000 Integrated Filter Clean Power Drive features include (at 480V):

- UL Type 1, UL Type 12, UL Type 3R and NEMA 12 with gaskets and filters
- Input voltage: $480 \mathrm{~V}, 230 \mathrm{~V}$, 575 V
- Complete range of control, network and power options

Product Identification

CFX9000 Drive-UL Type 12, 40 hp

Standards and Certifications
 - UL
 - cUL

- 480V, 7-1/2-400 hp IL
- 230V, 7-1/2-100 hp I consult factory for details
- 575V, 15-400 hp I_{L} consult factory for details
- Single enclosure for both drive and filter reduces field wiring and enables convenient bypass installation
- Packaged solution ensures optimal coordination of drive and filter

Catalog Number Selection

CFX9000 Enclosed Drives

Enclosed Options ${ }^{\text {(2)3(4) }}$		Type
K1	Door-mounted speed potentiometer (5) K2 Door-mounted speed potentiometer with HOA selector switch ©	Control
K3	Control	
K4 15 psig follower	HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	Control
K5	MANUAL/AUTO reference switch (22 mm)	Control
K6	START/STOP pushbuttons (22 mm)	Control
KF	Bypass test switch for RA and RB	Control
K0	Standard elapsed time meter	Addl. bypass
L1	Power, RUN and fault pilot lights	Control
L2	Bypass pilot lights for RA, RB, bypass options	Light
LE	Addl. bypass	

Red RUN ligh
Light

Notes

(1) Brake chopper is standard in $208 \mathrm{~V}, 230 \mathrm{~V}$ and 480 V drives up to FR 6 ; optional in all other drives.
(2) Local/remote keypad is included as the standard control panel.
(3) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(4) See Pages V6-T2-177 and V6-T2-178 for complete descriptions.
(5) Includes local/remote speed reference switch.
(6) See Pages V6-T2-175 and V6-T2-176 for complete descriptions.
(7) Consult Eaton for availability.

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating. (The enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating.) The base enclosed package includes a standard drive, doormounted alphanumeric panel and enclosure.
- The CFX9000 product uses the term High Overload $\left(l_{H}\right)$ in place of the term Constant Torque (CT). Likewise, Low Overload (I_{L}) is used in place of the term Variable Torque (VT). The new terms are a more precise description of the rating. The older terms included ambient temperature ratings in addition to overload ratings. In order to minimize enclosure size and offer the highest ambient temperature rating, overload and temperature ratings are now treated separately. Ambient temperature ratings are shown in the following table.

Ambien		
Temperature Ratings		
Enclosure Size	I_{H}	IL
B, C, 9 (1)	40°	$40^{\circ} \mathrm{C}$
7,8	$50^{\circ} \mathrm{C}$	50°
- If dyn or con option the base - All of exactly stand - Selec Add t to the in alp order	brak comm esire riate g nu rogra sam VX90 losed des cata ical a	hopper nication change de in the er. ming is as the drive. ptions. suffixes number numeric
Note		
(1) For high		

208V Drives

CFX9000 Drive UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered

hp	NEC Current (A)	Chassis Frame	ULType 1 Base Catalog Number
Low Overload Drive			
$7-1 / 2$	24.2	FR5	(1)
10	30.8	FR5	(1)
15	46.2	FR6	(1)
20	59.4	FR6	(1)
25	74.8	FR7	(1)
30	88	FR7	(1)
40	114	FR7	(1)
50	143	FR8	CFX05011AA
60	169	FR8	CFX06011AA
75	211	FR8	CFX07511AA
100	273	FR9	CFX10011AA
High Overload Drive			
$7-1 / 2$	24.2	FR5	(1)
10	30.8	FR6	(1)
15	46.2	FR6	(1)
20	59.4	FR7	(1)
25	74.8	FR7	(1)
30	88	FR7	(1)
40	114	FR8	CFX04011DA
50	143	FR8	CFX05011DA
60	169	FR8	CFX06011DA
100	211	FR9	CFX07511DA
	FR9	CFX10011DA	

UL Type 12 and NEMA 12 Filtered Base Catalog Number	UL Type 3R Base Catalog Number
CFX00721BA	CFX00731BA
CFX01021BA	CFX01031BA
CFX01521BA	CFX01531BA
CFX02021BA	CFX02031BA
CFX02521AA	CFX02531AA
CFX03021AA	CEX03031AA
CFX04021AA	CFX04031AA
CFX05061AA	CFX05031AA
CFX06061AA	CFX06031AA
CFX07561AA	CFX07531AA
CFX10061AA	CFX10031AA
CFX00721EA	CFX00731EA
CFX01021EA	CFX01031EA
CFX01521EA	CFX01531EA
CFX02021DA	CFX02031DA
CFX02521DA	CFX02531DA
CFX03021DA	CFX03031DA
CFX04061DA	CFX04031DA
CFX05061DA	CFX05031DA
CFX06061DA	CFX06031DA
CFX07561DA	CFX07531DA
CFX10061DA	CFX10031DA

CFX9000 Enclosure

| Chassis
 Frame | UL Type 1
 Disconnect Only | With Power Options | | UL Type 12
 Disconnect Only | With Power Options |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Enclosure Dimension Drawings

Enclosure Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
C	See Page V6-T2-184	See Page V6-T2-186
D	N/A	See Page V6-T2-187
F	N/A	See Page V6-T2-188
$7{ }^{(2)}$	See Page V6-T2-189	(3)
$8{ }^{(2)}$	See Page V6-T2-190	(3)
9	See Page V6-T2-191	(3)

Notes

(1) FR5-FR7 drives not available in UL Type 1
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

230V Drives

CFX9000 Drive	UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Fil			
	hp	NEC Curre	Chassis Frame	UL Type 1 Base Catalog Number
3	Low Overload Drive			
3	7-1/2	22	FR5	(1)
	10	28	FR5	(1)
	15	42	FR6	(1)
	20	54	FR6	(1)
	25	68	FR7	(1)
	30	80	FR7	(1)
	40	104	FR7	(1)
	50	130	FR8	CFX05012AA
	60	154	FR8	CFX06012AA
	75	192	FR8	CFX07512AA
	100	248	FR9	CFX10012AA
	High Overload Drive			
	7-1/2	22	FR5	(1)
	10	28	FR6	(1)
	15	42	FR6	(1)
	20	54	FR7	(1)
	25	68	FR7	(1)
	30	80	FR7	(1)
	40	104	FR8	CFX04012DA
	50	130	FR8	CFX05012DA
	60	154	FR8	CFX06012DA
	75	192	FR9	CFX07512DA
	100	248	FR9	CFX10012DA

UL Type 12 and NEMA 12 Filtered Base Catalog Number	UL Type 3R Base Catalog Number
CFX00722BA	CFX00732BA
CFX01022BA	CFX01032BA
CFX01522BA	CFX01532BA
CFX02022BA	CFX02032BA
CFX02522AA	CFX02532AA
CFX03022AA	CFX03032AA
CFX04022AA	CFX04032AA
CFX05062AA	CFX05032AA
CFX06062AA	CFX06032AA
CFX07562AA	CFX07532AA
CFX10062AA	CFX10032AA
CFX00722EA	CFX00732EA
CFX01022EA	CFX01032EA
CFX01522EA	CFX01532EA
CFX02022DA	CFX02032DA
CFX02522DA	CFX02532DA
CFX03022DA	CFX03032DA
CFX04062DA	CFX04032DA
CFX05062DA	CFX05032DA
CFX06062DA	CFX06032DA
CFX07562DA	CFX07532DA
CFX10062DA	CFX10032DA

Chassis Frame	UL Type 1 Disconnect Only	With Power Options	UL Type 12 Disconnect Only	With Power Options	UL Type 3R Disconnect Only	With Power Options
FR4	N/A	N/A	B	C	B	C
FR5	N/A	N/A	B	C	B	C
FR6	N/A	N/A	B	C	B	C
FR7	N/A	7	C	7	C	D
FR8	7	7	7	7	F	F
FR9	8	8	8	8	F	F

Enclosure Dimension Drawings

Enclosure Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
C	See Page V6-T2-184	See Page V6-T2-186
D	N/A	See Page V6-T2-187
F	N/A	See Page V6-T2-188
$7{ }^{(2)}$	See Page V6-T2-189	(3)
$8{ }^{(2)}$	See Page V6-T2-190	(3)
9	See Page V6-T2-191	(3)

Notes

(1) FR5-FR7 drives not available in UL Type 1
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

480V Drives

CFX9000 Base Drive

hp	NEC Current (A)	Chassis Frame	UL Type 1 Base Catalog Number
Low Overload Drive			
7-1/2	11	FR4	(2)
10	14	FR5	(2)
15	21	FR5	(2)
20	27	FR5	(2)
25	34	FR6	(2)
30	40	FR6	(2)
40	52	FR6	(2)
50	65	FR7	CFX05014AA ${ }^{3}$
60	77	FR7	CFX06014AA ${ }^{(3)}$
75	96	FR7	CFX07514AA ${ }^{(3)}$
100	124	FR8	CFX10014AA
125	156	FR8	CFX12514AA
150	180	FR8	CFX15014AA
200	240	FR9	CFX20014AA
250	302	FR9	CFX25014AA
300	361	FR10	CFX30014AA
350	414	FR10	CFX35014AA
400	477	FR10	CFX40014AA
High Overload Drive			
7-1/2	11	FR5	(2)
10	14	FR5	(2)
15	21	FR5	(2)
20	27	FR6	(2)
25	34	FR6	(2)
30	40	FR6	(2)
40	52	FR7	CFX04014DA ${ }^{3}$
50	65	FR7	CFX05014DA ${ }^{(3)}$
60	77	FR7	CFX06014DA ${ }^{(3)}$
75	96	FR8	CFX07514DA
100	124	FR8	CFX10014DA
125	156	FR8	CFX12514DA
150	180	FR9	CFX15014DA
200	240	FR9	CFX20014DA
250	302	FR10	CFX25014DA
300	361	FR10	CFX30014DA
350	414	FR10	CFX35014DA

UL Type 12 and NEMA 12 Filtered Base Catalog Number ${ }^{(1)}$

UL Type 3R
Base Catalog Number (1)

CFX00734BA
CFX01034BA
CFX01534BA
CFX02034BA
CFX02534BA
CFX03034BA
CFX04034BA
CFX05034AA
CFX06034AA
CFX07534AA
CFX10034AA
CFX12534AA
CFX15034AA
CFX20034AA
CFX25034AA
(4)
(4)
(4)

CFX00734EA
CFX01034EA
CFX01534EA
CFX02034EA
CFX02534EA
CFX03034EA
CFX04034DA
CFX05034DA
CFX06034DA
CFX07534DA
CFX10034DA
CFX12534DA
CFX15034DA
CFX20034DA

(4)
(4)

Notes

(1) The integrated filter clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.
(2) FR4-FR6 drives not available in UL Type 1.
(3) This catalog number is used only with power options.
${ }^{4}$ Consult factory.

Adjustable Frequency Drives

CFX9000 Enclosure

Chassis Frame	UL Type 1 Disconnect Only	With Power Options	UL Type 12 Disconnect Only	With Power Options	UL Type 3R Disconnect Only	With Power Options
FR4	N/A	N/A	B	C	B	C
FR5	N/A	N/A	B	C	B	C
FR6	N/A	N/A	B	C	B	C
FR7	N/A	7	C	7	C	D
FR8	7	7	7	7	F	F
FR9	8	8	8	8	F	F
FR10	9	9	9	9	(1)	(1)

Enclosure Dimension Drawings

Enclosure Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
C	See Page V6-T2-184	See Page V6-T2-186
D	N/A	See Page V6-T2-187
F	N/A	See Page V6-T2-188
$7{ }^{(2)}$	See Page V6-T2-189	(3)
$8{ }^{2}$	See Page V6-T2-190	(3)
9	See Page V6-T2-191	(3)

Notes

(1) Consult factory.
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

575V Drives

UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered

hp	NEC Current (A)	Chassis Frame	UL Type 1 Base Catalog Number
Low Overload Drive			
15	17	FR6	(1)
20	22	FR6	(1)
25	27	FR6	(1)
30	32	FR6	(1)
40	41	FR7	(1)
50	52	FR7	(1)
60	62	FR8	CFX06015AA
75	77	FR8	CFX07515AA
100	99	FR8	CFX10015AA
125	125	FR9	CFX12515AA
150	144	FR9	CFX15015AA
200	192	FR9	CFX20015AA
250	242	FR10	CFX25015AA
300	289	FR10	CFX30015AA
400	382	FR10	CFX40015AA
High Overload Drive			
10	14	FR6	(1)
15	17	FR6	(1)
20	22	FR6	(1)
25	27	FR6	(1)
30	32	FR7	(1)
40	41	FR7	(1)
50	52	FR8	CFX05015DA
60	62	FR8	CFX06015DA
75	77	FR8	CFX07515DA
100	99	FR9	CFX10015DA
125	125	FR9	CFX12515DA
150	144	FR9	CFX15015DA
200	192	FR10	CFX20015DA
250	242	FR10	CFX25015DA
300	289	FR10	CFX30015DA

UL Type 12 and NEMA 12 Filtered Base Catalog Number	UL Type 3R Base Catalog Number
CFX01525AA	CFX01535AA
CFX02025AA	CFX02035AA
CFX02525AA	CFX02535AA
CFX03025AA	CFX03035AA
CFX04025AA	CFX04035AA
CFX05025AA	CFX05035AA
CFX06065AA	CFX06035AA
CFX07565AA	CFX07535AA
CFX10065AA	CFX10035AA
CFX12565AA	CFX12535AA
CFX15065AA	CFX15035AA
CFX20065AA	CFX20035AA
CFX25065AA	(2)
CFX30065AA	(2)
CFX40065AA	(2)
CFX01025DA	CFX01035DA
CFX01525DA	CFX01535DA
CFX02025DA	CFX02035DA
CFX02525DA	CFX02535DA
CFX03025DA	CFX03035DA
CFX04025DA	CFX04035DA
CFX05065DA	CFX05035DA
CFX06065DA	CFX06035DA
CFX07565DA	CFX07535DA
CFX10065DA	CFX10035DA
CFX12565DA	CFX12535DA
CFX15065DA	CFX15035DA
CFX20065DA	(2)
CFX25065DA	(2)
CFX30065DA	(2)

Notes

(1) FR6-FR7 drives not available in UL Type 1.
(2) Consult factory.

Adjustable Frequency Drives

CFX9000 Enclosure

Chassis Frame	UL Type 1 Disconnect Only	With Power Options	UL Type 12 Disconnect Only	With Power Options	UL Type 3R Disconnect Only	With Power Options
FR6	N/A	N/A	B	C	B	C
FR7	N/A	7	C	7	C	D
FR8	7	7	7	7	F	F
FR9	8	8	8	8	F	F
FR10	9	9	9	9	(1)	(1)

Enclosure Dimension Drawings
Enclosure

Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
\mathbf{C}	See Page V6-T2-184	See Page V6-T2-186
\mathbf{D}	N/A	See Page V6-T2-187
\mathbf{F}	N/A	See Page V6-T2-188
$\mathbf{7 (2)}$	See Page V6-T2-189	③
$\mathbf{8}^{(2)}$	See Page V6-T2-190	③
$\mathbf{9}$	See Page V6-T2-191	③

Notes

(1) Consult factory.
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

Options

CFX9000 Series Option Board Kits

The CFX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The CFX9000 Series factory-installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Boards	Option Board Kits										
			Field Installed	Factory Installed	SVX Re	dy Progra					
	Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Catalog Number	Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
	Standard I/O Cards										
	2 RO (NC/NO)	B	OPTA2	-	■	-	-	-	-	-	-
	6 DI, 1 DO, 2 Al, 1AO, $1+10$ Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{ext}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	-	■	■	-	-
	Extended I/O Cards										
	6 DI	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	-
	1 RO (NC/NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	-	-
	1 Al (mA isolated), 2 AO (mA isolated)	B, C, D, E	OPTB4	B4	-	-	-	-	-	-	-
	3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	-	-
	3 Pt100 RTD board	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
	1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	0PTB9	B9	-	-	-	-	-	-	-
	Communication Cards ${ }^{3}$										
	Modbus	D, E	OPTC2	C2	-	-	-	-	-	-	-
	Modbus TCP	D, E	OPTCI	CI	-	-	-	\square	-	-	-
	BACnet	D, E	OPTCJ	CJ	-	-	-	-	-	-	-
	Ethernet IP	D, E	OPTCK	CK	-	-	-	-	-	-	-
	Johnson Controls N2	D, E	OPTC2	CA	■	-	-	-	-	-	-
	PROFIBUS DP	D, E	OPTC3	C3	■	■	-	-	-	-	-
	LonWorks	D, E	OPTC4	C4	-	■	■	-	-	-	■
	PROFIBUS DP (D9 connector)	D, E	OPTC5	C5	\square	-	-	-	-	-	-
	CANopen (slave)	D, E	OPTC6	C6	\square	-	-	-	-	-	-
	DeviceNet	D, E	OPTC7	C7	-	-	-	-	-	-	-
	Modbus (D9 type connector)	D, E	OPTC8	C8	■	-	\square	-	-	-	\square
	RS-232 with D9 connection	D, E	OPTD3	D3	■	■	-	-	-	■	-

Notes

(1) AI = Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Adjustable Frequency Drives

CFX9000 Drives

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19,200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

PROFIBUS Network Communications

The PROFIBUS Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a PROFIBUS-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127 .

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CANopen (Slave) Communications

The CANopen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system According to ISO® 11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{as} / \mathrm{m}$. 120 ohm line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2

 Network CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory-installed option and as a field-installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks using Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1 to 127 .

Ethernet/IP Network

 CommunicationsThe Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protoco networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is
"Common Industrial Protocol," the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Control/Communication Option Descriptions

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the drive with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the speed potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the drive with the ability to start/stop and adjust the speed reference from doormounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K3	3-15 psig Follower-Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8 Vdc or a 1-9 Vdc signal interface with the drive. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via $6 \mathrm{ft}(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ in $(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations-Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via drive programming to allow for alternate combinations of start and speed sources. Start and speed sources include keypad, I / O and fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch—Provides door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START/STOP Pushbuttons-Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KF	Bypass Test Switch for RB and RA—Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. bypass
K0	Standard Elapsed Time Meter-Provides a door-mounted elapsed run time meter.	Control
L1	Power On, Run and Fault Lights—Provide a white power on light that indicates power to the enclosed cabinets, a green run light and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. bypass
LE	Red Run Pilot Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ r e d ~ r u n ~ p i l o t ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
P1	Input Circuit Breaker-High interrupting circuit breaker that provides a means of short-circuit protection for the power cables between it and the CPX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the CPX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure. Standard rating is 65 kAIC at 208/480V. 100 kAIC is available as an option.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0} \mathbf{~ k A I C}$-Provide high-level fault protection of the drive input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor-Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
P8	TVSS Surge Protective Device with 50 kA Rating-Provides transient voltage protection eliminating surges and spikes which can damage the diode bridge of the drive.	Input
PC	Capacitor Contactor-This option provides a contactor between the tuned reactor and capacitor to disconnect the capacitor from the circuit when desired, typically at light or no load conditions. This contactor is wired to a programmable relay output.	Input
$\overline{\text { PE }}$	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NO auxiliary contacts rated at 10A, 600 Vac are provided for customer use. Bypass options $\mathbf{R B}$ and $\mathbf{R A}$ include an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
PF	Output Filter-Used to reduce the transient voltage (DV/DT) at the motor terminals. The output filter is recommended for cable lengths exceeding $100 \mathrm{ft}(30 \mathrm{~m})$ or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a brake chopper circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0} \mathbf{f t}$) $\mathbf{1 0 0 0} \mathbf{~ V / 4 S ~ D V / D T ~ F i l t e r — U s e d ~ t o ~ r e d u c e ~ t r a n s i e n t ~ v o l t a g e ~ (D V / D T) ~ a n d ~ p e a k ~ v o l t a g e s ~ a t ~ t h e ~ m o t o r ~ t e r m i n a l s . ~ T h i s ~ o p t i o n ~ i s ~ c o m p r i s e d ~ o f ~ a ~} 0.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the output filter (see option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600 \mathrm{ft}(91-183 \mathrm{~m})$. This option cannot be used with the brake chopper circuit. The output filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay-Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the bypass configurations for overload current protection in the bypass mode. The overload relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays-This option is recommended when a single drive is operating two motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass-This option is recommended when a single drive is operating two motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. bypass

Available Control/Communications Options, continued

Option	Description	Option Type
RA	Manual HOA Bypass Controller-The manual HAND/OFF/AUTO (HOA)—three-contactor—bypass option provides a means of bypassing the CFX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-182).	Bypass
RB	Manual IOB Bypass Controller-The manual INVERTER/OFF/BYPASS (IOB)-three-contactor—bypass option provides a means of bypassing the CFX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-182).	Bypass
RC	Auto Transfer HOA Bypass Controller —The manual HAND/OFF/AUTO (HOA)—three-contactor—bypass option provides a means of bypassing the CFX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-182). Door-mounted pilot lights are provided that indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller-The auto INVERTER/OFF/BYPASS (IOB)—three-contactor-bypass option provides a means of bypassing the CFX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-182). Doormounted pilot lights are provided that indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RG	Reduced Voltage Starter for Bypass-Used in conjunction with bypass option RA, RB, RC or RD. This option adds IT. Series reduced voltage soft starter to bypass assembly for soft starting in bypass mode.	Bypass
S4	Floor Stand 6 in - Raises "F" box off the ground 6 in (152.4 mm). Recommended when box is not installed on an appropriate concrete pad.	Enclosure
S5	Floor Stand 22 in-Converts a Size B or C, normally wall mounted enclosure to a floor standing enclosure with a height of 22 in (558.8 mm).	Enclosure
S6	Floor Stand 12 in-Converts a Size C or D, normally wall mounted enclosure to a floor standing enclosure with a height of 12 in (304.8 mm).	Enclosure
S9	Space Heater-Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. Heater requires a customer supplied 115 V remote supply source.	Enclosure

Enclosed Drive Options

Conformal (Varnished) Coating (1)

Chassis Frame	Delivery Code		Chassis Frame	Delivery Codery
FR6	FP		FR9	FP
FR7	FP		FR10	FP
FR8	FP			FR11
-	-		FR12	FP

Light Options

Description	Catalog Number Suffix
Power on, run, fault LED lights $(22 \mathrm{~mm})$	L1
Power on, fault LED lights $(22 \mathrm{~mm})$	L3
Green LED run light $(22 \mathrm{~mm})$	LA
Green LED stop light $(22 \mathrm{~mm})$	LD
Red LED run light $(22 \mathrm{~mm})$	LE
Red LED stop light $(22 \mathrm{~mm})$	LF
Red LED fault light $(22 \mathrm{~mm})$	LG
Power on white LED light $(22 \mathrm{~mm})$	LJ
Miscellaneous LED light $(22 \mathrm{~mm})$	LU

Control Options

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
$3-15$ psig follower	K3
HOA selector switch	K4
MANUAL/AUTO reference switch	K5
START-STOP pushbuttons	K6
Type D2 control relay	SD
On-delay relay	SE
Off-delay relay	SF
Additional terminal blocks per 4 points	SD

Note
(1) See catalog number description to order.

Bypass Control Options	Catalog Number Suffix
Description	KF
Bypass test switch used with RA and RB	L2
Inverter/bypass pilot lights	
Meter Options	Catalog Number Suffix
Description	K0
Standard elapsed time meter	KS
Frequency meter	KV
MP-3000 relay with URTD	KU
MP-3000 relay with URTD and CTs	
Enclosure Options	Catalog
Enclosure	Number Suffix
Size	
Space Heater ${ }^{1}$	S9
7	S9
8	S9
9	S9
B	S9
C	S9
D	S9
F	
Plastic Nameplate	SN
22 in floor stand, size B and C	
12 in floor stand, size C and D	

208V Power Options, 7-1/2-100 hp

Description	Catalog Number Suffix
Input breaker	P1
Input line fusing	P2
Input line fuses 200 kAIC	P3
Output contactor	PE
Single overload relay	PH
Dual overload relays	PI
MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

230V Power Options, 7-1/2-125 hp

Description	Catalog Number Suffix
Input breaker	P1
Input line fusing	P2
Input line fuses 200 kAIC	P3
Output contactor	PE
Single overload relay	PH
Dual overload relays	PI
MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

480 and 575V Power Options, 7-1/2-400 hp

Description	Catalog Number Suffix
Input breaker	P1
Input line fusing	P2
Input line fuses 200 kAIC	P3
Output contactor	PE
Output filter	PF
MotoRx (300-600 ft) DV/DT filter	PG
Single overload relay	PH
Dual overload relays	PI
Input MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

208V Bypass Options, 7-1/2-100 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

230V Bypass Options, 7-1/2-125 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

480 and 575V Bypass Options, 7-1/2-400 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

Note

(1) Requires customer-supplied 115 Vac supply

Adjustable Frequency Drives

CFX9000 Drives

Technical Data and Specifications

2 CFX9000 Drives

Description	Specification
Primary Design Features	
45-66 Hz input frequency	Standard
Output: AC volts maximum	Input Voltage Base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current (I_{H})	250\% for 2 seconds
Overload (1 minute [$\mathrm{L}_{\mathrm{H}} / \mathrm{L}$] $]$)	150\%/110\%
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL, 508C
Protection Features	
Incoming line fuses	Optional
AC input circuit disconnect	Optional
Phase rotation insensitive	Standard
EMI filter	Standard-FR6 thru FR9 (1)
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Standard
Surge protective device	Optional

Description	Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA isolated	Configurable
4-20 mA differential	Configurable
3-15 psig	Optional
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Optional
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	2 relays Form C
Open collector outputs	1
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {™ }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
Lonworks ${ }^{\text {® }}$	Optional
Johnson Controls Metasys ${ }^{\text {TM }}$ N2	Optional
Ethernet IP/Modbus TCP	Optional
BACnet	Optional
Note	
(1) The EMI filter is optional in FR10.	

CFX9000 Drives, continued

Description	Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Standard
Dynamic braking	Optional
DC braking	Standard
PID setpoint controller	Programmable
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	Standard
Jog at preset speed	Standard
Thread/preset speeds	7
Automatic restart	Selectable
Coasting motor start	Standard
Coast or ramp stop selection	Standard
Elapsed time meter	Optional
Standard Conditions for Application and Service	
Maximum operating ambient temperature 0 to $40^{\circ} \mathrm{C}$, contact factory for $50^{\circ} \mathrm{C}$ (1)	
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), non-condensing	95\%
Altitude	100\% load capacity (no derating) up to 3280 ft (1000 m); 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m})$
Line voltage variation	+10/-15\%
Line frequency variation	$45-66 \mathrm{~Hz}$
Efficiency	>96\%
Power factor (displacement)	0.99

Standard I/O Specifications

Description	Specification
Six-digital input programmable	$24 \mathrm{~V}:$ " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{kohms}$
Two-analog input configurable $\mathrm{w} /$ jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{kohms}$
Two-digital output programmable	Form C relays 250 Vac or 30 Vdc 2 Amp resistive
One-digital output programmable	Open collector 48 Vdc 50 mA
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200$ kilohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250$ ohms
Digital input	24 V : "0" $\leq 10 \mathrm{~V},{ }^{\prime \prime} 1$ " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kilohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)- $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500$ kilohms, resolution 10 bit, accuracy $\leq+2 \%$
Analog voltage, output	0 (2)-10V, $\mathrm{R}_{\mathrm{L}} \geq 1$ kohm, resolution 10 bit, accuracy $\leq+2 \%$
Relay output max. switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Relay output max. switching load	$3 \mathrm{~A} / 24 \mathrm{Vdc}, 300 \mathrm{Vdc}, 250 \mathrm{Vac}{ }^{(2)}$
Relay output max. continuous load	2 Arms
Thermistor input	Rtrip $=4.7$ kohms

Notes

(1) Units FR10 rated $40^{\circ} \mathrm{C}$.
(2) For applications above 3 A consult instruction manual.

Adjustable Frequency Drives

CFX9000 Drives

Wiring Diagram

Control Input/Output

Dimensions

Approximate Dimensions in Inches (mm)
Enclosure Size B-UL Type 12

Adjustable Frequency Drives

CFX9000 Drives

Approximate Dimensions in Inches (mm)
Enclosure Size C-UL Type 12
2

| | | | | | | Approximate
 Weight | Approximate
 Shipping Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lbs $(\mathbf{k g})$ | | | | | | | |

Approximate Dimensions in Inches (mm)
Enclosure Size B-UL Type 3R

H	H1	H2	H3	W	W1	W2	W3	D	D1	D2	Approximate Weight Lbs (kg)	Approximate Shipping Weight Lbs (kg)
$\begin{aligned} & 46.09 \\ & (1170.7) \end{aligned}$	$\begin{aligned} & 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 26.31 \\ & (668.3) \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	235 (107)	290 (132)

Approximate Dimensions in Inches (mm)
Enclosure Size C-UL Type 3R

Approximate Dimensions in Inches (mm)

Enclosure Size D-UL Type 3R

H	H1	w	W1	W2	D	D1	Approximate Shipping Weight Lbs (kg)
76.27	96.00	30.92	37.73	29.30	16.76	17.74	$1000(454)$
(1937.3)	(2438.4)	(784.4)	(958.3)	(744.2)	(424.7)	(450.6)	

Note
Shown with optional floor stands.
2.6

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
2

Enclosure Size F

	H1	W	W1	D	D1	Approximate Weight Lbs $(\mathbf{k g})$	Approximate Shipping Weight Lbs (kg)
H	H1				$1850(839)$		
93.58	69.51	60.00	48.00	37.50	26.00	$1700(771)$	
(2376.9)	(1765.60)	(1524.0)	(1219.2)	$1952.5)$	(660.4)		

Approximate Dimensions in Inches (mm)
Enclosure Size 7

Adjustable Frequency Drives
CFX9000 Drives

Approximate Dimensions in Inches (mm)
Enclosure Size 8

Approximate Dimensions in Inches (mm)
Enclosure Size 9

Adjustable Frequency Drives
CPX9000 Drives

Product Description

Eaton's CPX9000 clean power drives use advanced 18-pulse clean power technology that significantly reduces line harmonics at the drive input terminals, resulting in one of the purest sinusoidal waveforms available.

The CPX9000 drive also delivers True Power Factorin addition to reducing harmonic distortion, the CPX9000 drive prevents upstream transformer overheating and overloading of breakers and feeders, enabling the application of adjustable frequency drives on generators and other high impedance power systems.

All 9000X Series drives are constant torque rated and rated for either high overload $\left(I_{H}\right)$ or low overload (I_{L}). I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes. IL indicates 110\% overload capacity for 1 minute out of 10 minutes

CPX9000 Enclosed Products

- Standard Enclosedcovers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options. Available configurations are listed on Pages
V6-T2-199 and V6-T2-208 to V6-T2-213.
- Modified Standard Enclosed-applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Contact your local sales office for assistance in pricing and lead time.
- Custom Engineeredfor those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Contact your local sales office for assistance in pricing and lead time.

Application Description

Designed to exceed the IEEE ${ }^{\circledR}$ 519-1992 requirements for harmonic distortion, the CPX9000 is the clear choice

What Are Harmonics?

Take a perfect wave with a fundamental frequency of 60 Hz , which is close to what is supplied by the power company.
Perfect Wave

Add a second wave that is five times the fundamental frequency300 Hz (typical of frequency added to the line by a fluorescent light).
Second Wave

Combine the two waves. The result is a $\mathbf{6 0 ~ H z ~ s u p p l y ~ r i c h ~ i n ~}$ fifth harmonics.
Resulting Supply

What Causes Harmonics?

Harmonics are the result of nonlinear loads that convert $A C$ line voltage to $D C$. Examples of equipment that are non-linear loads are listed below:

- AC variable frequency drives
- DC drives
- Fluorescence lighting, computers, UPS systems
- Industrial washing machines, punch presses, welders, etc.

How Can Harmonics Due to

 VFDs Be Diminished?By purchasing Eaton's 18-pulse CPX9000 drive that is guaranteed to meet IEEE Std. 519-1992 Harmonic Distortion Limits.

What Are Linear Loads?

Linear loads are primarily devices that run across the line and do not add harmonics. Motors are prime examples. The downside to having large motor linear loads is that they draw more energy than a VFD, because of their inability to control motor speed. In most applications, there is a turn down valve used with the motor that will reduce the flow of the material, without significantly reducing the load to the motor. While this provides some measure of speed control, it is extremely inefficient.

Why Be Concerned About Harmonics?

1. Installation and utility costs increase.
Harmonics cause damage to transformers and lower efficiencies due to the IR loss. These losses can become significant and can have a dramatic effect on the HVAC systems that are controlling the temperatures of the building where the transformer and drive equipment reside.
2. Downtime and loss of productivity. Telephones and data transmissions links may not be guaranteed to work on the same power grids polluted with harmonics.
3. Downtime and nuisance trips of drives and other equipment. Emergency generators have up to three times the impedance that is found in a conventional utility source. Thus the harmonic voltage distortion can be up to three times as large, causing risk of operation problems.
4. Larger motors must be used. Motors running across the line that are connected on polluted power distribution grids can overheat or operate at lower efficiency due to harmonics.
5. Higher installation costs. Transformers and power equipment must be oversized to accommodate the loss of efficiencies. This is due to the harmonic currents circulating through the distribution without performing useful work.

How Does a VFD Convert Three-Phase AC to a Variable Output Voltage and Frequency?

The six-pulse VFD: The majority of all conventional drives that are built consist of a six-pulse configuration. The figure below represents a six-diode rectifier design that converts three-phase utility power to DC. The inverter section uses IGBTs to convert DC power to a simulated AC sine wave that can vary in frequency from $0-320 \mathrm{~Hz}$.

Six-Diode Rectifier Design

500 hp Six-Pulse Nonproductive Harmonic Current

500 hp Six-Pulse Nonproductive Harmonic Current
Six-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=6.10 \%$	$\mathrm{I}_{19}=1.77 \%$
$\mathrm{I}_{5}=22.5 \%$	$\mathrm{I}_{13}=4.06 \%$	$\mathrm{I}_{23}=1.12 \%$
$\mathrm{I}_{7}=9.38 \%$	$\mathrm{I}_{17}=2.26 \%$	$\mathrm{I}_{25}=0.86 \%$
Power $=500 \mathrm{hp}$		
Harmonic current $=167 \mathrm{amps}$		

Guidelines of Meeting IEEE Std. 519-1992 Harmonic Distortion Limits

The IEEE 519-1992
Specification is a standard that provides guidelines for commercial and industrial
users that are implementing medium and low voltage equipment.

Maximum Harmonic Current Distortion in \% of the Fundamental (120V through 69,000V)

Isc/L	Harmonic Order (Odd Harmonics)					
	$\mathrm{h}<11$	11<h<17	17<h<23	23<h<35	35<h	TDD
<20	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

The ratio $I s c / I_{L}$ is the ratio of the short-circuit current available at the point of common coupling (PCC), to the maximum fundamental load current. Consequently, as the size of the user load decreases with respect to the size of the system, the percentage of harmonic current that the user is allowed to inject into the utility system increases.

Notes

TDD = Total demand distortion is the harmonic current distortion in percent of the maximum demand load current (15 or 30 minute demand).
$I_{S C}=$ Maximum short circuit current at the PCC not counting motor contribution.
$I_{L}=$ Maximum demand load current for all of the connected loads (fundamental frequency component) at the PCC. All of the limits are measured at a point of common coupling.

One-Line Diagram for Harmonic Analysis

The best way to estimate AFD harmonic contribution to an electrical system is to perform a harmonic analysis based on known system characteristics. The one-line in this figure would provide the data to complete the calculations.

Terms

- PCC (Point of Common Coupling) is defined as the electrical connecting point between the utility and multiple customers per the specifications in IEEE 519
- POA (Point of Analysis) is defined as where the harmonic calculations are taken

An oscilloscope can make all measurements at the PCC or POA do an on-site harmonic evaluation.

Harmonic Reduction Methods to Meet IEEE 519

1. Line Reactor

A line reactor is a three-phase series inductance on the line side of an AFD. If a line reactor is applied on all AFDs, it is possible to meet IEEE guidelines where 10-25\% of system loads are AFDs, depending on the stiffness of the line and the value of line reactance. Line reactors are available in various values of impedance, most typically $1-1.5 \%, 3 \%$ and 5%.

Line Reactor

Advantages

- Low cost
- Can provide moderate reduction in voltage and current harmonics
- Available in various values of impedance
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- May not reduce harmonic levels to below IEEE 5191992 guidelines
- Voltage drop due to IR loss

2. 12-Pulse Converters

A 12-pulse converter incorporates two separate AFD input semiconductor bridges, which are fed from 30° phase shifted power sources with identical impedance. The sources may be two isolation transformers, where one is a delta/wye design (which provides the phase shift) and
the second a delta/delta design (which does not phase shift). The 12-pulse arrangement allows the harmonics from the first converter to cancel the harmonics of the second. Up to approximately 85\% reduction of harmonic current and voltage distortion may be achieved (over standard
six-pulse converter). This permits a facility to use a larger percentage of AFD loads under IEEE 519-1992 guidelines than allowable using line reactors or DC chokes. A harmonic analysis is required to guarantee compliance with guidelines.

Basic 12-Pulse Rectifier with "Phase Shifting" Transformer

500 hp 480 V Drive with 12-Pulse Rectifier

500 hp 480 V Drive with 12-Pulse Rectifier
12-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=4.19 \%$	$\mathrm{I}_{19}=0.06 \%$
$\mathrm{I}_{5}=1.25 \%$	$\mathrm{I}_{13}=2.95 \%$	$\mathrm{I}_{23}=0.87 \%$
$\mathrm{I}_{7}=0.48 \%$	$\mathrm{I}_{17}=0.21 \%$	$\mathrm{I}_{25}=0.73 \%$
Power $=500 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{c}}=66.2$ amps		
Advantages	Disadvantages	

Advantages

- Moderate cost, although significantly more than reactors or chokes
- Substantial reduction (up to approx. 85\%) in voltage and current harmonics
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- Impedance matching of phase shifted sources is critical to performance
- Transformers often require separate mounting or larger AFD enclosures
- May not reduce distribution harmonic levels to below
IEEE 519-1992 guidelines
- Cannot retrofit for most AFDs

3. Clean Power Drives

When the total load is of nonlinear, the greatest harmonic mitigation is required. Under these conditions, the currents drawn from the supply need to be sinusoidal and "clean" such that system interference and additional losses are negligible. Eaton's CPX9000 clean power drive uses a phase-shifting auto-transformer with delta-connected winding. Three of the output phases
are advanced and three are retarded. The remaining three phases of this nine-phase supply are in phase with the incoming line. This results in nine separate phases. In this type of configuration, the total required kVA rating of the transformer is only 48% of a drive rate isolation transformer. A traditional isolated transformer system, with multipulse windings, would require the full kVA
rating to be supported, which is more common in an MV step-down transformer.

The integrated 18 -pulse clean power drive, with near sine wave input current and low harmonics will meet the requirements of IEEE 519-1992 under all practical operating conditions. The comparisons with six-pulse and 12 -pulse systems are shown, see Pages
V6-T2-194, V6-T2-196

Basic 18-Pulse Rectifier with Phase Shifting Transformer

500 hp 480 V Drive with 18-Pulse Rectifiers

500 hp 480 V Drive with 18-Pulse Rectifiers
18-Pulse Clean Power

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=0.24 \%$	$\mathrm{I}_{19}=1.00 \%$
$\mathrm{I}_{5}=0.16 \%$	$\mathrm{I}_{13}=0.10 \%$	$\mathrm{I}_{23}=0.01 \%$
$\mathrm{I}_{7}=0.03 \%$	$\mathrm{I}_{17}=0.86 \%$	$\mathrm{I}_{25}=0.01 \%$
Power $=500$ hp		
$\mathrm{H}_{\mathrm{c}}=24$ amps		
Advantages	Disadvantages	

- Virtually guarantees compliance with IEEE 519-1992
- Provides increased input protection for AFD and its semiconductors from line transients
- Up to four times the harmonic reduction of 12-pulse methods
- Smaller transformer than isolation transformer used in 12-pulse converter

Features and Benefits

CPX9000 clean power drive features include:

- Space optimized enclosure
- Simple layout for power options
- Type 1, NEMA 12 with gaskets and filters, Type 3R
- Input voltage: 480V, 208V, 575 V
- Complete range of control, network and power options
- Horsepower range:
- 480V, 25-800 hp (consult factory for larger sizes)
- 208/230V, 25-200 hp
- 575V, 25-800 hp (consult factory for larger sizes)
- Over 15 years of 18 -pulse clean power experience
- 65 kAIC Standard at 480 V and 208V
- 100 kAIC optional

Standards and Certifications

UL 508C tested, listed and approved.
(U)

Product Identification

Type 1, 25-150 hp ($30 \times 90 \times 21.50$)

Catalog Number Selection

CPX9000 Enclosed Drive

Notes

(1) Brake chopper is standard in drives up to $30 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$ or $40 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ at 480 V . It is optional in larger drives.
(2) Local/remote keypad is included as the standard control panel.
${ }^{3}$ (3) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(4) See Pages V6-T2-210 and V6-T2-211 for complete descriptions.
(5) Includes local/remote speed reference switch.
(6) See Pages V6-T2-208 and V6-T2-209 for complete descriptions.
(7) Consult Eaton for availability.

Adjustable Frequency Drives
CPX9000 Drives

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating. (The enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating.) The base-enclosed package includes a standard drive, doormounted alphanumeric panel and enclosure.
- The CPX9000 product uses the term High Overload $\left(I_{H}\right)$ in place of the term Constant Torque (CT). Likewise, Low Overload (IL) is used in place of the term Variable Torque (VT). The new terms are a more precise description of the rating. The older terms included ambient temperature ratings in addition to overload ratings. In order to minimize enclosure size and offer the highest ambient temperature
rating, overload and temperature ratings are now treated separately. Ambient temperature ratings are shown in the table below. Consult the factory for $50^{\circ} \mathrm{C}$ ratings of FR10 and above.

Ambient Temperature Ratings

Frame Size	$\mathbf{I}_{\mathbf{H}}$	$\mathbf{I}_{\mathbf{L}}$
FR4-FR9	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
FR10 and above	$40^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$

- If dynamic brake chopper or control/communication option is desired, change the appropriate code in the base catalog number.
- All of the programming is exactly the same as the standard SVX9000 drive.
- Select enclosed options. Add the codes as suffixes to the base catalog number in alphabetical and numeric order.

208/230V Drives

CPX9000 Base Drive Type 1

Enclosure Size ${ }^{(1)}$	hp ${ }^{2}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{(3)}$
Low Overload Drive				
7	25	75	FR7	CPX02512AA
	30	88	FR7	CPX03012AA
	40	114	FR7	CPX04012AA
	50	140	FR8	CPX05012AA
	60	170	FR8	CPX06012AA
	75	205	FR8	CPX07512AA
8	100	300	FR9	CPX10012AA
9	125	340	FR8T	CPX12512AA
	150	410	FR8T	CPX15012AA
10	200	522	FR9T	CPX20012AA
High Overload Drive				
7	25	75	FR7	CPX02512DA
	30	88	FR7	CPX03012DA
	40	114	FR8	CPX04012DA
	50	140	FR8	CPX05012DA
	60	170	FR8	CPX06012DA
8	75	205	FR9	CPX07512DA
9	100	300	FR8T	CPX10012DA
	125	340	FR8T	CPX12512DA
10	150	410	FR9T	CPX15012DA
	200	522	FR9T	CPX20012DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

CPX9000 Drive

CPX9000 Base Drive NEMA 12 Filtered

Enclosure Size ${ }^{1}$	hp ${ }^{2}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	75	FR7	CPX02562AA
	30	88	FR7	CPX03062AA
	40	114	FR7	CPX04062AA
	50	140	FR8	CPX05062AA
	60	170	FR8	CPX06062AA
	75	205	FR8	CPX07562AA
8	100	300	FR9	CPX10062AA
9	125	340	FR8T	CPX12562AA
	150	410	FR8T	CPX15052AA
10	200	522	FR9T	CPX20062AA
High Overload Drive				
7	25	75	FR7	CPX02562DA
	30	88	FR7	CPX03062DA
	40	114	FR8	CPX04062DA
	50	140	FR8	CPX05062DA
	60	170	FR8	CPX06062DA
8	75	205	FR9	CPX07562DA
9	100	300	FR8T	CPX10062DA
	125	340	FR8T	CPX12562DA
10	150	410	FR9T	CPX15062DA
	200	522	FR9T	CPX20062DA

CPX9000 Base Drive Type 3R ${ }^{4}$

Enclosure Size ${ }^{1}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	75	FR7	CPX02532AA
	30	88	FR7	CPX03032AA
	40	114	FR7	CPX04032AA
	50	140	FR8	CPX05032AA
	60	170	FR8	CPX06032AA
	75	205	FR8	CPX07532AA
8	100	300	FR9	CPX10032AA
9	125	340	FR8T	CPX12532AA
High Overload Drive				
7	25	75	FR7	CPX02532DA
	30	88	FR8	CPX03032DA
	40	114	CPX04032DA	
	50	140	FR8	CPX05032DA
8	75	170	FR9	CPX06032DA
9	100	305	CPX07532DA	

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.
(4) All Type 3R drives use the Size F enclosure.

Adjustable Frequency Drives
CPX9000 Drives

480V Drives
2

CPX9000 Base Drive Type 1

Enclosure Size ${ }^{1}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	38	FR6	CPX02514BA
	30	46	FR6	CPX03014BA
	40	61	FR6	CPX04014BA
	50	72	FR7	CPX05014AA
	60	87	FR7	CPX06014AA
	75	105	FR7	CPX07514AA
	100	140	FR8	CPX10014AA
	125	170	FR8	CPX12514AA
	150	205	FR8	CPX15014AA
8	200	261	FR9	CPX20014AA
	250	300	FR9	CPX25014AA
9	300	385	FR10	CPX30014AA
	350	460	FR10	CPX35014AA
	400	520	FR10	CPX40014AA
10	500	590	FR11	CPX50014AA
	550	650	FR11	CPX55014AA
	600	730	FR11	CPX60014AA
11	650	820	FR11	CPX65014AA
	700	920	FR12	CPX70014AA
	800	1030	FR12	CPX80014AA
High Overload Drive				
7	25	38	FR6	CPX02514EA
	30	46	FR6	CPX03014EA
	40	61	FR7	CPX04014DA
	50	72	FR7	CPX05014DA
	60	87	FR7	CPX06014DA
	75	105	FR8	CPX07514DA
	100	140	FR8	CPX10014DA
	125	170	FR8	CPX12514DA
8	150	205	FR9	CPX15014DA
	200	245	FR9	CPX20014DA
9	250	300	FR10	CPX25014DA
	300	385	FR10	CPX30014DA
	350	460	FR10	CPX35014DA
10	400	520	FR11	CPX40014DA
	500	590	FR11	CPX50014DA
	550	650	FR11	CPX55014DA
11	600	720	FR12	CPX60014DA
	650	820	FR12	CPX65014DA
	700	840	FR12	CPX70014DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

CPX9000 Drive

CPX9000 Base Drive NEMA 12 Filtered

Enclosure Size ${ }^{(1)}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	38	FR6	CPX02564BA
	30	46	FR6	CPX03064BA
	40	61	FR6	CPX04064BA
	50	72	FR7	CPX05064AA
	60	87	FR7	CPX06064AA
	75	105	FR7	CPX07564AA
	100	140	FR8	CPX10064AA
	125	170	FR8	CPX12564AA
	150	205	FR8	CPX15064AA
8	200	261	FR9	CPX20064AA
	250	300	FR9	CPX25064AA
9	300	385	FR10	CPX30064AA
	350	460	FR10	CPX35064AA
	400	520	FR10	CPX40064AA
10	500	590	FR11	CPX50064AA
	550	650	FR11	CPX55064AA
	600	730	FR11	CPX60064AA
11	650	820	FR11	CPX65064AA
	700	920	FR12	CPX70064AA
	800	1030	FR12	CPX80064AA
High Overload Drive				
7	25	38	FR6	CPX02564EA
	30	46	FR6	CPX03064EA
	40	61	FR7	CPX04064DA
	50	72	FR7	CPX05064DA
	60	87	FR7	CPX06064DA
	75	105	FR8	CPX07564DA
	100	140	FR8	CPX10064DA
	125	170	FR8	CPX12564DA
8	150	205	FR9	CPX15064DA
	200	245	FR9	CPX20064DA
9	250	300	FR10	CPX25064DA
	300	385	FR10	CPX30064DA
	350	460	FR10	CPX35014DA
10	400	520	FR11	CPX40064DA
	500	590	FR11	CPX50064DA
	550	650	FR11	CPX55064DA
11	600	720	FR12	CPX60064DA
	650	820	FR12	CPX65064DA
	700	840	FR12	CPX70064DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

Adjustable Frequency Drives

CPX9000 Drive

CPX9000 Base Drive Type 3R (1)

Enclosure Size ${ }^{(2)}$	hp ${ }^{(3)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{4}$
Low Overload Drive				
7	25	38	FR6	CPX02534AA
	30	46	FR6	CPX03034AA
	40	61	FR6	CPX04034AA
	50	72	FR7	CPX05034AA
	60	87	FR7	CPX06034AA
	75	105	FR7	CPX07534AA
	100	140	FR8	CPX10034AA
	125	170	FR8	CPX12534AA
	150	205	FR8	CPX15034AA
8	200	261	FR9	CPX20034AA
	250	300	FR9	CPX25034AA
High Overload Drive				
7	25	38	FR6	CPX02534DA
	30	46	FR6	CPX03034DA
	40	61	FR7	CPX04034DA
	50	72	FR7	CPX05034DA
	60	87	FR7	CPX06034DA
	75	105	FR8	CPX07534DA
	100	140	FR8	CPX10034DA
	125	170	FR8	CPX12534DA
8	150	205	FR9	CPX15034DA
	200	245	FR9	CPX20034DA

Notes

(1) All Type 3R drives use the Size F enclosure.
(2) See enclosure dimensions beginning on Page V6-T2-217.
${ }^{(3)}$ hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(4) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

575V Drives

CPX9000 Base Drive Type 1

Enclosure Size ${ }^{1}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{(3)}$
Low Overload Drive				
7	25	27	FR6	CPX02515AA
	30	34	FR6	CPX03015AA
	40	41	FR7	CPX04015AA
	50	52	FR7	CPX05015AA
	60	62	FR8	CPX06015AA
	75	80	FR8	CPX07515AA
	100	100	FR8	CPX10015AA
8	125	125	FR9	CPX12515AA
	150	144	FR9	CPX15015AA
	200	208	FR9	CPX20015AA
9	250	261	FR10	CPX25015AA
	300	325	FR10	CPX30015AA
	400	385	FR10	CPX40015AA
10	500	502	FR11	CPX50015AA
	600	590	FR11	CPX60015AA
11	650	650	FR12	CPX65015AA
	700	750	FR12	CPX70015AA
	800	820	FR12	CPX80015AA
High Overload Drive				
7	25	27	FR6	CPX02515DA
	30	34	FR7	CPX03015DA
	40	41	FR7	CPX04015DA
	50	52	FR8	CPX05015DA
	60	62	FR8	CPX06015DA
	75	80	FR8	CPX07515DA
8	100	100	FR9	CPX10015DA
	125	125	FR9	CPX12515DA
	150	144	FR9	CPX15015DA
9	200	208	FR10	CPX20015DA
	250	261	FR10	CPX25015DA
	300	325	FR10	CPX30015DA
10	400	385	FR11	CPX40015DA
	450	460	FR11	CPX45015DA
	500	502	FR11	CPX50015DA
11	600	590	FR12	CPX60015DA
	650	650	FR12	CPX65015DA
	700	750	FR12	CPX70015DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
${ }^{(2)}$ hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

Adjustable Frequency Drives
CPX9000 Drives

2

CPX9000 Base Drive NEMA 12 Filtered

Enclosure Size ${ }^{(1)}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	27	FR6	CPX02565AA
	30	34	FR6	CPX03065AA
	40	41	FR7	CPX04065AA
	50	52	FR7	CPX05065AA
	60	62	FR8	CPX06065AA
	75	80	FR8	CPX07565AA
	100	100	FR8	CPX10065AA
8	125	125	FR9	CPX12565AA
	150	144	FR9	CPX15065AA
	200	208	FR9	CPX20065AA
9	250	261	FR10	CPX25065AA
	300	325	FR10	CPX30065AA
	400	385	FR10	CPX40065AA
10	500	502	FR11	CPX50065AA
	600	590	FR11	CPX60065AA
11	650	650	FR12	CPX65065AA
	700	750	FR12	CPX70065AA
	800	820	FR12	CPX80065AA
High Overload Drive				
7	25	27	FR6	CPX02565DA
	30	34	FR7	CPX03065DA
	40	41	FR7	CPX04065DA
	50	52	FR8	CPX05065DA
	60	62	FR8	CPX06065DA
	75	80	FR8	CPX07565DA
8	100	100	FR9	CPX10065DA
	125	125	FR9	CPX12565DA
	150	144	FR9	CPX15065DA
9	200	208	FR10	CPX20065DA
	250	261	FR10	CPX25065DA
	300	325	FR10	CPX30065DA
10	400	385	FR11	CPX40065DA
	450	460	FR11	CPX45065DA
	500	502	FR11	CPX50065DA
11	600	590	FR12	CPX60065DA
	650	650	FR12	CPX65065DA
	700	750	FR12	CPX70065DA

Notes

[^7]${ }^{(2)}$ hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

CPX9000 Base Drive Type 3R ©

Enclosure Size ${ }^{(2)}$	hp ${ }^{(3)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{4}$
Low Overload Drive				
7	25	27	FR6	CPX02535AA
	30	34	FR6	CPX03035AA
	40	41	FR7	CPX04035AA
	50	52	FR7	CPX05035AA
	60	62	FR8	CPX06035AA
	75	80	FR8	CPX07535AA
	100	100	FR8	CPX10035AA
8	125	125	FR9	CPX12535AA
	150	144	FR9	CPX15035AA
	200	208	FR9	CPX20035AA
High Overload Drive				
7	25	27	FR6	CPX02535DA
	30	34	FR7	CPX03035DA
	40	41	FR7	CPX04035DA
	50	52	FR8	CPX05035DA
	60	62	FR8	CPX06035DA
	75	80	FR8	CPX07535DA
8	100	100	FR9	CPX10035DA
	125	125	FR9	CPX12535DA
	150	144	FR9	CPX15035DA

Notes

(1) All Type 3R drives use the Size F enclosure.
(2) See enclosure dimensions beginning on Page V6-T2-217.
(3) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(4) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

Options

CPX9000 Series Option Board Kits

The CPX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see figure below).

The CPX9000 Series factory- installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

9000X Series Option Board Kits

Option Board Kits

		Field Installed	Factory Installed	SVX Re	dy Progra					
Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Catalog Number	Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC/NO)	B	OPTA2	-	-	-	-	-	-	-	-
6 DI, 1 DO, 2 AI, 1AO, $1+10$ Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{ext}+24 \mathrm{Vdc}$	A	OPTA9	-	-	■	■	■	-	■	-

Extended I/O Cards

6 DI	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	-
1 RO (NC/NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	-	-
1 Al (mA isolated), 2 AO (mA isolated)	B, C, D, E	OPTB4	B4	\square	-	\square	-	\square	-	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	-	-
3 Pt100 RTD board	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	-	-

Communication Cards ${ }^{\text {B }}$										
Modbus	D, E	OPTC2	C2	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	-	-	-	-	-	-	-
BACnet	D, E	OPTCJ	CJ	-	-	-	-	-	-	-
Ethernet IP	D, E	OPTCK	CK	-	-	-	-	-	-	-
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	\square
PROFIBUS DP	D, E	OPTC3	C3	-	-	-	-	-	-	\square
LonWorks	D, E	OPTC4	C4	-	-	\square	-	-	-	-
PROFIBUS DP (D9 connector)	D, E	OPTC5	C5	-	-	-	-	-	-	-
CANopen (slave)	D, E	OPTC6	C6	-	-	\bullet	\square	-	-	-
DeviceNet	D, E	OPTC7	C7	-	-	-	-	-	-	-
Modbus (D9 type connector)	D, E	OPTC8	C8	-	-	-	-	-	-	\square
RS-232 with D9 connection	D, E	OPTD3	D3	-	-	-	-	-	\bullet	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19,200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

PROFIBUS Network Communications

The PROFIBUS Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a PROFIBUS-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CANopen (Slave) Communications

The CANopen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO ${ }^{\circledR} 11898$ standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120 ohm line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2

 Network CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory-installed option and as a field-installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks using Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network

 CommunicationsThe BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1 to 127 .

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is
"Common Industrial Protocol," the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Adjustable Frequency Drives

CPX9000 Drives

Control/Communication Option Descriptions

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the CPX9000 with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the speed potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the CPX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer-supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K3	3-15 psig Follower—Provides a pneumatic transducer that converts a 3-15 psig pneumatic signal to either 0-8 Vdc or a 1-9 Vdc signal interface with the CPX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via $6 \mathrm{ft}(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ inch $(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations-Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via drive programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I / O and fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch-Provides door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START/STOP Pushbuttons-Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KF	Bypass Test Switch for RB and RA—Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. bypass
K0	Standard Elapsed Time Meter-Provides a door-mounted elapsed run-time meter.	Control
L1	Power On and Fault Power Lights-Provide a white Power On light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
12	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in Inverter mode and an amber light indicates when the motor is running in Bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. bypass
LE	Red Run Pilot Light $\mathbf{0 . 8 7 - I n c h ~ (~} \mathbf{2 2} \mathbf{~ m m}$)-Provides a red Run pilot light that indicates the drive is running.	Light
P1	Input Circuit Breaker-High interrupting circuit breaker that provides a means of short-circuit protection for the power cables between it and the CPX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the CPX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure. Standard rating is 65 kAIC at $208 / 480 \mathrm{~V}$. 100 kAIC is available as an option.	Input
PE	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at $10 \mathrm{~A}, 600 \mathrm{Vac}$ are provided for customer use. Bypass options $\mathbf{R B}$ and $\mathbf{R A}$ include an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
PF	Output Filter—Used to reduce the transient voltage (DV/DT) at the motor terminals. The output filter is recommended for cable lengths exceeding $100 \mathrm{ft}(30.5 \mathrm{~m})$ with a drive of 3 hp and above, for cable lengths of $33 \mathrm{ft}(10.1 \mathrm{~m})$ with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0} \mathbf{F t}$) $\mathbf{1 0 0 0} \mathbf{~ V / \mu S ~ D V / D T ~ F i l t e r — U s e d ~ t o ~ r e d u c e ~ t r a n s i e n t ~ v o l t a g e ~ (D V / D T) ~ a n d ~ p e a k ~ v o l t a g e s ~ a t ~ t h e ~ m o t o r ~ t e r m i n a l s . ~ T h i s ~ o p t i o n ~ i s ~ c o m p r i s e d ~ o f ~ a ~} 0.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the output filter (see option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600 \mathrm{ft}(91.4-182.9 \mathrm{~m})$.	Output
PH	Single Overload Relay-Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the bypass configurations for overload current protection in the bypass mode. The overload relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays-This option is recommended when a single drive is operating two motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass-This option is recommended when a single drive is operating two motors in the Bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. bypass

For availability, see Product Selection for base drive voltage required.
Available Control/Communications Options, continued

Option	Description	Option Type
RA	Manual HOA Bypass Controller-The manual HAND/OFF/AUTO (HOA)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216).	Bypass
RB	Manual IOB Bypass Controller-The manual INVERTER/OFF/BYPASS (IOB)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216).	Bypass
RC	Auto Transfer HOA Bypass Controller -The manual HAND/OFF/AUTO (HOA)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216). Door-mounted pilot lights are provided that indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller-The auto INVERTER/OFF/BYPASS (IOB)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216). Doormounted pilot lights are provided that indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RG	Reduced Voltage Starter for Bypass-Used in conjunction with bypass option RA, RB, RC or RD. This option adds reduced voltage soft starter to bypass assembly for soft starting in bypass mode.	Bypass
S7	10.00-Inch ($\mathbf{2 5 4 . 0} \mathbf{~ m m}$) Expansion-Expansion cabinet allows for special components, customer-supplied components or oversized cables. NOTE: Enclosure expansion rated Type 1 only.	Enclosure
S8	$\mathbf{2 0 . 0 0}$-Inch ($\mathbf{5 0 8 . 0} \mathbf{~ m m}$) Expansion-Expansion cabinet allows for special components, customer-supplied components or oversized cables. NOTE: Enclosure expansion rated Type 1 only.	Enclosure
S9	Space Heater-Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. The heater requires a customer-supplied 115 V remote supply source.	Enclosure

Dissipated Watt Losses																
Horsepower	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$
Watts	1844	2170	2540	3040	4011	4940	5730	8020	9383	11600	13600	15700	16250	17976	20393	27200

Conformal (Varnished) Coating (1)

Chassis Frame	Delivery Code		Chassis Frame	Delivery Code
FR6	FP		FR9	FP
FR7	FP		FR10	FP
FR8	FP		FR11	FP
-	-	FR12	FP	

Notes

(1) See catalog number description to order.
(2) Contact factory for 208 V and 575 V applications.
(3) Contact factory.

480V Input Disconnect Selection (2)

Horsepower	P1 Input Breaker	Bypass Motor Circuit Protector (RA, RB, RC, RD)
25	HFD3050	HMCP050K2C
30	HFD3060	HMCP100R3C
40	HFD3080	HMCP100R3C
50	HFD3100	HMCP100R3C
60	HFD3100	HMCP150T4C
75	HFD3125	HMCP150T4C
100	HFD3150	HMCP150U4C
125	HFD3200	HMCP250W5C
150	HKD3300	HMCP250W5C
200	HKD3400	HMCP400X5C
250	HLD3600	HMCP400X5C
$300-400$	HND312	HMCP800X7W
$500-600$	3	
$650-800$		

Adjustable Frequency Drives

CPX9000 Drives

Enclosed Drive Options

Light Options	Catalog Number Suffix
Description	L1
Power on, run, fault LED lights $(22 \mathrm{~mm})$	L3
Power on, fault LED lights $(22 \mathrm{~mm})$	LA
Green LED run light $(22 \mathrm{~mm})$	LD
Green LED stop light $(22 \mathrm{~mm})$	LE
Red LED run light $(22 \mathrm{~mm})$	LF
Red LED stop light $(22 \mathrm{~mm})$	LG
Red LED fault light $(22 \mathrm{~mm})$	LJ
Power on white LED light $(22 \mathrm{~mm})$	LU
Miscellaneous LED light $(22 \mathrm{~mm})$	
Control Options	Catalog
Description	Kumber Suffix
Door-mounted speed potentiometer	K2
Door-mounted speed potentiometer with HOA selector switch	
$3-15$ psig follower	K3
HOA selector switch	K4
MANUAL/AUTO reference switch	K5
START-STOP pushbuttons	K6
Type D2 control relay	SD
On-delay relay	SE
Off-delay relay	SF
Additional terminal blocks per 4 points	SD

Bypass Control Options

Description	Catalog Number Suffix
Bypass test switch used with RA and RB	KF
Inverter/bypass pilot lights	L2

Meter Options

Description	Catalog Number Suffix
Standard elapsed time meter	KO
Frequency meter	KS
MP-3000 relay with URTD	KV
MP-3000 relay with URTD and CTs	KU

Enclosure Options

Enclosure Size	Catalog Number Suffix
10.00 Inch (254.0 mm) Expansion	
7	S7
8	S7
9	S7
10	S7
11	S7
20.00 Inch (508.0 mm) Expansion	
7	S8
8	S8
9	S8
10	S8
11	S8
Space Heater ${ }^{(1)}$	
7	S9
8	S9
9	S9
10	S9
11	S9
Plastic Nameplate	
7	SN
8	SN
9	SN
10	SN
11	SN

Note
(1) Requires customer-supplied 115 Vac supply.

CPX9000 Drives

208V and 230V Power Options, 25-200 hp

Description	Catalog Number Suffix
Input breaker	P1
Output contactor	PE
Single overload relay	PH
Dual overload relays	PI
MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

480 and 575V Power Options, 25-800 hp	
Description	Catalog Number Suffix
Input breaker	P1
Output contactor	PE
Output filter	PF
MotoRx (300-600 Ft) DV/DT filter	PG
Single overload relay	PH
Dual overload relays	PI
Input MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P8

208 V and 230 V Bypass Options, 25-200 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

480 and 575V Bypass Options, 25-800 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

2.7
 Adjustable Frequency Drives
 CPX9000 Drives

Technical Data and Specifications

2 CPX9000 Drives

Description	Specification
Primary Design Features	
45-66 Hz input frequency	Standard
Output: AC volts maximum	Input voltage base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current (I_{H})	250% for 2 seconds
Overload (1 minute [$\left.\mathrm{I}_{\mathrm{H}} \mathrm{J}\right)$	150\%/110\%
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL, 508C
Protection Features	
Incoming line fuses	Standard 200 kAIC rating
AC input circuit disconnect	Optional
Phase rotation insensitive	Standard
EMI filter	Standard FR6 thru FR9 ©
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short-circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Surge protective device

Description	Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA isolated	Configurable
4-20 mA differential	Configurable
3-15 psig	Optional
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Standard
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	2 Form C contacts available
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {TM }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
LonWorks	Optional
Johnson Controls Metasys N2	Optional
Ethernet IP/Modbus TCP	Optional
BACnet	Optional
Note	
(1) The EMI filter is optional in FR10 and	

CPX9000 Drives

Description	Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Standard
Dynamic braking	Optional
DC braking	Standard
PID set point controller	Programmable
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	Standard
Jog at preset speed	Standard
Thread/preset speeds	7
Automatic restart	Selectable
Coasting motor start	Standard
Coast or ramp stop selection	Standard
Elapsed time meter	Optional
Carrier frequency adjustment	$1-16$ kHz
Standard Conditions for Application and Service	
Maximum operating ambient temperature $0-50^{\circ} \mathrm{C}$ up to FR9	
$00^{\circ} \mathrm{CR} 10$ and larger, consult factory for $50^{\circ} \mathrm{C}$	
rating above FR9	
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), noncondensing	95%
Altitude (maximum without derate)	3300 ft (1000m)
Line voltage variation	$+10 /-15 \%$
Line frequency variation	$45-66 \mathrm{~Hz}$
Efficiency	$>95 \%$
Power factor (displacement)	$0.99+$
Power factor (apparent)	0.99

Standard I/O Specifications

Description	Specification
Six-digital input programmable	$24 \mathrm{~V}: " 0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}>5$ kohms
Two-analog input configurable	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{kohms}$ W/jumpers
Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms	

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200$ kilohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250$ ohms
Digital input	24V: "0" $\leq 10 \mathrm{~V}, ~ " 1 " \geq 18 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}>5$ kilohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)-20 mA, $\mathrm{R}_{\mathrm{L}}=500$ kilohms, resolution 10 bit, accuracy $\leq+2 \%$
Analog voltage, output	0 (2)-10V, $R_{L} \geq 1$ kilohm, resolution 10 bit, accuracy $\leq+2 \%$
Relay output max. switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Relay output max. switching load	$3 \mathrm{~A} / 24 \mathrm{Vdc}, 300 \mathrm{Vdc}, 250 \mathrm{Vac}$ (1)
Relay output max. continuous load	2A rms
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7 \mathrm{kohms}$

Note
(1) For applications above 3A consult instruction manual.

Adjustable Frequency Drives
CPX9000 Drives

Wiring Diagrams

Power Diagram Up to FR9

Power Diagram FR10 and Larger

Power Diagram Up to FR9 with Bypass

Dimensions

Approximate Dimensions in Inches (mm)
Enclosure Size 7
25-150 hp I_{L} and 25-125 hp $\mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-25-100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-75 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

2.7
 Adjustable Frequency Drives
 CPX9000 Drives

Approximate Dimensions in Inches (mm)

Enclosure Size 8

$\mathbf{2 0 0}-\mathbf{2 5 0 ~ h p ~} \mathrm{I}_{\mathrm{L}}$ and $150-200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-125-200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $100-150 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

Approximate Dimensions in Inches (mm)

Enclosure Size 9

$300-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $250-350 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-250-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $200-300 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

Adjustable Frequency Drives
CPX9000 Drives

Approximate Dimensions in Inches (mm)

Enclosure Size 10

$500-600 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $400-500 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-500-600 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $400-500 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

Approximate Dimensions in Inches (mm)

Enclosure Size F Type 3R Drives

$\mathbf{2 5 - 2 5 0} \mathbf{h p} \mathrm{I}_{\mathrm{L}}$ and $\mathbf{2 5 - 2 0 0 ~ h p ~} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-25-200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-150 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$ Type 3R Drives

CPX9000 Enclosure Dimensions

Enclosure Size ${ }^{1}$	Width	Height	Depth	Approx. Shipping Weight in Lbs (kg)
7	$30.00(762.0)$	$90.00(2286.0)$	$21.50(546.1)$	$1000(454)$
8	$48.00(1219.2)$	$90.00(2286.0)$	$26.14(664.0)$	$1400(636)$
9	$60.00(1524.0)$	$90.00(2286.0)$	$25.74(653.8)$	$1800(817)$
10	$80.00(2032.0)$	$90.00(2286.0)$	$31.75(806.5)$	$2100(953)$
11 (2) 3 $^{(3)}$	$120.00(3048.0)$	$90.00(2286.0)$	$25.74(653.8)$	$2500(1,135)$
F 4	$60.00(1524.0)$	$93.50(2374.9)$	$37.50(952.5)$	$2500(1,135)$

Notes

(1) Enclosure sizes accommodate drive and options, including bypass and disconnect.

For other power options, consult your Eaton representative.
(2) Consult factory. Limited power options available.
(3) Enclosure size 11 consists of two of the enclosure size 9.
(4) All Type 3R drives use the Size F enclosure.

Adjustable Frequency Drives
LCX9000 Drives

LCX9000 Liquid Cooled Adjustable Frequency Drives

Product Description

The LCX9000 Liquid Cooled Drive family continues Eaton's tradition of providing state-of-the-industry products, by taking advantage of liquid cooling technology in lieu of air-cooling techniques.

The LCX9000 drives are liquid-cooled products that utilize potable water or a water-glycol mixture as a cooling medium.

Features and Benefits

- Compact size and low heat transfer rates allow enclosure size to be greatly reduced, which is especially beneficial in UL Type 4X applications
- Design is modular, with control and power modules independent of each other. Connection between power and control modules can be direct or extended via a fiber optic cable
- Same reliable control module and operating system as the SPX9000 air-cooled drives

Contents

Description Page
LCX9000 Drives
Catalog Number Selection V6-T2-223
Product Selection V6-T2-224
Options V6-T2-227
Technical Data and Specifications V6-T2-229
Wiring Diagrams V6-T2-230
Dimensions V6-T2-232

- CE mark ensures compliance with the Electromagnetic Compatibility Directive (EMC) and the Low Voltage Directive (LVD)
- Reliable drive with over 500,000 hours MTBF based on MIL 217
- Currently supports DeviceNet, PROFIBUS-DP, Modbus RTU and Modbus TCP communication protocols
- Separately mounted line reactor included with AC fed models

Standards and Certifications

- CE

Catalog Number Selection

LCX9000 Liquid Cooled Adjustable Frequency Drives

Note
(1) Brake chopper is only available in 480 V CH3 drives.

Adjustable Frequency Drives
LCX9000 Drives

Product Selection

2

525-690 Vac Liquid Cooled Drives

Motor Output Current Thermal, $\mathbf{I}_{\text {th }}(\mathbf{A})$	$\mathbf{I}_{\mathbf{L}}(\mathbf{A})$	$\mathbf{I}_{\mathbf{H}}(\mathbf{A})$	$\mathbf{k W}$	Chassis	Catalog Number
$\mathbf{1 7 0}$	155	113	110	CH61	LCX170A0-5A3N2
208	189	139	132	CH61	LCX208A0-5A3N2
261	237	174	160	CH72	LCX261A0-5A3N2
325	295	217	200	CH72	LCX325A0-5A3N2
385	350	257	250	CH72	LCX385A0-5A3N2
416	378	277	250	CH72	LCX416A0-5A3N2
460	418	307	300	CH72	LCX460A0-5A3N2
502	456	335	355	CH72	LCX502A0-5A3N2
590	536	393	400	CH63	LCX590A0-5A3N2
650	591	433	450	CH63	LCX650A0-5A3N2
750	682	500	500	CH63	LCX750A0-5A3N2
820	745	547	560	CH74	LCX820A0-5A3N2
920	836	613	650	CH74	LCX920A0-5A3N2
1030	936	687	700	CH74	LCXH10A0-5A3N2
1180	1073	787	800	CH74	LCXH11A0-5A3N2
1300	1182	867	900	CH74	LCXH13A0-5A3N2
1500	1364	1000	1000	CH74	LCXH15A0-5A3N2

540-675 Vdc Liquid Cooled Inverter Units
Drive Output

Current Thermal $\mathrm{I}_{\mathrm{th}}(\mathrm{~A})$	Rated Cont.$I_{L}(A)$	Rated Cont.$I_{H}(A)$	Motor Output Power		Power Loss c/a/T (kW)	Chassis	Catalog Number
			Optimum Motor at $\mathrm{I}_{\mathrm{th}} 400 \mathrm{~V}(\mathrm{~kW})$	Optimum Motor at $\mathrm{I}_{\mathrm{th}} 500 \mathrm{~V}(\mathrm{~kW})$			
16	15	11	7.5	11	0.4/0.2/0.6	CH3	LCX016A0-4A7B2
22	20	15	11	15	0.5/0.2/0.7	CH3	LCX022A0-4A7B2
31	28	21	15	18.5	0.7/0.2/0.9	CH3	LCX031A0-4A7B2
38	35	25	18.5	22	0.8/0.2/1.0	CH3	LCX038A0-4A7B2
45	41	30	22	30	1.0/0.3/1.3	CH3	LCX045A0-4A7B2
61	55	41	30	37	1.3/0.3/1.5	CH3	LCX061A0-4A7B2
72	65	48	37	45	1.2/0.3/1.5	CH4	LCX072A0-4A7N2
87	79	58	45	55	1.5/0.3/1.8	CH4	LCX087A0-4A7N2
105	95	70	55	75	1.8/0.3/2.1	CH4	LCX105A0-4A7N2
140	127	93	75	90	2.3/0.3/2.6	CH4	LCX140A0-4A7N2
168	153	112	90	110	2.5/0.3/2.8	CH5	LCX168A0-4A7N2
205	186	137	110	132	3.0/0.4/3.4	CH5	LCX205A0-4A7N2
261	237	174	132	160	4.0/0.4/4.4	CH5	LCX261A0-4A7N2
300	273	200	160	200	4.5/0.4/4.9	CH61	LCX300A0-4A7N2
385	350	257	200	250	5.5/0.5/6.0	CH61	LCX385A0-4A7N2
460	418	307	250	315	5.5/0.5/6.0	CH62	LCX460A0-4A7N2
520	473	347	250	355	6.5/0.5/7.0	CH62	LCX520A0-4A7N2
590	536	393	315	400	7.5/0.6/8.1	CH62	LCX590A0-4A7N2

Adjustable Frequency Drives

LCX9000 Drives

LCX9000 Liquid Cooled Drives	540-675 Vdc Liquid Cooled Inverter Units, continued							
				Motor Output Pow		Power Loss		
	Thermal $\mathrm{I}_{\mathrm{th}}(\mathrm{A})$	Rated Cont. $I_{L}(A)$	Rated Cont. $I_{H}(A)$	Optimum Motor at $\mathrm{I}_{\mathrm{th}} \mathbf{4 0 0 \mathrm { V }}(\mathrm{kW})$	Optimum Motor at $\mathrm{I}_{\mathrm{th}} 500 \mathrm{~V}(\mathrm{~kW})$	c/a/T (kW)	Chassis	Catalog Number
	650	591	433	355	450	8.5/0.6/9.1	CH62	LCX650A0-4A7N2
	730	664	487	400	500	10.0/0.7/10.7	CH62	LCX730A0-4A7N2
	820	745	547	450	560	12.5/0.8/13.3	CH63	LCX820A0-4A7N2
	920	836	613	500	600	14.4/0.9/15.3	CH63	LCX920A0-4A7N2
	1030	936	687	560	700	16.5/1.0/17.5	CH63	LCXH10A0-4A7N2
	1150	1045	766	600	750	18.4/10.1/19.5	CH63	LCXH11A0-4A7N2
	1370	1245	913	700	900	15.5/1.0/16.5	CH64	LCXH13A0-4A7N2
	1640	1491	1093	900	1100	19.5/1.2/20.7	CH64	LCXH16A0-4A7N2
	2060	1873	1373	1100	1400	26.5/1.5/28.0	CH64	LCXH20A0-4A7N2
	2300	2091	1533	1250	1500	29.6/1.7/31.3	CH64	LCXH23A0-4A7N2
	2470	2245	1647	1300	1600	36.0/2.0/38.0	2*CH64	LCXH24A0-4A7N2
	2950	2681	1967	1550	1950	39.0/2.4/41.4	2*CH64	LCXH29A0-4A7N2
	3710	3372	2473	1950	2450	48.0/2.7/50.7	2*CH64	LCXH37A0-4A7N2
	4140	3763	2760	2150	2700	53.0/3.0/66.0	2*CH64	LCXH41A0-4A7N2

710-930 Vdc Liquid Cooled Inverter Unit

Drive Output							
Current Thermal $\mathrm{Ith}_{\mathrm{th}}$ (A)	Rated Cont.$I_{L}(A)$	Rated Cont.$\mathrm{I}_{\mathrm{H}}(\mathrm{~A})$	Motor Output Power		Power Loss c/a/T (kW)	Chassis	Catalog Number
			Optimum Motor at $\mathrm{I}_{\mathrm{th}} \mathbf{4 0 0 \mathrm { V }}$ (kW)	Optimum Motor at $\mathrm{l}_{\text {th }} 500 \mathrm{~V}(\mathrm{~kW})$			
170	155	113	110	160	4.5/0.2/4.7	CH61	LCX170A0-5A7N2
208	189	139	132	200	5.5/0.3/5.8	CH61	LCX208A0-5A7N2
261	237	174	160	250	5.5/0.3/5.8	CH61	LCX261A0-5A7N2
325	295	217	200	300	6.5/0.3/6.8	CH62	LCX325A0-5A7N2
385	350	257	250	355	7.5/0.4/7.9	CH62	LCX385A0-5A7N2
416	378	277	250	355	8.0/0.4/8.4	CH62	LCX416A0-5A7N2
460	418	307	300	400	8.5/0.4/8.9	CH62	LCX460A0-5A7N2
502	456	335	355	450	10.0/0.5/10.5	CH62	LCX502A0-5A7N2
590	536	393	400	560	10.0/0.5/10.5	CH63	LCX590A0-5A7N2
650	591	433	450	600	13.5/0.7/14.2	CH63	LCX650A0-5A7N2
750	682	500	500	700	16.0/0.8/16.8	CH63	LCX750A0-5A7N2
820	745	547	560	800	16.0/0.8/16.8	CH64	LCX820A0-5A7N2
920	836	613	650	850	18.0/0.9/18.9	CH64	LCX920A0-5A7N2
1030	936	687	700	1000	19.0/1.0/20.0	CH64	LCXH10A0-5A7N2
1180	1073	787	800	1100	21.0/10.1/20.1	CH64	LCXH11A0-5A7N2
1300	1182	867	900	1200	27.0/1.4/28.4	CH64	LCXH13A0-5A7N2
1500	1364	1000	1050	1400	32.0/1.6/33.6	CH64	LCXH15A0-5A7N2
1700	1545	1133	1150	1550	N/A	CH64	LCXH17A0-5A7N2
1850	1682	1233	1250	1650	34.2/1.8/36.0	2*CH64	LCXH18A0-5A7N2
2120	1927	1413	1450	1900	37.8/2.0/39.8	2*CH64	LCXH21A0-5A7N2
2340	2127	1560	1600	2100	48.6/2.5/51.1	2*CH64	LCXH23AO-5A7N2
2700	2455	1800	1850	2450	57.6/3.0/60.6	2*CH64	LCXH27A0-5A7N2
3100	2818	2066	2150	2800	N/A	2*CH64	LCXH31A0-5A7N2

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	-	-	-	\square	-	\square	-
6 DI, 1 DO, 2 AI, 1A0, $1+10 \mathrm{Vdc}$ ref, $2 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	\square	-	■	■	\square	\square
Extended I/O Cards										
2 RO, therm	B	OPTA3	A3	-	\square	\square	\square	\square	\square	\square
Encoder low Volt $+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA4	A4	-	\square	\square	\square	-	\square	\square
Encoder high Volt $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA5	A5	-	\square	-	\square	-	\square	\square
Dual encoder $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA7	A7	-	\square	-	\square	-	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	\square	-	\square	\square	\square	\square
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)—SPX only	C	OPTAE	AE	■	-	-	■	■	-	■
$6 \mathrm{DI}, 1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	\square	-
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / E X T+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	■	-	\square	■	\square	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	\square
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
SPI, absolute encoder	C	OPTBB	BB	-	-	-	-	-	-	-
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	-	\square	-	\square	\square	\square	\square
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	■	■	-	\square	■	\square	-
LonWorks	D, E	OPTC4	C4	\square	\square	\square	\square	-	\square	-
Profibus DP (D9 connector)	D, E	OPTC5	C5	\square						
CanOpen (slave)	D, E	OPTC6	C6	\square	\square	\square	\square	\square	\square	-
DeviceNet	D, E	OPTC7	C7	-	\square	-	\square	-	-	\square
Modbus (D9 Type connector)	D, E	OPTC8	C8	\square	\square	\square	\square	■	\square	\square
Modbus TCP	D, E	OPTCI	CI	-	\square	-	\square	\square	\square	-
Adapter-SPX only	D, E	OPTD1	D1	-	\square	-	\square	\square	\square	\square
Adapter-SPX only	D, E	OPTD2	D2	\square	\square	-	\square	\square	\square	\square
RS-232 with D9 connection	D, E	OPTD3	D3	-	\square	-	\square	-	-	-
Keypad										
9000X Series standard keypad	-	$\begin{aligned} & \text { KEYPAD- } \\ & \text { STD } \end{aligned}$	-	-	-	-	-	-	-	-
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Line Reactors

The line reactor carries out several functions in the liquid cooled drive. Connection of the line reactor is necessary except if you have a component in your system that performs the same tasks (e.g. a transformer). The line
reactor is needed as an essential component for motor control, to protect the input and DC-link components against abrupt changes of current and voltage as well as to function as a protection
against harmonics. The line reactors are included in the standard delivery of liquidcooled drives (not inverters). However, you can also order your drive without a line reactor.

Line Reactor Specifications

Drive Rating 480V	Drive Rating 690V	Thermal Current (A)	Nominal Inductance $(\mu \mathrm{H}) \mathrm{A} / \mathrm{B}$	Calculated Loss (W)	Choke Catalog Number (690 Vac)
16 to 22A	12 to 23A	23	1900	145	CHK0023N6AO
31 to 38A	31 to 38A	38	1100	170	CHK0038N6A0
45 to 61A	46 to 62A	62	700	210	CHK0062N6A0
72 to 87A	72 to 87A	87	480	250	CHK0087N6AO
105 to 140A	105 to 140A	145	290	380	CHK0145N6AO
168 to 261A	170 to 261A	261	139/187	460	CHK0261N6AO
300 to 385A	$\begin{aligned} & 325 \text { to } 385 \mathrm{~A} \\ & 820 \text { to } 1180 \mathrm{~A} \text { (2) } \end{aligned}$	400	90/126	570	CHK0400N6AO
$\begin{aligned} & 460 \text { to } 520 \mathrm{~A} \\ & 1370 \mathrm{~A}{ }^{2} \end{aligned}$	$\begin{aligned} & 416 \text { to } 502 \mathrm{~A} \\ & 1300 \text { to } 1500 \mathrm{~A}(2) \end{aligned}$	520	65/95	610	CHK0520N6AO
$\begin{aligned} & 590 \text { to 650A } \\ & 1640 \mathrm{~A} \text { (2) } \end{aligned}$	590 to 650A	650	51/71	840	CHK0650N6A0
$\begin{aligned} & 730 \mathrm{~A} \\ & 2060 \mathrm{~A} \end{aligned}$	-	730	45/61	850	CHK0730N6AO
$\begin{aligned} & 820 \mathrm{~A} \\ & 2300 \mathrm{~A}(2) \end{aligned}$	750A	N/A	N/A	N/A	CHK0820N6AO
920 to 1030A	-	1000	30/41	950	CHK1030N6A0
1150A	-	1150	26/36	1000	CHK1150N6AO

Dimensions, see Page V6-T2-232.
Notes
(1) Inductances for different supply voltages: $A=400-480 \mathrm{Vac} ; B=500-690 \mathrm{Vac}$.
(2) Drives require three chokes of the designated catalog number with six-pulse supply.

Technical Data and Specifications

LCX9000 Products

Description	Specification
General Specifications	
Line voltage	400 to $500 \mathrm{Vac} ; 525$ to $690 \mathrm{Vac} ;(-10 \%$ to $10 \%)$ 465 to $800 \mathrm{Vdc} ; 640$ to 1100 Vdc ; (-0 to 0%)
Frequency	$50 / 60 \mathrm{~Hz}$
Line voltage variation	-10\% to 10\%
Input frequency variation	$45-66 \mathrm{~Hz}$
Continuous output current	Rated current at incoming cooling liquid temperature of $30^{\circ} \mathrm{C}$
Output frequency	$0-320 \mathrm{~Hz}$
Drive efficiency	>95\%
Power factor (displacement)	0.96
Liquid coolant pressure	87 psi (6 bar) maximum
Liquid coolant flow rate	1.3 to 7.9 gal./min. (5 to 30 liter/min.) minimum depending on drive size
Liquid coolant fittings	Standard quick connect, NPT
Operating ambient temperature	$-10 / 50^{\circ} \mathrm{C}$
Storage temperature	$-40 / 70^{\circ} \mathrm{C}$
Humidity	95\% maximum (non-condensing)
Altitude	$3300 \mathrm{ft}(1000 \mathrm{~m}$) maximum without derating
Enclosure	IPOO
Warranty	Standard terms, 3 years with certified start-up
Mains Connection	
Input voltage (V $\mathrm{V}_{\text {in }}$)	$\begin{aligned} & 400-500 \mathrm{Vac} ; 525-690 \mathrm{Vac} ;(-10 \%-10 \%) \\ & 465-800 \mathrm{Vdc} ; 640-1100 \mathrm{Vdc} ;(-0-0 \%) \end{aligned}$
Input frequency ($\mathrm{f}_{\text {in }}$)	45-66Hz
Connection to mains	Once per minute or less (normal case)
Motor Connection	
Output voltage	$0-V_{\text {in }}$
Continuous output current	Rated current at nominal inflow cooling water temperature of $30^{\circ} \mathrm{C}$; Overload $2 \mathrm{sec} . / 20 \mathrm{sec}$.
Starting current	Rated current at 2 sec./20 sec. if output frequency $<30 \mathrm{~Hz}$ and temperature of heatsink $<149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$
Output frequency	$0-320 \mathrm{~Hz}$ (standard); 7200 Hz (special software)
Frequency resolution	Application dependent
Control Characteristics	
Control method	Frequency control (V/f) Open loop: Sensorless vector control Closed loop: Frequency control Closed loop: Vector control
Switching frequency	Adjustable with parameter 2.6.9
480 V (1)	Up to and including 61-Amp size: $1-16 \mathrm{kHz}$ (factory default, 10 kHz) From 72-Amp size: $1-12 \mathrm{kHz}$ (factory default, 3.6 kHz)
575 V (1)	1-6kHz (factory default, 1.5 kHz)
Frequency reference	$\text { Analog input: resolution } 0.1 \% \text { (10 bits); accuracy } \pm 1 \%$ $\text { Panel reference: resolution } 0.01 \mathrm{~Hz}$
Field weakening point	$30-320 \mathrm{~Hz}$
Acceleration time	0.1-3000 seconds
Deceleration time	0.1-3000 seconds
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)

Description	Specification
Ambient Conditions	
Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ at $\mathrm{l}_{\text {th }}$ 122 to $158^{\circ} \mathrm{F}\left(50\right.$ to $\left.70^{\circ} \mathrm{C}\right)$, derating required
Storage temperature	$-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left(-40\right.$ to $70^{\circ} \mathrm{C}$) No liquid in heatsink under $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$
Relative humidity	5-96\% RH, noncondensing, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2 Mechanical particles: IEC 721-3-3, unit in operation, class 3 S2 (no conductive dust allowed); No corrosive gases
Altitude	Up to 1,000m: 100\% load capacity (no derating) Above 1,000m: Derating of 1% per each 100 m required
Vibration	EN 50178, EN 60068-2-6; 5-150 Hz Displacement amplitude: 0.25 mm (peak) at $3-31 \mathrm{~Hz}$ Max. acceleration amplitude: 1 G at $31-150 \mathrm{~Hz}$
Shock	EN 50178, EN 60068-2-27, UPS drop test (for applicable UPS weights) Storage and shipping: Max. 15G, 11 ms (in package)
Enclosure class	IPOO open frame standard in entire kW/hp range
EMC	
Immunity	Fulfils all EMC immunity requirements
Emissions	EMC level N ; EMC level T for IT networks
Safety	
Approvals	EN 50178, EN 60204-1, CE, UL, CUL, FI, GOST R, IEC 61800-5 (See unit nameplate for more detailed approvals.)
Control Connections	
Analog input voltage	0 to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=200$ kohm (-10 V to +10 V joystick control) Resolution 0.1%; accuracy $\pm 1 \%$
Analog input current	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohm differential
Digital inputs	6 positive or negative logic; 18-24 Vdc
Auxiliary voltage	$+24 \mathrm{~V}, \pm 15 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V},+3 \%$, max. load 10 mA
Analog output	0(4)-20 mA, R_{L} max. 500 ohm Resolution 10 bits; accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	Two programmable change-over relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}$, $125 \mathrm{Vdc} / 0.4 \mathrm{~A}$ Min. switching load: 5V/10 mA

Note
(1) Derating required if higher switching frequency than the default is used.

Adjustable Frequency Drives
LCX9000 Drives

LCX9000 Products, continued

Description Protections	Specification
Overvoltage protection 480 V	911 V
575 V	1200 V
Undervoltage protection	
480 V	333 V
575 V	461 V
Ground fault protection	In case of ground fault in motor or motor cable, only the drive is protected
Mains supervision	Trips if any of the input phases are missing (drives only)
Motor phase supervision	Trips if any of the output phases are missing
Unit overtemperature protection	$149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$ for heatsink, $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$ for circuit boards
Alarm limit	$158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$ for heatsink, $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$ for circuit boards
Trip limit	

Description	Specification
Protections, continued	
Overcurrent protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short-circuit protection	Yes (+24V and +10 V reference voltages)
Liquid Cooling	
Allowed cooling agents	Drinking water Water-glycol mixture
Temperature of cooling agent	32 to $86^{\circ} \mathrm{F}\left(0\right.$ to $30^{\circ} \mathrm{C}$) at 1 th for input; 86 to $149^{\circ} \mathrm{F}\left(30\right.$ to $65^{\circ} \mathrm{C}$) Max. temperature rise during circulation: $9^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$, no condensation allowed
System max. working pressure	87 psi (6 bar)
System max. peak pressure	580 psi (40 bar)
Pressure loss (at nominal flow)	Varies according to size

Wiring Diagrams

Cooling System Diagrams

Example of a Typical Cooling System

Example PI-Diagram of a Typical Cooling System and Connections

I/O Board Diagrams

A9 Option Board Control Wiring

Dotted lines indicate the connections for inverted signals

Adjustable Frequency Drives
LCX9000 Drives

A2 Option Board Wiring

2

Basic Relay Board A2	

Dimensions

Approximate Dimensions in Inches (mm)

Line Reactors

Sizes Up To 61A

Sizes Larger Than 61A

Catalog Number	H1	W1	D1	Weight Lbs (kg)
CHK0023N6A0	$7.01(178)$	$9.06(230)$	$4.76(121)$	$22(10)$
CHK0038N6A0	$8.23(209)$	$10.63(270)$	$5.71(145)$	$33(15)$
CHK0062N6A0	$8.39(213)$	$11.81(300)$	$6.30(160)$	$44(20)$
CHK0087N6AO	$9.13(232)$	$11.81(300)$	$6.69(170)$	$57(26)$
CHK0145N6A0	$11.50(292)$	$11.81(300)$	$7.28(185)$	$82(37)$
CHK0220N6A0	$12.05(306)$	$13.86(352)$	$7.28(185)$	$119(54)$
CHK0325N6A0	$13.66(347)$	$13.86(352)$	$7.28(185)$	$132(60)$
CHK0460N6AO	$16.54(423)$	$13.70(348)$	$9.41(239)$	$203(92)$
CHK0520N6A0	$17.60(447)$	$15.51(394)$	$10.71(272)$	$231(105)$
CHK0590N6A0	$20.43(519)$	$15.51(394)$	$10.71(272)$	$276(125)$
CHK0650N6A0	$20.51(521)$	$15.51(394)$	$10.71(272)$	$276(125)$
CHK0750N6A0	$24.72(628)$	$15.51(394)$	$11.10(282)$	$331(150)$
CHK0820N6AO	$24.72(628)$	$15.51(394)$	$11.10(282)$	$331(150)$
CHK1000N6A0	$22.68(576)$	$19.57(497)$	$11.85(301)$	$441(200)$
CHK1150N6A0	$22.83(580)$	$19.57(497)$	$11.85(301)$	$441(200)$

Approximate Dimensions in Inches (mm)

LCX9000 Drives

Chassis Size, CH3

Chassis Size, CH4

Adjustable Frequency Drives

LCX9000 Drives

Approximate Dimensions in Inches (mm)
2
Chassis Size, CH5

Voltage	Amps	H1	H2	H3	D1	W1	W2	W3	R1 Dia.	R2 Dia.	Weight
Lbs (kg)											
$380-500 ~ V a c ~$	$168-261$	21.77	1.30	19.88	10.39	9.69	3.94	7.87	0.51	-	$88(40)$
		(553.0)	(33.0)	(505.0)	(264.0)	(246)	(100.0)	(200.0)	(13.0)		

Chassis Size, CH61

Approximate Dimensions in Inches (mm)

Liquid-Cooled Inverter-Chassis Size, CH62

Top

Bottom

Chassis Size, CH63

Adjustable Frequency Drives

LCX9000 Drives

Approximate Dimensions in Inches (mm)

Liquid-Cooled Inverter with Mounting Bracket, Chassis Size CH64, IP90

Bottom

Top

| Right Side | | Front | | | | Left Side | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Voltage | Amps | H1 | H2 | H3 | D1 | W1 | W2 | R1 Dia. |
| $540-675 \mathrm{Vdc}$ | $1370-4140$ | 36.38 | 1.03 | 34.37 | 15.35 | 29.37 | 7.87 | 0.43 |
| $710-930 \mathrm{Vdc}$ | $820-3100$ | (924) | (26) | (873) | (390) | (746) | (200) | (11) |

Approximate Dimensions in Inches (mm)
Chassis Size, CH72

Voltage	Amps	H1	H2	H3	D1	W1	R1 Dia.	R2 Dia.	Weight Lbs (kg)
$380-500$ Vac	$460-730$	42.38	1.57	39.37	14.65	7.87	0.55	0.51	$198(90)$
$525-690$ Vac	$261-502$	(1076.5)	(40.0)	(1000.0)	(372.0)	(200.0)	(14.0)	(13.0)	

Approximate Dimensions in Inches (mm)
Chassis Size, CH74

Control Unit

SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Product Description

Eaton offers a comprehensive range of common DC bus drive products. The product family covers a number of front-end units and inverter units in the entire power range from 1-1/2 to 2000 horsepower at 460 V and 690 V . The drive components are built on the SPX9000 technology.

Front-End Units

The front-end units convert a mains AC voltage and current into a DC voltage and current. The power is transferred from the mains to a common DC bus (and, in certain cases, vice versa).

The SPA (active front-end) unit is a bidirectional (regenerative) power converter for the front end of a common DC bus drive line up. An external LCL filter is used at the input. This unit is suitable in applications where low mains harmonics are required.

Contents

Description	Page
SPA9000/SPN9000/SPI9000	
Common DC Bus Drive Products	
Application Description	V6-T2-240
Product Comparison	V6-T2-240
Features	V6-T2-241
Standards and Certifications	V6-T2-241
Catalog Number Selection	V6-T2-241
Product Selection	V6-T2-243
Options	V6-T2-246
Technical Data and Specifications	V6-T2-247
Wiring Diagrams	V6-T2-249
Dimensions	V6-T2-250

The SPN (non-regenerative front-end) unit is a unidirectional (motoring) power converter for the front-end of a common DC bus drive line-up. The device operates as a diode bridge using diode/ thyristor components. A dedicated external choke is used at the input. The unit has the capacity to charge a common DC bus. This unit is suitable as a rectifying device when a "normal" level of harmonics is accepted and no regeneration to the mains is required.

Inverter Unit

The SPI9000 Inverter Unit is a bidirectional DC-fed power inverter for the supply and control of AC motors. The inverter is supplied from a common DC bus drive lineup. A charging circuit is needed in case a connection to a live $D C$ bus is required. The DC side charging circuit is integrated up to 75 kW (FR4-FR8) and external for higher power ratings (FI9-FI14).

Application Description

The common DC bus product portfolio fulfills all solution demands with a flexible architecture.
Front end units are selected according to the level of harmonics and power requirements. Typical drive system configurations are illustrated the following figures.

Product Comparison

Advantages over Conventional Front Ends
Eaton Front Ends vs. Conventional

	Non-Regenerative Front End	Active Front End	Conventional Regenerative Front End (1)
Input device	Choke (L)	Filter (LCL)	Choke or auto-transformer (L)
Bridge type	Diode/thyristor bridge	IGBT bridge, two-level type	Anti-parallel connected thyristor bridge
Type of operation	Controlled half-bridge	High frequency modulation $(1.5$ to 3.6 kHz)	Firing angle controlled
Direction of power	Motoring	Motoring and regenerating	Motoring and regenerating
Charging	Constant current	External required	Usually internal
DC voltage	Nominal (approx. 1.35 alternative U_{N})	Stable at $+10 \%$ of nominal (approx. 110% of 1.35 alternative U_{N})	Lowered DC voltage for commutation margin (e.g. 17% fi approx. 83\% of 1.35 alternative U_{N}) or autotransformer on regenerative bridge
THD	Similar to six-pulse bridge normal <40\%	Very low	Similar to six-pulse bridge or worse

Note
(1) Conventional regenerative front end (a.k.a. "anti-parallel thyristor bridge") is not available from Eaton.

Features

Standard Features					
Feature	SPI9000 FR4, 6,7	FR8	FI9-FI14	SPA FI9-F114	SPN FI9
IPOO	-	-	■	■	-
IP21	-	-	-	-	-
Air cooling	-	-	\square	-	-
Standard board	-	-	-	-	
Varnished board	-	-	-	-	-
Alphanumeric keypad	-	-	\square	\square	-
EMC class T (EN 61800-3 for IT networks)	\square	\square	\square	\square	-
Safety CE/UL	\square	\square	\square	\square	-
Input choke	-	-	-	-	-
LCL filter	-	-	-	\square	-
No integrated charging	-	-	\square	\square	-
Integrated charging (DC side)	-	-	-	-	-
Diode/thyristor rectifier	-	-	-	-	\square
IGBT	-	-	■	-	-

Standards and Certifications

- CE
- UL
- cUL
- EN 61800-5-1 (2003)

C \in (4L) , (4L)

Catalog Number Selection

Active Front End

Adjustable Frequency Drives
SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Non-Regenerative Front End

SP19000 Inverter Unit

Product Selection

SPA9000 Active Front End 480V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{L}_{\text {-cont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text { coont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{25}(\mathrm{~A})$	Catalog Number
F19	261	287	205	308	349	SPA205AO-4A3N1
F110	460	506	385	578	693	SPA385AO-4A3N1
F113	1300	1430	1150	1725	2070	SPAH11A0-4A3N1

SPN9000 Non-Regenerative Front End 480V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{I}_{\text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text { cont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$	Catalog Number
FI9	520	572	460	690	828	SPN460A0-4A3N1

SP19000 Inverter Unit 480V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$	Catalog Number
FR4	4.3	4.7	3.3	5	6.2	SPI003A1-4A3N1
	9	9.9	7.6	11.4	14	SPI007A1-4A3N1
	12	13.2	9	13.5	18	SPI009A1-4A3N1
FR6	16	17.6	12	18	24	SPI012A1-4A3N1
	23	25.3	16	24	32	SPI016A1-4A3N1
	31	34	23	35	46	SPIO23A1-4A3N1
	38	42	31	47	62	SPI031A1-4A3N1
	46	51	38	57	76	SPI038A1-4A3N1
FR7	72	79	61	92	122	SPI061A1-4A3N1
	87	96	72	108	144	SPI072A1-4A3N1
	105	116	87	131	174	SPI087A1-4A3N1
FR8	140	154	105	158	210	SPI105AO-4A3N1
FI9	170	187	140	210	280	SPI140A0-4A3N1
	205	226	170	255	336	SPI170AO-4A3N1
	261	287	205	308	349	SPI205AO-4A3N1
	300	330	245	379	444	SPI245A0-4A3N1
F10	385	424	300	450	540	SPI300AO-4A3N1
	460	506	385	578	693	SPI385A0-4A3N1
	520	572	460	690	828	SPI460A0-4A3N1
FI12	590	649	520	780	936	SPI520A0-4A3N1
	650	715	590	885	1062	SPI590AO-4A3N1
	730	803	650	975	1170	SPI650A0-4A3N1
	820	902	730	1095	1314	SPI730A0-4A3N1
	920	1012	820	1230	1476	SPI820A0-4A3N1
	1030	1133	920	1380	1656	SPI920A0-4A3N1
F113	1150	1265	1030	1545	1854	SPIH10A0-4A3N1
	1300	1430	1150	1720	2070	SPIH11A0-4A3N1
	1450	1595	1300	1950	2340	SPIH13A0-4A3N1
FI14	1770	1947	1600	2400	2880	SPIH16A0-4A3N1
	2150	2365	1940	2910	3492	SPIH19A0-4A3N1

Note
For filter and line reactor information, see Page V6-T2-245.

Adjustable Frequency Drives
SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Common DC Bus Drive Products	SPA9000 Active Front End 575V						
	Frame	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{\mathbf{1 m i n}}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{l}_{2 \mathrm{~s}}(\mathrm{~A})$	Catalog Number
	FI9	144	158	125	188	213	SPA125A0-5A3N1
-	Fl10	385	424	325	488	585	SPA325A0-5A3N1
\cdots	Fl13	1030	1133	920	1380	1656	SPA920A0-5A3N1

SPN9000 Non-Regenerative Front End 575V

	Low Overload (AC Current)	High Overload (AC Current)		Imax		
Frame	$\mathbf{I}_{\mathbf{L} \text {-cont }}(\mathbf{A})$	$\mathbf{I}_{\mathbf{1 m i n}(\mathbf{A})}$	$\mathbf{I}_{\mathbf{H - c o n t}}(\mathbf{A})$	$\mathbf{I}_{\mathbf{1 m i n}}(\mathbf{A})$	$\mathbf{I}_{\mathbf{2 s}}(\mathbf{A})$	Catalog Number
$\mathrm{FI9}$	600	660	510	732	888	SPN510A0-5A3N1

SPI9000 Inverter Unit 575V

Frame	Low Overload (AC Current)		High Overload (AC Current)		$\begin{aligned} & \text { Imax } \\ & I_{2 s}(A) \end{aligned}$	Catalog Number
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$		
FR6	4.5	5	3.2	5	6.4	SPI003A1-5A3N1
	5.5	6	4.5	7	9	SPI004A1-5A3N1
	7.5	8	5.5	8	11	SPI005A1-5A3N1
	10	11	7.5	11	15	SPI007A1-5A3N1
	13.5	15	10	15	20	SPI010A1-5A3N1
	18	20	13.5	20	27	SPI013A1-5A3N1
	22	24	18	27	36	SPI018A1-5A3N1
	27	30	22	33	44	SPI022A1-5A3N1
	34	37	27	41	54	SPI027A1-5A3N1
FR7	41	45	34	51	68	SPI034A1-5A3N1
	52	57	41	62	82	SPI041A1-5A3N1
FR8	62	68	52	78	104	SPI052A0-5A3N1
	80	88	62	93	124	SPI062A0-5A3N1
	100	110	80	120	160	SPI080A0-5A3N1
FI9	125	138	100	150	200	SPI100A0-5A3N1
	144	158	125	188	213	SPI125A0-5A3N1
	170	187	144	216	245	SPI144A0-5A3N1
	208	229	170	255	289	SPI170A0-5A3N1
F110	261	287	208	312	375	SPI208A0-5A3N1
	325	358	261	392	470	SPI261A0-5A3N1
	385	424	325	488	585	SPI325A0-5A3N1
F112	460	506	385	578	693	SPI385A0-5A3N1
	502	552	460	690	828	SPI460A0-5A3N1
	590	649	502	753	904	SPI502A0-5A3N1
	650	715	590	885	1062	SPI590A0-5A3N1
	750	825	650	975	1170	SPI650A0-5A3N1
FI13	920	1012	820	1230	1476	SPI820A0-5A3N1
	1030	1133	920	1380	1656	SPI920A0-5A3N1
	1180	1298	1030	1464	1755	SPIH10A0-5A3N1
F114	1500	1650	1300	1950	2340	SPIH13A0-5A3N1
	1900	2090	1500	2250	2700	SPIH15A0-5A3N1
	2250	2475	1900	2782	3335	SPIH19A0-5A3N1

Note
For filter and line reactor information, see Page V6-T2-245.

LCL Filters

LCL Filters for Active Front End (480V)

Amps	Catalog Number
10	REG 1050
18	REG 1850
32	REG $\mathbf{3 2 5 0}$
48	REG $\mathbf{4 8 5 0}$
75	REG $\mathbf{7 5 5 0}$
110	REG 11050
180	REG $\mathbf{1 8 0 5 0}$

Amps	Catalog Number
270	REG $\mathbf{2 7 0 5 0}$
410	REG $\mathbf{4 1 0 5 0}$
580	REG $\mathbf{5 8 0 5 0}$
840	REG $\mathbf{8 4 0 5 0}$
1160	REG $\mathbf{1 1 6 0 5 0}$
1480	REG $\mathbf{1 4 8 0 5 0}$

LCL Filters for Active Front End (690V)

Amps	Catalog Number	Amps	Catalog Number
14	REG 1460	287	REG 28760
23	REG 2360	390	REG 39060
35	REG 3560	460	REG 46060
52	REG 5260	620	REG 62060
85	REG 8560	780	REG 78060
122	REG 12260	920	REG 92060
185	REG 18560	1180	REG 118060

Line Reactor		
Line Reactor for Non-Regenerative Front End (480/575VV)		
Amps	Watts Losses	Catalog Number
600	493	CHK600

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{\text {(1) }}$	Allowed Slot Locations	Field Installed Catalog Number	Factory Installed Option Designato	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	-	\bullet	-	-	-	-	-
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	\bullet	-	-	\square	-
Extended I/O Cards										
2 RO , therm	B	OPTA3	A3	-	-	-	\bullet	-	\bullet	\bullet
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} 24 \mathrm{~V}$	C	OPTA4	A4	-	\bullet	-	-	-	\bullet	-
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA5	A5	-	-	-	-	-	-	-
Double encoder	C	OPTA7	A7	-	-	-	-	-	-	-
$6 \mathrm{Dl}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	-	-	-	-	\bullet	\bullet
3 DI (encoder 10-24V), out +15V/+24V, 2 DO (pulse+direction)	C	OPTAE	AE	-	\cdot	-	-	-	-	-
$6 \mathrm{Dl}, 1$ ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	-
$1 \mathrm{RO}(\mathrm{NC}-\mathrm{NO}), 1 \mathrm{RO}$ (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	-	-
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	\square	-	-	-	-	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	-	-
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	-	-
SPl, absolute encoder	C	OPTBB	BB	-	-	-	-	-	-	-
Communication Cards ${ }^{\text {(3) }}$										
Modbus	D, E	OPTC2	C2	-	-	-	-	-	-	-
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	\bullet	-	-	-	-	-	-
BACnet	D, E	OPTCJ	CJ	-	\bullet	\square	-	-	-	-
Ethernet IP	D, E	OPTCK	CK	\bullet	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	\square	\bullet	\square	-	\square	\square	-
LonWorks	D, E	OPTC4	C4	\bullet	\bullet	-	-	\square	\square	-
Profibus DP (D9 connector)	D, E	OPTC5	C5	\bullet	-	-	-	-	-	-
CanOpen (slave)	D, E	OPTC6	C6	\square	-	\square	\square	\square	\square	\square
DeviceNet	D, E	OPTC7	C7	\square	\square	-	\bullet	-	\bullet	\bullet
Modbus (D9 type connector)	D, E	OPTC8	C8	\bullet	\bullet	-	\bullet	-	\bullet	\bullet
Adapter	D, E	OPTD1	D1	\bullet	-	-	-	-	-	-
Adapter	D, E	OPTD2	D2	\bullet	\square	\square	-	\square	\square	\bullet
RS-232 with D9 connection	D, E	OPTD3	D3	\bullet	\bullet	\bullet	-	\bullet	-	\bullet
Keypad										
9000X Series local/remote keypad (replacement keypad)	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Technical Data and Specifications

SPA9000/SPN9000/SPI9000, continued

Description	Specification
Protections	$480 \mathrm{~V} / 911 \mathrm{Vdc}, 575 \mathrm{~V} / 1200 \mathrm{Vdc}$
Overvoltage protection	$480 \mathrm{~V} / 333 \mathrm{Vdc}, 575 \mathrm{~V} / 460 \mathrm{Vdc}$
Undervoltage protection	In case of ground fault in motor or motor cable, only the inverter is protected
Ground fault protection	Trips if any of the output phases is missing
Motor phase supervision	Yes
Overcurrent protection	Yes
Unit overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection of 24V and 10V reference voltages	

Input Fuses

SHT fuses can be assembled into same-size DIN fuse base.
SPA9000/SPN9000/SPI9000

Module Component	Frame	Bussman Fuse Type (aR)	Size	$\mathrm{U}_{\mathrm{N}}(\mathrm{V})$	$I_{N}(A)$	Oty.
Inverter Units						
SPI003A1-4	FR4	170M1560	0	690	20	2
SPI007A1-4	FR4	170 M 1562	0	690	63	2
SPI009A1-4	FR4	170M1562	0	690	63	2
SPI012A1-4	FR6	170M1565	0	690	63	2
SPI016A1-4	FR6	170M1565	0	690	63	2
SPI023A1-4	FR6	170M1565	0	690	63	2
SPI031A1-4	FR6	170M1567	0	690	100	2
SPI038A1-4	FR6	170M1567	0	690	100	2
SPI061A1-4	FR7	170M1570	0	690	200	2
SPI072A1-4	FR7	170 M 1570	0	690	200	2
SPI087A1-4	FR7	170M1571	0	690	250	2
SPI105AO-4	FR8	170M3819	DIN1	690	400	2
SPI140AO-4	FR8	170M3819	DIN1	690	400	2
SPI170A0-4	FR8	170M3819	DIN1	690	400	2
SPI205A0-4	FI9	170M6812	DIN3	690	800	2
SPI245A0-4	FI9	170 M 6812	DIN3	690	800	2
SPI300AO-4	F110	170 M 8547	3SHT	690	1250	2
SPI385A0-4	F110	170 M 8547	3SHT	690	1250	2
SPI460AO-4	F110	170M8547	3SHT	690	1250	2
SPI520A0-4	F112	170M8547	3SHT	690	1250	2×2
SPI590A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI650A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI730AO-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI820A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI920AO-4	Fl12	170M8547	3SHT	690	1250	2×2
SPIH10A0-4	F113	170M8547	3SHT	690	1250	6
SPIH11A0-4	Fl13	170M8547	3SHT	690	1250	6
SPIH13A0-4	Fl13	170 M 8547	3SHT	690	1250	6
SPIH16AO-4	Fl14	170 M 8547	3SHT	690	1250	2×6
SPIH19A0-4	Fl14	170 M 8547	3SHT	690	1250	2×6
SPIH23A0-4	F114	170M8547	3SHT	690	1250	2×6

SHT fuses can be assembled into same-size DIN fuse base.
SPA9000/SPN9000/SPI9000, continued

Module Component	Frame	Bussman Fuse Type (aR)	Size	$\mathrm{U}_{\mathrm{N}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	Oty.
Active Front Ends						
SPA205A0-4	FI9	170M6202	3SHT	1250	500	3
SPA385A0-4	Fl10	170M6277	3SHT	1250	1000	3
SPAH10AO-4	Fl13	170M6277	3SHT	1250	1000	3×3
Non-Regenerative Front Ends						
SPN468A0-4	FI9	170M8547	3SHT	690	1250	3

Wiring Diagrams

2.9

Adjustable Frequency Drives

Dimensions

Approximate Dimensions in Inches (mm)
2
SPA9000/SPN9000/SPI9000

Frame	Height	Width	Depth	Weight Lbs (kg)
Active Front Ends				
FI9	$40.6(1030)$	$9.4(239)$	$14.6(372)$	$148(67)$
F110	$40.6(1032)$	$9.4(239)$	$21.7(552)$	$220(100)$
F112	$40.6(1032)$	$2 \times 9.4(2 \times 239)$	$21.7(552)$	$441(200)$
F113	$40.6(1032)$	$27.9(708)$	$21.8(553)$	$674(306)$
F114	$40.6(1032)$	$2 \times 27.9(2 \times 708)$	$21.8(553)$	$1348(612)$

Non-Regenerative Front Ends				
FI9	$40.6(1030)$	$9.4(239)$	$14.6(372)$	$148(67)$
Inverter Units				
FR4	$11.5(292)$	$5.0(128)$	$7.5(190)$	$11(5)$
FR6	$20.4(519)$	$7.7(195)$	$9.3(237)$	$35(16)$
FR7	$23.3(591)$	$9.3(237)$	$10.1(257)$	$64(29)$
FR8	$29.8(758)$	$11.4(289)$	$13.5(344)$	$106(48)$
FI9	$40.6(1030)$	$9.4(239)$	$14.6(372)$	$148(67)$
FI10	$40.6(1032)$	$9.4(239)$	$21.7(552)$	$220(100)$
FI12	$40.6(1032)$	$2 \times 9.4(2 \times 239)$	$21.7(552)$	$441(200)$
FI13	$40.6(1032)$	$27.9(708)$	$21.8(553)$	$674(306)$
FI14	$40.6(1032)$	$2 \times 27.9(2 \times 708)$	$21.8(553)$	$1348(612)$

Terms \& Conditions

Contents

Description	Page
Terms and Conditions of Sale.	V6-A1-1
Terms of Payment	V6-A1-2
Freight	V6-A1-3
Warranty.	V6-A1-3

Selling Policy (Supersedes Selling Policy 25-000, dated February 20, 2006)

Terms and Conditions of Sale

The Terms and Conditions of Sale set forth herein, and any supplements which may be attached hereto, constitute the full and final expression of the contract for the sale of products or services (hereinafter referred to as Product(s) or Services by Eaton Corporation (hereinafter referred to as Seller) to the Buyer, and supersedes all prior quotations, purchase orders, correspondence or communications whether written or oral between the Seller and the Buyer. Notwithstanding any contrary language in the Buyer's purchase order,
correspondence or other form of acknowledgment, Buyer shall be bound by these Terms and Conditions of Sale when it sends a purchase order or otherwise indicates acceptance of this contract, or when it accepts delivery from Seller of the Products or Services.

THE CONTRACT FOR SALE OF THE PRODUCTS OR SERVICES IS EXPRESSLY LIMITED TO THE TERMS AND CONDITIONS OF SALE STATED HEREIN. ANY ADDITIONAL OR DIFFERENT TERMS PROPOSED BY BUYER ARE REJECTED UNLESS EXPRESSLY AGREED TO IN WRITING BY SELLER. No contract shall exist except as herein provided.

Complete Agreement

No amendment or modification hereto nor any statement, representation or warranty not contained herein shall be binding on the Seller unless made in writing by an authorized representative of the Seller. Prior dealings, usage of the trade or a course of performance shall not be relevant to determine the meaning of this contract even though the accepting or acquiescing party had knowledge of the nature of the performance and opportunity for objection.

Quotations

Written quotations are valid for 30 days from its date unless otherwise stated in the quotation or terminated sooner by notice.
Verbal quotations, unless accepted, expire the same day they are made.

A complete signed order must be received by Seller within 20 calendar days of notification of award, otherwise the price and shipment will be subject to re-negotiation.

Termination and Cancellation

Any order may be terminated by the Buyer only by written notice and upon payment of reasonable termination charges, including all costs plus profit.

Seller shall have the right to cancel any order at any time by written notice if Buyer breaches any of the terms hereof, becomes the subject of any proceeding under state or federal law for the relief of debtors, or otherwise becomes insolvent or bankrupt, generally does not pay its debts as they become due or makes an assignment for the benefit of creditors.

Prices

All prices are subject to change without notice. In the event of a price change, the effective date of the change will be the date of the new price or discount sheet, letter or telegram. All quotations made or orders accepted after the effective date will be on the new basis. For existing orders, the price of the unshipped portion of an order will be the price in effect at time of shipment.

Price Policy-Products and Services

When prices are quoted as firm for quoted shipment, they are firm provided the following conditions are met:

1. The order is released with complete engineering details.
2. Shipment of Products are made, and Services purchased are provided within the quoted lead time.
3. When drawings for approval are required for any Products, the drawings applicable to those Products must be returned within 30* calendar days from the date of the original mailing of the drawings by Seller. The return drawings must be released for manufacture and shipment and must be marked "APPROVED" or "APPROVED AS NOTED." Drawing re-submittals which are required for any other reason than to correct Seller errors will not extend the 30-day period.

* 60 days for orders through contractors to allow time for their review and approval before and after transmitting them to their customers.

If the Buyer initiates or in any way causes delays in shipment, provision of Services or return of approval drawings beyond the periods stated above, the price of the Products or Services will be increased 1\% per month or fraction thereof up to a maximum of 18 months from the date of the Buyer's order. For delays resulting in shipment or provision of Services beyond 18 months from the date of the Buyer's order, the price must be renegotiated.

Price Policy-BLS

Refer to Price Policy 25-050.

Minimum Billing

Orders less than \$1,000 will be assessed a shipping and handling charge of 5% of the price of the order, with a minimum charge of $\$ 25.00$ unless noted differently on Product discount sheets.

Taxes

The price does not include any taxes. Buyer shall be responsible for the payment of all taxes applicable to, or arising from the transaction, the Products, its sale, value, or use, or any Services performed in connection therewith regardless of the person or entity actually taxed.

Terms of Payment

Products

Acceptance of all orders is subject to the Buyer meeting Seller's credit requirements. Terms of payment are subject to change for failure to meet such requirements. Seller reserves the right at any time to demand full or partial payment before proceeding with a contract of sale as a result of changes in the financial condition of the Buyer. Terms of Payment are either Net 30 days from the date of invoice of each shipment or carry a cash discount based on Product type. Specific payment terms for Products are outlined in the applicable Product discount schedules.

Services

Terms of payment are net within 30 days from date of invoice for orders amounting to less than $\$ 50,000.00$.

Terms of payment for orders exceeding $\$ 50,000.00$ shall be made according to the following:

1. Twenty percent (20%) of order value with the purchase order payable 30 days from date of invoice.
2. Eighty percent (80%) of order value in equal monthly payments over the performance period payable 30 days from date of invoice.

Except for work performed (i) under a firm fixed price basis or (ii) pursuant to terms of a previously priced existing contract between Seller and Buyer, invoices for work performed by Seller shall have added and noted on each invoice a charge of 3% (over and above the price of the work) which is related to Seller compliance with present and proposed environmental, health, and safety regulations associated with prescribed requirements covering hazardous materials management and employee training, communications, personal protective equipment, documentation and record keeping associated therewith.

Adequate Assurances

If, in the judgment of Seller, the financial condition of the Buyer, at any time during the period of the contract, does not justify the terms of payment specified, Seller may require full or partial payment in advance.

Delayed Payment

If payments are not made in accordance with these terms, a service charge will, without prejudice to the right of Seller to immediate payment, be added in an amount equal to the lower of 1.5% per month or fraction thereof or the highest legal rate on the unpaid balance.

Appendix l—Eaton Terms \& Conditions

Effective Date: November 1, 2008

Freight

Freight policy will be listed on the Product discount sheets, or at option of Seller one of the following freight terms will be quoted.

F.O.B.-P/S—Frt./Ppd. and Invoiced

Products are sold F.O.B. point of shipment freight prepaid and invoiced to the Buyer.

F.O.B.-P/S-Frt./Ppd. and Allowed

Products sold are delivered F.O.B. point of shipment, freight prepaid and included in the price.

F.O.B. Destination-Frt./Ppd. and Allowed

At Buyer's option, Seller will deliver the Products F.O.B. destination freight prepaid and 2% will be added to the net price.

The term "freight prepaid" means that freight charges will be prepaid to the accessible common carrier delivery point nearest the destination for shipments within the United States and Puerto Rico unless noted differently on the Product discount sheets. For any other destination contact Seller's representative.

Shipment and Routing

Seller shall select the point of origin of shipment, the method of transportation, the type of carrier equipment and the routing of the shipment.

If the Buyer specifies a special method of transportation, type of carrier equipment, routing, or delivery requirement, Buyer shall pay all special freight and handling charges.
When freight is included in the price, no allowance will be made in lieu of transportation if the Buyer accepts shipment at factory, warehouse, or freight station or otherwise supplies its own transportation.

Risk of Loss

Risk of loss or damage to the Products shall pass to Buyer at the F.O.B. point.

Concealed Damage

Except in the event of F.O.B. destination shipments, Seller will not participate in any settlement of claims for concealed damage.

When shipment has been made on an F.O.B. destination basis, the Buyer must unpack immediately and, if damage is discovered must:

1. Not move the Products from the point of examination.
2. Retain shipping container and packing material.
3. Notify the carrier in writing of any apparent damage.
4. Notify Seller representative within 72 hours of delivery.
5. Send Seller a copy of the carrier's inspection report.

Witness Tests/Customer Inspection

Standard factory tests may be witnessed by the Buyer at Seller's factory for an additional charge calculated at the rate of $\$ 2,500$ per day (not to exceed eight (8) hours) per Product type. Buyer may final inspect Products at the Seller's factory for $\$ 500$ per day per Product type.
Witness tests will add one (1) week to the scheduled shipping date. Seller will notify Buyer fourteen (14) calendar days prior to scheduled witness testing or inspection. In the event Buyer is unable to attend, the Parties shall mutually agree on a rescheduled date. However, Seller reserves the right to deem the witness tests waived with the right to ship and invoice Products.

Held Orders

For any order held, delayed or rescheduled at the request of the Buyer, Seller may, at its sole option (1) require payment to be based on any reasonable basis, including but not limited to the contract price, and any additional expenses, or cost resulting from such a delay; (2) store Products at the sole cost and risk of loss of the Buyer; and/ or (3) charge to the Buyer those prices under the applicable price policy. Payment for such price, expenses and costs, in any such event, shall be due by Buyer within thirty (30) days from date of Seller's invoice. Any order so held delayed or rescheduled beyond six (6) months will be treated as a Buyer termination.

Drawing Approval

Seller will design the Products in line with, in Seller's judgment, good commercial practice. If at drawing approval Buyer makes changes outside of the design as covered in their specifications, Seller will then be paid reasonable charges and allowed a commensurate delay in shipping date based on the changes made.

Drawing Re-Submittal

When Seller agrees to do so in its quotation, Seller shall provide Buyer with the first set of factory customer approval drawing(s) at Seller's expense. The customer approval drawing(s) will be delivered at the quoted delivery date. If Buyer requests drawing changes or additions after the initial factory customer approval drawing(s) have been submitted by Seller, the Seller, at its option, may assess Buyer drawing charges. Factory customer approval drawing changes required due to misinterpretation by Seller will be at Seller's expense. Approval drawings generated by Bid Manager are excluded from this provision.

Warranty

Warranty for Products

Seller warrants that the Products manufactured by it will conform to Seller's applicable specifications and be free from failure due to defects in workmanship and material for one (1) year from the date of installation of the Product or eighteen (18) months from the date of shipment of the Product, whichever occurs first.

In the event any Product fails to comply with the foregoing warranty Seller will, at its option, either (a) repair or replace the defective Product, or defective part or component thereof, F.O.B. Seller's facility freight prepaid, or (b) credit Buyer for the purchase price of the Product. All warranty claims shall be made in writing.
Seller requires all nonconforming Products be returned at Seller's expense for evaluation unless specifically stated otherwise in writing by Seller.
This warranty does not cover failure or damage due to storage, installation, operation or maintenance not in conformance with Seller's recommendations and industry standard practice or due to accident, misuse, abuse or negligence. This warranty does not cover reimbursement for labor, gaining access, removal, installation, temporary power or any other expenses, which may be incurred in connection with repair or replacement.

This warranty does not apply to equipment not manufactured by Seller. Seller limits itself to extending the same warranty it receives from the supplier.

Extended Warranty for Products

If requested by the Buyer and specifically accepted in writing by Seller, the foregoing standard warranty for Products will be extended from the date of shipment for the period and price indicated below:

- 24 months- 2% of Contract Price
- 30 months- 3% of Contract Price
- 36 months-4\% of Contract Price

Special Warranty (In and Out) for Products

If requested by the Buyer and specifically accepted in writing by Seller, Seller will, during the warranty period for Products, at an additional cost of 2\% of the contract price, be responsible for the direct cost of:

1. Removing the Product from the installed location.
2. Transportation to the repair facility and return to the site.
3. Reinstallation on site.

The total liability of Seller for this Special Warranty for Products is limited to 50\% of the contract price of the particular Product being repaired and excludes expenses for removing adjacent apparatus, walls, piping, structures, temporary service, etc.

Warranty for Services

Seller warrants that the Services performed by it hereunder will be performed in accordance with generally accepted professional standards.

The Services, which do not so conform, shall be corrected by Seller upon notification in writing by the Buyer within one (1) year after completion of the Services.
Unless otherwise agreed to in writing by Seller, Seller assumes no responsibility with respect to the suitability of the Buyer's, or its customer's, equipment or with respect to any latent defects in equipment not supplied by Seller. This warranty does not cover damage to Buyer's, or its customer's, equipment, components or parts resulting in whole or in part from improper maintenance or operation or from their deteriorated condition. Buyer will, at its cost, provide Seller with unobstructed access to the defective Services, as well as adequate free working space in the immediate vicinity of the defective Services and such facilities and systems, including, without limitation, docks, cranes and utility disconnects and connects, as may be necessary in order that Seller may perform its warranty obligations. The conducting of any tests shall be mutually agreed upon and Seller shall be notified of, and may be present at, all tests that may be made.

Warranty for Power Systems Studies

Seller warrants that any power systems studies performed by it will conform to generally accepted professional standards. Any portion of the study, which does not so conform, shall be corrected by Seller upon notification in writing by the Buyer within six (6) months after completion of the study. All warranty work shall be performed in a single shift straight time basis Monday through Friday. In the event that the study requires correction of warranty items on an overtime schedule, the premium portion of such overtime shall be for the Buyer's account.

Limitation on Warranties for Products, Services and Power Systems Studies

THE FOREGOING WARRANTIES ARE EXCLUSIVE EXCEPT FOR WARRANTY OF TITLE. SELLER DISCLAIMS ALL OTHER WARRANTIES INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

CORRECTION OF NONCONFORMITIES IN THE MANNER AND FOR THE PERIOD OF TIME PROVIDED ABOVE SHALL CONSTITUTE SELLER'S SOLE LIABILITY AND BUYER'S EXCLUSIVE REMEDY FOR FAILURE OF SELLER TO MEET ITS WARRANTY OBLIGATIONS, WHETHER CLAIMS OF THE BUYER ARE BASED IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE.

Asbestos

Federal Law requires that building or facility owners identify the presence, location and quantity of asbestos containing material (hereinafter "ACM") at work sites. Seller is not licensed to abate ACM. Accordingly, for any contract which includes the provision of Services, prior to (i) commencement of work at any site under a specific Purchase Order, (ii) a change in the work scope of any Purchase Order, the Buyer will certify that the work area associated with the Seller's scope of work includes the handling of Class II ACM, including but not limited to generator wedges and high temperature gaskets which include asbestos materials. The Buyer shall, at its expense, conduct abatement should the removal, handling, modification or reinstallation, or some or all of them, of said Class II ACM be likely to generate airborne asbestos fibers; and should such abatement affect the cost of or time of performance of the work then Seller shall be entitled to an equitable adjustment in the schedule, price and other pertinent affected provisions of the contract.

Compliance with Nuclear Regulation

Seller's Products are sold as commercial grade Products not intended for application in facilities or activities licensed by the United States Nuclear Regulatory Commission for atomic purposes. Further certification will be required for use of the Products in any safety-related application in any nuclear facility licensed by the U.S. Nuclear Regulatory Commission.

Appendix l—Eaton Terms \& Conditions

Returning Products

Authorization and shipping instructions for the return of any Products must be obtained from Seller before returning the Products.

When return is occasioned due to Seller error, full credit including all transportation charges will be allowed.

Product Notices

Buyer shall provide the user (including its employees) of the Products with all Seller supplied Product notices, warnings, instructions, recommendations, and similar materials.

Force Majeure

Seller shall not be liable for failure to perform or delay in performance due to fire, flood, strike or other labor difficulty, act of God, act of any governmental authority or of the Buyer, riot, embargo, fuel or energy shortage, car shortage, wrecks or delays in transportation, or due to any other cause beyond Seller's reasonable control. In the event of delay in performance due to any such cause, the date of delivery or time for completion will be extended by a period of time reasonably necessary to overcome the effect of such delay.

Liquidated Damages

Contracts which include liquidated damage clauses for failure to meet shipping or job completion promises are not acceptable or binding on Seller, unless such clauses are specifically accepted in writing by an authorized representative of the Seller at its headquarters office.

Patent Infringement

Seller will defend or, at its option, settle any suit or proceeding brought against Buyer, or Buyer's customers, to the extent it is based upon a claim that any Product or part thereof, manufactured by Seller or its subsidiaries and furnished hereunder, infringes any United States patent, other than a claim of infringement based upon use of a Product or part thereof in a process, provided Seller is notified in reasonable time and given authority, information and assistance (at Seller's expense) for the defense of same. Seller shall pay all legal and court costs and expenses and courtassessed damages awarded therein against Buyer resulting from or incident to such suit or proceeding. In addition to the foregoing, if at any time Seller determines there is a substantial question of infringement of any United States patent, and the use of such Product is or may be enjoined, Seller may, at its option and expense: either (a) procure for Buyer the right to continue using and selling the Product; (b) replace the Product with non-infringing apparatus; (c) modify the Product so it becomes noninfringing; or (d) as a last resort, remove the Product and refund the purchase price, equitably adjusted for use and obsolescence. In no case does Seller agree to pay any recovery based upon its Buyer's savings or profit through use of Seller's Products whether the use be special or ordinary. The foregoing states the entire liability of Seller for patent infringement.

The preceding paragraph does not apply to any claim of infringement based upon: (a) any modification made to a Product other than by Seller; (b) any design and/or specifications of Buyer to which a Product was manufactured; or (c) the use or combination of Product with other products where the Product does not itself infringe. As to the aboveidentified claim situations where the preceding paragraph does not apply, Buyer shall defend and hold Seller harmless in the same manner and to the extent as Seller's obligations described in the preceding paragraph. Buyer shall be responsible for obtaining (at Buyer's expense) all license rights required for Seller to be able to use software products in the possession of Buyer where such use is required in order to perform any Service for Buyer.

With respect to a Product or part thereof not manufactured by Seller or its subsidiaries, Seller will attempt to obtain for Buyer, from the supplier(s), the patent indemnification protection normally provided by the supplier(s) to customers.

Compliance with OSHA

Seller offers no warranty and makes no representation that its Products comply with the provisions or standards of the Occupational Safety and Health Act of 1970, or any regulation issued thereunder. In no event shall Seller be liable for any loss, damage, fines, penalty or expenses arising under said Act.

Limitation of Liability

THE REMEDIES OF THE BUYER SET FORTH IN THIS CONTRACT ARE EXCLUSIVE AND ARE ITS SOLE REMEDIES FOR ANY
FAILURE OF SELLER TO COMPLY WITH ITS OBLIGATIONS HEREUNDER.

NOTWITHSTANDING
ANY PROVISION IN THIS CONTRACT TO THE
CONTRARY, IN NO EVENT
SHALL SELLER BE LIABLE
IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY) OR OTHERWISE FOR DAMAGE TO PROPERTY OR EQUIPMENT OTHER THAN PRODUCTS SOLD
HEREUNDER, LOSS OF PROFITS OR REVENUE, LOSS OF USE OF PRODUCTS, COST OF

CAPITAL, CLAIMS OF CUSTOMERS OF THE
BUYER OR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, REGARDLESS OF WHETHER SUCH POTENTIAL DAMAGES ARE FORESEEABLE OR IF SELLER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE TOTAL CUMULATIVE
LIABILITY OF SELLER
ARISING FROM OR
RELATED TO THIS CONTRACT WHETHER THE CLAIMS ARE BASED IN CONTRACT, IN TORT (INCLUDING NEGLIGENCE OR STRICT LIABILITY) OR OTHERWISE, SHALL NOT EXCEED THE PRICE OF THE PRODUCT OR SERVICES ON WHICH SUCH LIABILITY IS BASED.

C	
CFX	V6-T2-169-V6-T2-171, V6-T2-173
CHK.	V6-T2-228, V6-T2-245
CPX	V6-T2-200-V6-T2-207
CP01	V6-T2-27-V6-T2-29, V6-T2-32, V6-T2-113-V6-T2-115, V6-T2-118
CSBS	V6-T2-27, V6-T2-112
C25D	V6-T1-50
C440	V6-T1-40
C441	V6-T1-40
D	
DS6	V6-T1-21, V6-T1-22
DS7	V6-T1-30, V6-T1-31
D77D	V6-T1-85
D77E	V6-T1-49, V6-T1-50, V6-T1-85
E	
ELC	V6-T1-22
EMA	V6-T1-75, V6-T1-108
EML.	V6-T1-74, V6-T1-107
EMM	V6-T1-75, V6-T1-108
EMS	V6-T1-74, V6-T1-107
F	
FR09	V6-T2-30-V6-T2-32, V6-T2-115, V6-T2-117, V6-T2-118
FR10	V6-T2-30, V6-T2-31, V6-T2-33, V6-T2-116, V6-T2-119
FR11	V6-T2-30, V6-T2-33, V6-T2-116, V6-T2-119
H	
H-MAX-DEMO.	V6-T2-144
HMX	V6-T2-141, V6-T2-142, V6-T2-151, V6-T2-152
K	
KEYPAD	V6-T2-24, V6-T2-26, V6-T2-59, V6-T2-85, V6-T2-108, V6-T2-110, V6-T2-227, V6-T2-246
K64-000.	V6-T2-10
L	
LCX	V6-T2-224-V6-T2-226
M	
MMX .	V6-T2-9, V6-T2-10
N	
NFX	V6-T2-3
0	
OPTA.	V6-T2-24, V6-T2-59, V6-T2-85, V6-T2-107, V6-T2-175, V6-T2-208, V6-T2-227, V6-T2-246

OPTB	V6-T2-24, V6-T2-59, V6-T2-85, V6-T2-107, V6-T2-175, V6-T2-208, V6-T2-227, V6-T2-246
OPTC	V6-T2-24, V6-T2-59, V6-T2-85, V6-T2-108, V6-T2-175, V6-T2-208, V6-T2-227, V6-T2-246
OPTCON	V6-T2-60
OPTD.	V6-T2-24, V6-T2-59, V6-T2-85, V6-T2-108, V6-T2-175, V6-T2-208, V6-T2-227, V6-T2-246
OPTN	V6-T2-23, V6-T2-106
OPTR	V6-T2-24, V6-T2-26, V6-T2-59, V6-T2-85, V6-T2-108, V6-T2-110, V6-T2-227, V6-T2-246
OPTT	V6-T2-23, V6-T2-106
P	
PP00	V6-T2-24, V6-T2-31, V6-T2-33, V6-T2-59, V6-T2-85, V6-T2-108, V6-T2-116, V6-T2-119, V6-T2-246
PP01	$\begin{aligned} & \text { V6-T2-27-V6-T2-29, V6-T2-31-V6-T2-33, } \\ & \text { V6-T2-112-V6-T2-119 } \end{aligned}$
PP08	V6-T2-27, V6-T2-113
PP09	V6-T2-29, V6-T2-114
PSG	V6-T1-22, V6-T1-74, V6-T1-85, V6-T1-107
PSS	V6-T1-22
R	
REG .	V6-T2-245
\mathbf{S}	
SPA	V6-T2-243, V6-T2-244
SPI	V6-T2-243, V6-T2-244
SPN	V6-T2-243, V6-T2-244
SPX	V6-T2-21, V6-T2-22, V6-T2-101-V6-T2-105
SS-IP	V6-T1-74, V6-T1-107
SVDRIVE	V6-T2-26, V6-T2-110
SVX	V6-T2-19-V6-T2-22, V6-T2-55-V6-T2-58, V6-T2-80-V6-T2-84
S511.	V6-T1-16
S611.	V6-T1-48-V6-T1-50
S701.	V6-T1-4, V6-T1-10, V6-T1-13
S801.	V6-T1-60-V6-T1-73, V6-T1-75
S811.	V6-T1-93-V6-T1-106, V6-T1-108
V	
VB00	V6-T2-27, V6-T2-28, V6-T2-30-V6-T2-33, V6-T2-112-V6-T2-119
\mathbf{X}	
XMX.	V6-T2-10, V6-T2-143, V6-T2-153
Numerics	
9000X.	$\begin{aligned} & \text { V6-T2-23, V6-T2-26, V6-T2-106, V6-T2-110, } \\ & \text { V6-T2-144 } \end{aligned}$

A

Accessories	
Adjustable Frequency Drives	
H-Max Series	V6-T2-144
M-Max Series AC	V6-T2-10
SPX9000.	V6-T2-106
SVX9000 Open.	V6-T2-23
Type S801, Soft Starters.	V6-T1-74
Type S811, Soft Starters	V6-T1-107
Adjustable Frequency Drives	
CFX9000	V6-T2-159-V6-T2-183
CPX9000 (Enclosed)	V6-T2-192-V6-T2-221
H-Max Series	V6-T2-138-V6-T2-158
IntelliDisconnect.	V6-T2-149
IntelliPass	V6-T2-149
H-Max Series (Open).	V6-T2-139
LCX9000	V6-T2-222-V6-T2-238
M-Max Series AC	V6-T2-8-V6-T2-13
NFX9000	V6-T2-2-V6-T2-7
SPA9000/SPN9000/SP19000	
Drive Products	V6-T2-239-V6-T2-250
SPX9000	V6-T2-98-V6-T2-136
SVX9000	V6-T2-14-V6-T2-97
SVX9000 Enclosed	. V6-T2-52
SVX9000 Open	V6-T2-17
SVX9000 VFD Pump Panels	V6-T2-78
Auxiliary Contacts	
Type S701, Soft Start Controllers V6-T1-9
C	
Communication Modules	
BACnet	
CFX9000 Drives	V6-T2-176
CPX9000 Drives	V6-T2-209
SPX9000 Drives	V6-T2-109
CANopen (Slave)	
CFX9000 Drives	V6-T2-176
CPX9000 Drives	V6-T2-209
SPX9000 Drives	. V6-T2-109
DeviceNet	
CFX9000 Drives	. . V6-T2-176
CPX9000 Drives	. . V6-T2-209
SPX9000 Drives	V6-T2-109
Ethernet/IP	
CFX9000 Drives	. . V6-T2-176
CPX9000 Drives	V6-T2-209
SPX9000 Drives	. V6-T2-109
Johnson Controls Metasys N2	
CFX9000 Drives	. . . V6-T2-176
CPX9000 Drives	. V6-T2-209
SPX9000 Drives	. . V6-T2-109
LonWorks	
CFX9000 Drives	. . V6-T2-176
CPX9000 Drives V6-T2-209
SPX9000 Drives V6-T2-109

Modbus	
CFX9000 Drives	V6-T2-176
CPX9000 Drives	V6-T2-209
SPX9000 Drives	V6-T2-109
Modbus/TCP	
CFX9000 Drives	V6-T2-176
CPX9000 Drives	V6-T2-209
SPX9000 Drives	V6-T2-109
PROFIBUS	
CFX9000 Drives	V6-T2-176
CPX9000 Drives	V6-T2-209
SPX9000 Drives	V6-T2-109
Communications	
H-Max Series Drives (IntelliDisconnect)	
Onboard Network	V6-T2-153
H-Max Series Drives (IntelliPass)	
Onboard Network.	V6-T2-153
H-Max Series Drives (Open)	
Onboard Network . V6-T2-143	
Contactors	
Semiconductor Reversing, Type S511 V6-T1-15	
E	
Eaton Terms \& Conditions	
Freight	V6-T1-3
Limitation of Liability	V6-T1-5
Terms and Conditions of Sale	V6-T1-1
Terms of Payment.	V6-T1-2
Warranty	V6-T1-3
K	
Kits	
CFX9000 Series Drives	
CFX9000 Series Option Boards	V6-T2-175
CPX9000 Series Drives	
Option Boards.	V6-T2-208
H-Max Series Drives (IntelliPass)	
Option Boards...	V6-T2-153
H-Max Series Drives (Open)	
Flange.	V6-T2-144
Option Boards .	V6-T2-143
SPX9000 Drives	
9000X Series Option Boards	V6-T2-107
SVX9000 Open Drives	
9000X Series Option Boards.	V6-T2-59
SVX Conversion	. V6-T2-60
SVX9000 Open Drives Option Boards..	V6-T2-24
SVX9000 VFD Pump Panels	
9000X Series Option Boards.	V6-T2-85
Type S801, Soft Starters	V6-T1-74
Type S811, Soft Starters	V6-T1-107

Modbus
CPX9000 Dives
SPX9000 Drives . V6-T2-109
Modbus/TCP

CPX9000 Drives . V6-T2-209
SPX9000 Drives . V6-T2-109

CFX9000 Drives . V6-T2-176

Communications
H-Max Series Drives (IntelliDisconnect)
H-Max Series Drives (IntelliPass)
H-Max Series Drives (Open) V6-T2-143
Contactors
Semiconductor Reversing, Type S511 V6-T1-15

E
Eaton Terms \& Conditions

K

CFX9000 Series Drives
CFX9000 Series Option Boards V6-T2-175
CPX9000 Series Drives Option Boards. V6-T2-208
H-Max Series Drives (IntelliPass)
H-Max Series Drives (Open)
Flange . V6-T2-144
Option Boards . V6-T2-143
SPX9000 Drives

SVX9000 Open Drives
9000X Series Option Boards. V6-T2-59
SVX Conversion . V6-T2-60
SVX9000 Open Drives Option Boards V6-T2-24
SVX9000 VFD Pump Panels
9000X Series Option Boards V6-T2-85
Type S801, Soft Starters . V6-T1-74
Type S811, Soft Starters . V6-T1-107
0
Options
CFX9000 Series Drives
Enclosed Drive . V6-T2-178
Option Board Kits . V6-T2-175
CPX9000 Series Drives
Enclosed Drive . V6-T2-212
Option Board Kits . V6-T2-208
H-Max Series Drives (IntelliDisconnect)
Option Board Kits . V6-T2-153
H-Max Series Drives (Open)
Option Board Kits . V6-T2-143
LCX9000 Series Drives
9000X Series Option Board Kits V6-T2-227
SPA9000/SPN9000/SPI9000 Drive Products
9000X Series Option Board Kits
V6-T2-246
SPX9000 Drives . V6-T2-107
SVX9000 Open Drives. V6-T2-24, V6-T2-59
SVX9000 VFD Pump Panels . V6-T2-85
Type S801, Soft Starters . V6-T1-75
Type S811, Soft Starters . V6-T1-108
Reduced Voltage Motor Starters
DS6 . V6-T1-19
DS6 . V6-T1-19
So 1 . 1 .38
Solid-State Controllers. V6-T1-2
Type S511 . V6-T1-15
Type S611 . V6-T1-39
Type S701 . V6-T1-3
Type S701 with Auxiliary Contact V6-T1-9
Type S701 with Brake . V6-T1-12
Type S801 . V6-T1-56
Type S811 . V6-T1-84
Replacement Parts
Adjustable Frequency Drives
H-Max Series (Open) . V6-T2-145
SPX9000 . V6-T2-112
SVX9000 Open . V6-T2-27

0

CFX9000 Series Drives	
Enclosed Drive	V6-T2-178
Option Board Kits	V6-T2-175
CPX9000 Series Drives	
Enclosed Drive	V6-T2-212
Option Board Kits	V6-T2-208
H-Max Series Drives (IntelliDisconnect)	
Option Board Kits	V6-T2-153
H-Max Series Drives (Open)	
Option Board Kits	V6-T2-143
LCX9000 Series Drives	
9000X Series Option Board Kits .	V6-T2-227
SPA9000/SPN9000/SPI9000 Drive Products	
9000X Series Option Board Kits	V6-T2-246
SPX9000 Drives	V6-T2-107
SVX9000 Open Drives.	, V6-T2-59
SVX9000 VFD Pump Panels	V6-T2-85
Type S801, Soft Starters.	V6-T1-75
Type S811, Soft Starters	V6-T1-108

R
 R

Reduced Voltage Motor Starters	
DS6	V6-T1-19
Solid-State	V6-T1-38
Solid-State Controllers.	V6-T1-2
Type S511.	V6-T1-15
Type S611	V6-T1-39
Type S701.	V6-T1-3
Type S701 with Auxiliary Contact	V6-T1-9
Type S701 with Brake.	V6-T1-12
Type S801.	V6-T1-56
Type S811..	V6-T1-84

Replacement Parts
Adjustable Frequency Drives
H-Max Series (Open) .

\mathbf{S}

Semiconductor Reversing Contactors
Type S511 . V6-T1-15
Soft Start Controllers
DS6 . V6-T1-19
Type S701 . V6-T1-3
Type S701 with Auxiliary Contact V6-T1-9
Type S701 with Brake . V6-T1-12
Soft Starters
Type S611 . V6-T1-39
Heavy Duty . V6-T1-49
Severe Duty . V6-T1-49
Standard Duty . V6-T1-48
Type S801 . V6-T1-56
Inside-the-Delta Severe Duty V6-T1-73
Inside-the-Delta Standard Duty V6-T1-67-V6-T1-72
Severe Duty . V6-T1-66
Standard Duty . V6-T1-60-V6-T1-65
Type S811 . V6-T1-84
Inside-the-Delta Severe Duty V6-T1-106
Inside-the-Delta Standard Duty V6-T1-100-V6-T1-105
Standard Duty . V6-T1-99
Starters
Reduced Voltage Motor
DS6 . V6-T1-19
Solid-State . V6-T1-38
Solid-State Controllers . V6-T1-2
Type S511 . V6-T1-15
Type S611. V6-T1-39
Type S701 . V6-T1-3
Type S701 with Auxiliary Contact V6-T1-9
Type S701 with Brake. V6-T1-12
Type S801 . V6-T1-56

[^0]: Notes
 (1) T-, U- and V-Frames require lug kits found on Page V6-T1-74.
 (2) All units require a 24 Vdc power supply found on catalog Page V6-T1-74, or equivalent.
 (3) 690 V is available only from T18 thru V85. Not available on U-Frames.
 (4) U-Frame 500A unit does not have IEC certification.

[^1]: Notes
 (1) U-Frame 500A unit does not have IEC certification.
 (2) For more information, see Pub 51719 .

[^2]: Notes
 (1) U-Frame 500A unit does not have IEC certification.
 (2) UL recognized component.

[^3]: Notes
 (1) All units require a 24 Vdc power supply found on catalog Page V6-T1-107, or equivalent.
 (2) T -, U- and V-Frames require lug kits found on Page V6-T1-107.
 (3) U-Frame 500A unit does not have IEC certification.
 (4) Not available in U-Frame.

[^4]: Notes
 (1) The EML33 does not have a CSA listing.
 (2) T-Frame only.
 (3) For more information, see Pub. 51719.

[^5]: Notes
 (1) Enclosure dimensions starting on Page V6-T2-92
 (2) Includes drive, local/remote keypad and enclosure.

[^6]: (1) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
 (2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
 (3) OPTC2 is a multi-protocol option card.

[^7]: (1) See enclosure dimensions beginning on Page V6-T2-217.

