Switch Disconnectors

17/2	Introduction
	3KA, 3KE, 3LD Switch Disconnectors
	$\frac{\text { 3KA, 3KE Switch Disconnectors }}{\text { up to } 1000 \mathrm{~A}}$
17/4	General data
17/8	Floor mounting
	3LD Main and EMERGENCY-STOP
	Switches up to 125 A
17/10	General data
17/13	Front mounting
17/16	Floor mounting
17/17	Distribution board mounting
17/18	Molded-plastic enclosures
17/19	Accessories
	3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses
	3KL Switch Disconnectors with Fuses
	up to 800 A
17/21	General data
17/24	Surface mounting and installation
	3KM Switch Disconnectors with
	Fuses and Isolating Plug Connector
	up to 400 A
$\begin{aligned} & 17 / 26 \\ & 17 / 29 \end{aligned}$	General data
17/29	For snapping onto busbars

SENTRON Switching and Protection Devices - Switch Disconnectors

Introduction

Overview

les

SENTRON Switching and Protection Devices - Switch Disconnectors

Introduction

\checkmark Available
-- Not available

3KA, 3KE, 3LD Switch Disconnectors 3KA, 3KE Switch Disconnectors up to 1000 A

General data

Design

For the 3KA switch disconnectors, complete kits for standard and EMERGENCY-STOP application are available for installation in the side and rear panels of control cabinets.

A changeover operating mechanism is available for the use of 2 switch disconnectors in the 3KE series as load changeover switches.

An operating linkage permits simultaneous switching of two 3KE switch disconnectors with identical or different rated operational currents.

Identical accessories for 3KA switch disconnectors and for 3KL and 3KM switch disconnectors with fuses simplify stock keeping.

Technical specifications

Permissible mounting position

3KE

3KA

Standards		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107				3KA55	3KA57 ${ }^{1}$	3KA58
Type		3KA50	3KA51	3KA52	3KA53 ${ }^{1}$			
Rated uninterrupted current I_{u}	A	63	80	125	160	250	400	$630^{3)}$
Continuous free-air thermal current $I_{\text {th }}{ }^{2}$	A	63	80	125	160	250	400	630^{3}
Rated insulation voltage U_{i}	V	690	690	1000	1000	1000	1000	1000
Rated impulse voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	6	8	8	8	8	8
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$								
AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	V	690						
DC	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 440(3 \\ & 220(2 \\ & 110(1 \end{aligned}$	ucting p ucting p ucting p	series-co series-c	cted) cted)			
Rated short-circuit making capacity $I_{\text {cm }}$ with upstream fuses ${ }^{4}$) At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (peak value)	220	220	220	220	176	176	105
Rated short-circuit current with upstream fuses ${ }^{4)}$ At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (rms value)	100	100	100	100	80	80	50
Max. rated current I_{n} of the fuses		63	80	160	160	400	400	
Permissible let-through current of the fuses Maximum permissible let-through $I^{2} t$ value	$\begin{aligned} & k A \\ & k A^{2} s \end{aligned}$		$\begin{aligned} & 10 \\ & 55 \end{aligned}$	$\begin{aligned} & 17 \\ & 223 \end{aligned}$	$\begin{aligned} & 17 \\ & 223 \end{aligned}$	$\begin{aligned} & \left.30^{5}\right) \\ & 1000 \end{aligned}$	$\begin{aligned} & \left.30^{5}\right) \\ & 1000 \end{aligned}$	$\begin{aligned} & 40^{5} \\ & 2600 \end{aligned}$
Permissible let-through current of an upstream circuit breaker At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (peak value)	7	8	8	15	25	25	32
Rated short-circuit making capacity without fuses $\text { At } 50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690 \text { V AC }$	kA (peak value)	7	7	7	9	20	25	35
Switching capacity (infeed from the top or bottom)								
At 400 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	500	650	1000	1280	2000	3200	5040
Rated operational current I_{e} at AC-21A, AC-22A, AC-23A Motor switching capacity AC-23A	$\begin{aligned} & \text { A } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & 63 \\ & 30 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 125 \\ & 65 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \end{aligned}$	$\begin{aligned} & 250 \\ & 132 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 630^{6)} \\ & 350 \end{aligned}$
At 500 VAC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	500	640	1000	1280	2000	3200	3200
Rated operational current I_{e} at AC-21A, AC-22A	A	63	80	125	160	250	400	630
AC-23A	A	63	80	125	160	250	400	400
Motor switching capacity AC-23A	kW	40	50	90	110	185	280	280
At 690 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	500	500	1000	1280	2000	3200	3200
Rated operational current I_{e} at AC-21A, AC-22A AC-23A Motor switching capacity AC-23A	A A kW	$\begin{aligned} & 63 \\ & 63 \\ & 50 \end{aligned}$	$\begin{aligned} & 80 \\ & 63 \\ & 50 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 110 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & 150 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 220 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 375 \end{aligned}$	$\begin{aligned} & 630 \\ & 400 \\ & 375 \end{aligned}$
At 440 V DC (3 conducting paths series-connected) ${ }^{7}$) Breaking current $I_{\mathrm{C}}(L / R=15 \mathrm{~ms})$ Rated operational current I_{e} at DC-23A	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 63 \end{aligned}$	$\begin{aligned} & 260 \\ & 63 \end{aligned}$	$\begin{aligned} & 500 \\ & 125 \end{aligned}$	$\begin{aligned} & 640 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000^{8)} \\ & 250^{9)} \end{aligned}$	$\begin{aligned} & 1600 \\ & 400 \end{aligned}$	$\begin{aligned} & 1600 \\ & 400 \end{aligned}$
Rated short-time current $I_{\text {cw }}$ (1 s current)	kA (rms value)	2.5	2.5	3.2	3.2	8	11	15

Standards		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107						
Type		3KA50	3KA51	3KA52	3KA53 ${ }^{1)}$	3KA55	3KA571)	3KA58
Permissible load								
Depending on the ambient temperature for open-type								
installation in control panels (e.g. 8NA1) in control								
cubicles or control racks at								
$35^{\circ} \mathrm{C}$	A	63	80	125	160	250	400	630
$40^{\circ} \mathrm{C}$	A	63	80	125	160	250	400	620
$45^{\circ} \mathrm{C}$	A	63	80	125	160	250	400	600
$50^{\circ} \mathrm{C}$	A	63	80	125	160	250	400	580
$55^{\circ} \mathrm{C}$	A	63	80	125	160	250	400	560
$60^{\circ} \mathrm{C}$	A	63	80	125	160	250	400	550
Permissible ambient temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+5 \\ & -50 \ldots+8 \end{aligned}$	or operation when stor					
Mechanical endurance	Operating cycles	15000	15000	15000	15000	12000	12000	12000
Required operating torque	Nm	3	3	7.5	7.5	16	16	16
Degree of protection		IP00/IP20 (from the operator side, with busbar and terminal covers)						
Power loss of the switch disconnector at $I_{\text {th }}$	W	7	12	22	22	33	72	170
Main conductor connections								
Busbar systems, max. dimensions ($w \times t$)	$\mathrm{mm} \times \mathrm{mm}$	25×9	25×9	45×10	45×10	40×12	40×12	40×15
Cable lug, max. conductor cross-section (stranded)	mm^{2}	35	35	70	120	150	2×150 or	2×240
Tightening torque Terminal screws	Nm	$\begin{aligned} & 6 \ldots 7.5 \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & 6 \ldots 7 \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & 7 \ldots 10 \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & 18 \ldots 22 \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 35 \ldots 45 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 1 \times 240 \\ & 35 \ldots .45 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 35 \ldots 45 \\ & \text { M10 } \end{aligned}$
PE/ground terminals								
Flat bars	$\mathrm{mm} \times \mathrm{mm}$	--	--	--	--	20×2.5	20×2.5	20×2.5
Cable lug, max. conductor cross-section (stranded)	mm^{2}	--	--	--	--	70	120	120
Auxiliary switch 1 NO +1 NC (accessories) Max. number to be plugged								
Rated operational current I_{e} at AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$								
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=220 \mathrm{~V} / 230 \mathrm{~V}$	A	6						
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=380 \mathrm{~V} / 400 \mathrm{~V}$	A	4						
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=500 \mathrm{~V}$	A	2.5						
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=690 \mathrm{~V}$	A	21.2						
Rated operational current I_{e} at DC								
$I_{e} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=24 \mathrm{~V}$	A	10						
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $\mathrm{U}_{\mathrm{e}}=48 \mathrm{~V}$	A	4						
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=110 \mathrm{~V}$	A	1.2						
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=220 \mathrm{~V}$	A	0.4						
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=440 \mathrm{~V}$	A	0.2						
Connection								
Solid	mm^{2}	$2 \times(1 \ldots$						
Finely stranded with end sleeve	mm^{2}	2×10.5						
Weight								
Complete version	kg	1.450	1.450	2.400	2.400	5.400	5.500	6.100
Basic version	kg	0.950	0.950	1.900	1.900	4.500	4.600	5.200

1) Technical specifications for CSA approval on request.
${ }^{2)}$ Configuring note: max. permissible operating temperature at connections $100^{\circ} \mathrm{C}$.
2) With 3 KA 58 for operation $-25^{\circ} \mathrm{C} \ldots+35^{\circ} \mathrm{C}, 570 \mathrm{~A}$ at $55^{\circ} \mathrm{C}$.
3) Only with 3NA3 8, 3NA3 2 or 3ND1 8, 3ND1 2 fuses (otherwise only $105 \mathrm{kA} / 50 \mathrm{kA}$).
4) 3ND1 switchgear protection fuse.
5) $\mathrm{AC}-23 \mathrm{~B}$.
6) Or 220 V DC (L1 and L3 series-connected) or 110 V DC (one conducting path) at DC-23A.
7) At $440 \mathrm{~V} / R=4 \mathrm{~ms}$, at $220 \mathrm{~V} L / R=15 \mathrm{~ms}$.
8) At $440 \mathrm{~V} D C-22 \mathrm{~A}$, at $220 \mathrm{~V} D C-23 \mathrm{~A}$.

General data

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107			
		3KE42	3KE43	3KE44	3KE45
Rated uninterrupted current I_{u}	A	250	400	630	1000
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$	V	1000 AC, 1200 DC			
Rated impulse voltage $\boldsymbol{U}_{\text {imp }}$	kV	8	8	8	8
Rated operational voltage $\boldsymbol{U}_{\mathbf{e}}$					
AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$	V	690			
DC	$\begin{aligned} & V \\ & V \end{aligned}$	440 (3 conducting paths series-connected) 220 (2 conducting paths series-connected)			
Rated short-circuit making capacity I_{cm} At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (peak value)	35	35	60	60
Rated short-circuit making capacity with upstream fuses At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690 \mathrm{~V}$ AC	kA (peak value)	105	105	105	84
Rated conditional short-circuit current with upstream fuses At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690 \mathrm{~V}$ AC	A (rms value)	50	50	50	40
Maximum permissible let-through $I^{\mathbf{2}} \boldsymbol{t}$ value	$k A^{2} s$	2150	2150	5400	19000
Permissible let-through current of an upstream circuit breaker					
At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (peak value)	35	35	60	60
Max. rated current I_{n} of the fuses Permissible let-through current of the fuses	A kA (peak value)	$\begin{aligned} & 400 \\ & 38 \end{aligned}$	$\begin{aligned} & 400 \\ & 38 \end{aligned}$	$\begin{aligned} & 630 \\ & 60 \end{aligned}$	$\begin{aligned} & 1000 \\ & 75 \end{aligned}$
Switching capacity (infeed from the top or bottom)					
At 400 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	1000	1000	2520	2520
Rated operational current I_{e} at					
AC-22A	A	250	330	630	800
AC-23A	A	125	125	315	315
At 500 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	1000	1000	2520	2520
Rated operational current I_{e} at AC-21A AC-22A AC-23A	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 400 \\ & 330 \\ & 125 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 315 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 315 \end{aligned}$
At 690 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	1000	1000	2520	2520
Rated operational current I_{e} at AC-21A AC-22A AC-23A	A A A	$\begin{aligned} & 250 \\ & 250 \\ & 125 \end{aligned}$	$\begin{aligned} & 400 \\ & 330 \\ & 125 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 315 \end{aligned}$	$\begin{aligned} & 1000 \\ & 800 \\ & 315 \end{aligned}$
At 440 V DC (3 conducting paths series-connected) Breaking current $I_{\mathrm{C}}(L / R=5 \mathrm{~ms})$ Rated operational current I_{e} at DC-21A DC-22A	A A A	$\begin{aligned} & 1000 \\ & 250 \\ & 250 \end{aligned}$	1000 400 250	2520 630 630	$\begin{aligned} & 2520 \\ & 1000 \\ & 630 \end{aligned}$
Rated short-time current $I_{\text {cw }}$ (1 s current)	A (rms value)	12.5	12.5	21	21
Permissible load Depending on the ambient temperature for open-type installation in control panels (e.g. 8NA1) in control cubicles or control racks at $35^{\circ} \mathrm{C}$ $40^{\circ} \mathrm{C}$ $45^{\circ} \mathrm{C}$ $50^{\circ} \mathrm{C}$ $60^{\circ} \mathrm{C}$ For enclosed installation, e.g. in 8HP systems	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \\ & 240 \\ & \text { See Cat } \end{aligned}$	$\begin{gathered} 400 \\ 400 \\ 400 \\ 400 \\ 380 \\ \text { stem". Or } \end{gathered}$	$\begin{aligned} & 630 \\ & 630 \\ & 630 \\ & 630 \\ & 600 \\ & 01-8 Z \times 10 \end{aligned}$	$\begin{aligned} & 1000 \\ & 960 \\ & 930 \\ & 890 \\ & 810 \\ & B 1 \\ & \hline \end{aligned}$
Permissible ambient temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+ \\ & -50 \ldots+ \end{aligned}$			
Mechanical endurance	Operating cycles	10000			
Degree of protection		IP00			
Required operating torque	Nm	15	15	24	24
Required operating torque for changeover operating mechanism With interruption	Nm	20	20	30	30

| Standards | | | |
| :--- | :--- | :--- | :--- | :--- |
| IEC 60947-1, IEC 60947-3, VDE 0660 Part 107 | | | |
| Type | | | |

Schematics

Internal circuit diagram for 3KA
$\left.\left.\left.\left.F v\right|_{2} ^{\frac{1}{0}}\right|_{4} ^{1}\right|_{6} ^{3}\right|_{6} ^{5}$

(for 3KA50 and 3KA51, only one auxiliary switch possible; 4th pole is possible as main contact)

Internal circuit diagram for $3 K A$ and $3 K E$

(auxiliary switch not included in scope of supply) Use for DC voltage at DC-23A 440 V

Internal circuit diagram for $3 K E$

Circuit diagram for changeover switch with interruption

Dimensional drawings

3KA50, 63 A, 3KA51, 80 A, 3-pole
3KA50 and 3KA51: Dimensional drawing for 4-pole version corresponds to dimension drawing for 3KA52
without shaft, without operating mechanism

3KA52, 125 A, 3KA53, 160 A
3KA50, 3KA51, 4-pole
without shaft, without operating mechanism

4. pole $3 K X 3$ 523-0AA
for 3KA53, 3KA52

3KA55, 250 A, 3KA57, 400 A
without shaft, without operating mechanism

3KA58, 630 A
without shaft, without operating mechanism

3KA50, 63 A, 3KA51, 80 A, 3-pole
3KA50 and 3KA51: Dimensional drawing for 4-pole version
corresponds to dimension drawing for 3KA52
with shaft and BUC6 operating mechanism

3KA50, 3KA51

3KA52, 125 A, 3KA53, 160 A
3KA50, 3KA51, 4-pole
with shaft and 8UC6 operating mechanism

3KA52, 3KA53

${ }^{\text {NSE00281 }}$	Shaft (profile)	a	Shaft length
$S_{R 2}$	engaged length:	Max. 350	300; unchanged shaft from 8UC62
	Min. 90 mm	Min. 165	165-50; shortened shaft from 8UC62
	Max. 143 mm	$\geq 165 \ldots \leq 350$	a-50

Type	c	d	e	g	h	l	l	N
3KA52	15	M6 $\times 20$	37	42	91	3	$\varnothing 6.6$	106
3KA53	20	M8 $\times 25$	39	39.5	105	3.5	$\varnothing 9$	125
4. pole	15	M6 $\times 20$	--	48	91	3	$\varnothing 6.6$	106

3KA55, 250 A, 3KA57, 400 A, 3KA58, 630 A
with shaft and 8UC6 operating mechanism

3KA55, 3KA57, 3KA58

a	Shaft length
Max. 335	300; unchanged shaft from 8UC63
Min. 230	230 -35 ; shortened shaft from 8UC63
$\geq 230 \ldots \leq 335$	a $_{-35}$

3KA58

Type	a	b	c
3KA55,	40	4	$\mathrm{M} 10 \times 30$
3KA57			
3KA58	38	6	$\mathrm{M} 10 \times 35$
4. pole	80	4	$\mathrm{M} 10 \times 30$

4. pole 3KX3 553-0AA
for 3KA55, 3KA57, 3KA58

3KE4
Front operating mechanism with handle

3KX2 210-0H

Coupling socket

3KE4

Rear rotary operating mechanism without handle

Type	b	c	d	e	f	g	h	h_{1}	k		m	m_{1}	N	n_{1}	\bigcirc	p	p_{1}	s	t	u	V	W	w_{1}	x	y	z
3KE42	155	170	140	25	200	40	60	92	175	$\mathrm{M} 10 \times 30$	194	194	129	121	4	150	182	15	--	105	140	170	172	$\mathrm{M} 10 \times 18$	50	50
3KE43	155	170	140	25	200	47	60	92	175	$\mathrm{M} 10 \times 30$	194	194	129	121	4	150	182	15	--	105	140	170	172	$\mathrm{M} 10 \times 18$	50	50
3KE44	170	192	155	40	278	55	65	97	238	$\mathrm{M} 12 \times 35$	209	208	144	136	5	161	193	23	3.5	121	200	172	172	$\mathrm{M} 10 \times 18$		-
3KE45	170	192	155	40	290	65	68	100	250	$\mathrm{M} 12 \times 50$	209	208	144	136	8	161	193	23	3.5	121	200	172	172	$\mathrm{M} 12 \times 25$	--	--

3KE4. 30-0EA

with shaft and 8UC6 operating mechanism

Type	r	Shaft length	q
3KE42, 3KE43	Max. 433	300; unchanged shaft from 8UC63	140
	Min. 200	67; shortened shaft from 8UC63	140
	$\geq 200 \ldots \leq 433$	$r_{\text {r }}$-133	140
3KE44, 3KE45	Max. 433	300; unchanged shaft from 8UC64	200
	Min. 210	77; shortened shaft from 8UC64	200
	$\geq 210 \ldots \leq 433$	$r_{\text {- }}$ - 23	200

3KX2 210 changeover operating mechanism

Version	For type	a	b	c	d	e	f
With	3KE42, 3KE43	352	140	427	92.5	115	45
interruption	3KE44	367	155	442	92.5	115	45
	3KE45	367	155	442	92.5	115	55
Without	3KE42, 3KE43	352	140	417	74.5	97	35
interruption	3KE44	367	155	432	74.5	97	35
	3KE45	367	155	432	74.5	97	35

3KA, 3KE, 3LD Switch Disconnectors
 3LD Main and EMERGENCY-STOP Switches up to 125 A

General data

Overview

(1) 4th contact (N conductor)
(2) N or PE/ground terminal, continuous
(3) Auxiliary switch $1 \mathrm{NO}+1 \mathrm{NC}$
(4) Rotary operating mechanism, red/yellow
(5) Rotary operating mechanism, black
(6) Front plate, English/German
(7) Terminal cover, three-pole
(8) Terminal cover, one-pole

3KA, 3KE, 3LD Switch Disconnectors 3LD Main and EMERGENCY-STOP Switches up to 125 A

General data

Design

Design of the contacts

Each switch has three adjacent contact elements ${ }^{1}$. A fourth leading contact element for switching the neutral conductor, a continuous PE/ground terminal, an auxiliary switch (1 NO or 1 NC) can be fitted to each side of the switch. The auxiliary switches operate as leading contacts on opening. On opening, the make contact opens before the main contacts, so that a contactor carries the switching capacity in the circuit and the maintenance or safety switch switches at zero current. On closing, the auxiliary switch switches later than or at the same time as the main contacts.

Switch construction

Construction of rotary operating mechanisms

The rotary operating mechanisms of the switches for front or floor mounting are mounted on control cabinet doors, front panels or side panels with four-hole or center-hole mounting with a standard diameter of 22.5 mm and operated from the outside. In their Off position, they can be locked with up to three padlocks with a hasp thickness of 8 mm . Controls with defeatable doorcoupling rotary operating mechanism are available in addition.

Switch position indicator

The switch position is clearly marked with direction arrows and an "O" for OFF and a "l" for ON at the front.

Switches for front mounting

The switches for front mounting are connected directly to the rotary operating mechanism through the fixing screws or - in the case of center-hole mounting - a special-purpose coupling.

Switches for floor mounting

The switches for floor mounting are snapped onto 35 mm standard mounting rails according to EN 60715 or screwmounted on mounting plates.

The actuators are connected to the lower section of the switch through a door coupling, which can be released in its zero position, and a 300 mm long switch shaft. When the control cabinet door is open, the switch can be protected against inadvertent operation by removing the switch shaft from the lower section of the switch.
The mounting depth can be adapted to individual requirements by adjusting the switch shaft length.

Switches for distribution board mounting

The switches for distribution board mounting are suited for operation in switchboards and for switching inside control cabinets or distributors. They have cap and mounting dimensions to DIN 43880 and can be fitted under the same cover together with miniature circuit breakers. The selector switches can be locked in their OFF position with up to 2 padlocks with a hasp thickness of 6 mm .

Switches in molded-plastic enclosure

For surface mounting of individual main control and EMERGENCY-STOP switches, molded plastic-enclosed switches to degree of protection IP65 are used. The actuators can be locked in their OFF position with three padlocks with a hasp thickness of 8 mm .
The molded-plastic enclosures each contain an N and/or a $\mathrm{PE} /$ ground terminal.

[^0]

3LD2 203-0TK5 switch for front mounting with rotary operating mechanism

3LD2 122-7UK01 3-pole changeover switch for front mounting with selector switch

3LD2 213-0TK5 switch for floor mounting with rotary operating mechanism and defeatable door coupling

3LD2 264-0TB5 switch in moldedplastic enclosure

3LD2 222-0TK1 switch for front mounting with selector switch

3LD2 103-3VK53 6-pole switch for front mounting with rotary operating mechanism

3LD2 530-0TK11 switch for distribution board mounting with selector switch

3LD2 217-1TL13 switch for floor mounting with rotary operating mechanism and defeatable door coupling

General data

Technical specifications

1) With appropriate operating mechanisms according to DIN VDE 0113 (see Catalog LV 1).

Dimensional drawings

Switches for center-hole mounting with rotary operating mechanism
3LD2 .54,

Drilling diagram

Type	A	B	C	F	G	K	L	$M^{1)}$	$N^{1)}$
3LD2 054	67	67	48	50	38	37	74	17	47
3LD2 154/3LD2 254 67	67	46	55	44	37	74	17	47	
3LD2 555	90	90	60	64	50	46	81	17	47

1) For labeling plates, see Accessory Parts.

Switches for four-hole mounting with rotary operating mechanism
3LD2 .03,
3LD2 . 04

Type	A	B	A1	C	D	d	F	G	K	L	$M^{1)}$	$N^{1)}$
3LD2 003	67	67	48	48	10	5.0	50	38	37	50	17	47
3LD2 103	67	67	48	46	10	5.0	55	44	37	50	17	47
3LD2 504	90	90	48	60	10	5.0	64	50	46	59	17	47
3LD2 704/3LD2 804 90	90	48	71	10	5.0	83	54	46	61	17	47	

${ }^{1)}$ For labeling plates, see Accessory Parts.

Switches for center-hole mounting with selector switch 3LD2 50

Type	A	B	C	F	G	K	L	$M^{1)}$	$N^{1)}$
3LD2 050	49	49	48	50	38	34	74	17	47
3LD2 150/3LD2 250 49	49	46	55	44	34	74	17	47	

${ }^{1)}$ For labeling plates, see Accessory Parts.

Front mounting

Switches for four-hole mounting with selector switch
3LD2 . 22

Type	A	B	A1	C	D	d	F	G	K	L	$M^{1)}$	$N^{1)}$
3LD2 022	49	49	36	48	10	5.0	50	38	34	50	17	47
3LD2 122/3LD2 222 49	49	36	46	10	5.0	55	44	34	50	17	47	

${ }^{1)}$ For labeling plates, see Accessory Parts

Switches for four-hole mounting with rotary operating mechanism
3LD2 103-V...
3LD2 203-V....,
3LD2 504-.V...

Drilling diagram

Type	A	B	A1	C	D	d	F	G	K	L	$M^{1)}$	$N^{1)}$
3LD2 103-.V...	67	67	48	92	10	5.0	55	44	37	50	17	47
3LD2 203-.V...	67	67	48	92	10	5.0	55	44	37	50	17	47
3LD2 504-.V...	90	90	68	121	10	5.0	64	50	46	59	17	47

${ }^{1)}$ For labeling plates, see Accessory Parts.
Switches for four-hole mounting with selector switch
3LD2 122-.V...

Type	A	B	A1	C	D	d	F	G	K
L									

1) For labeling plates, see Accessory Parts.

3LD Main and EMERGENCY-STOP Switches up to 125 A

Front mounting
Changeover switches
3LD2 123-7U..., 3LD2 223-7U..., 3LD2 524-7U..., 3LD2 724-7U...,

Type	A	B	A1	C	D	d	F	G	K	L	$M^{1)}$	$N^{1)}$
3LD2 123-7U...	67	67	48	92	10	5.0	28	46	34	63.5	17	47
3LD2 223-7U..	67	67	48	92	10	5.0	28	46	34	63.5	17	47
3LD2 524-7U...	92	92	68	121	10	5.5	32	53	40	73	17	47
3LD2 724-7U...	92	92	68	141	10	5.5	42	68	40	75	17	47

${ }^{1)}$ For labeling plates, see Accessory Parts.

3KA, 3KE, 3LD Switch Disconnectors 3LD Main and EMERGENCY-STOP Switches up to 125 A

Floor mounting

Dimensional drawings

Switches for floor mounting with detachable rotary operating mechanism (four-hole mounting)
3LD2 .13,
3LD2 14.

Type	A	B	A1	B1	B2	C	D	d	e	F	G	K	L	L1	M $^{1)}$	N $^{1)}$	X $_{\text {min }}$
3LD2 013	67	67	48	22	60	48	10	5.0	4.5	50	38	37	330	58	17	47	138
3LD2 113/3LD2 213 67	67	48	22	60	46	10	5.0	4.5	55	44	37	330	58	17	47	138	
3LD2 514	90	90	48	25	70	60	10	5.5	5.5	64	50	46	338	68	17	47	148
3LD2 714/3LD2 814 90	90	48	25	90	71	10	5.5	5.5	83	54	46	340	70	17	47	150	

1) For labeling plates, see Accessory Parts.

Switches for floor mounting with detachable rotary operating mechanism (center-hole mounting)
3LD2 .44,
3LD2. 45

Type	A	B	B1	B2	C	e	F	G	K	L	L1	M $^{1)}$	N $^{1)}$	X $_{\text {min }}$
3LD2 044	67	67	22	60	48	4.5	50	38	37	330	58	17	47	160
3LD2 144/3LD2 244 67	67	22	60	46	4.5	55	44	37	330	58	17	47	160	
3LD2 545	90	90	25	70	60	5.5	64	50	46	338	68	17	47	170

${ }^{1)}$ For labeling plates, see Accessory Parts.

Switches for floor mounting with detachable rotary operating mechanism (four-hole mounting) 3LD2 113-.V...

Type	A	B	A1	B1	B2	C	D	d	e	F	G	K	L	L1	$M^{1)}$	$N^{1)}$	X $_{\text {min }}$
3LD2 113-.V...	67	67	48	22	60	92	10	5.0	4.5	55	44	37	330	58	17	47	138

[^1]
Dimensional drawings

Switches for distribution board mounting with selector switch 3LD2 30

Type	A	B	C	F	K	K1	L
3LD2 030	53	45	48	50	41	14	37
3LD2 130	53	45	46	55	41	14	37
3LD2 230	53	45	46	55	41	14	37
3LD2 530	64	45	60	64	43	16	44
3LD2 730	71	45	71	83	47	19	44
3LD2 830	71	45	71	83	47	19	44

${ }^{1)}$ For labeling plates, see Accessory Parts.

3LD Main and EMERGENCY-STOP Switches up to 125 A

Molded-plastic enclosures

Dimensional drawings

Switches with molded-plastic enclosure with rotary operating mechanism
Metric screwed glands
3LD2 .64,
3LD2 .65,
3LD2 66

Switches in molded-plastic enclosure with selector switch
3LD2 .6.7U...

Type	A	B	A1	B1	B2	C	d	D	E	F	G	H	K	M	N
3LD2 165-7U... 146	176	--	188	199	66	4.5	$4 \times M 32 / 40$	37	--	$4 \times M 20$	104	67	32	$2 \times M 20.2 \times M 40$	
3LD2 265-7U... 146	176	--	188	199	66	4.5	$4 \times M 32 / 40$	37	--	$4 \times M 20$	104	67	32	$2 \times M 20,2 \times M 40$	
3LD2 566-7U... 212	302	189	238	302	84	6.5	$4 \times M 32 / 40$	57	$2 \times M 20$	$4 \times M 20$	136	90	45	$2 \times M 20,2 \times M 50$	
3LD2 766-7U... 212	302	189	238	302	84	6.5	$4 \times M 50 / 63$	57	$2 \times M 20$	$4 \times M 20$	136	90	45	$2 \times M 20,2 \times M 50$	

Dimensional drawings

Front mounting

3LD9 2.0-0B

4th contact element (neutral conductor) for front mounting, leading switch-on, delayed switch-off

Type	A	B	C	G
3LD9 220-0B	54.5	40.5	15.5	31.5
3LD9 250-0BA	64.5	47.0	20.0	37.0
3LD9 280-0B	83.5	44.0	23.0	20.0

3LD9 2.0-2B

N or PE/ground terminal
for front mounting, leading switch-on, delayed switch-off

Type	A	B	C	G
3LD9 200-2B	50.0	40.0	13.0	31.0
3LD9 220-2B	54.5	40.5	15.5	31.5
3LD9 250-2BA	64.5	47.0	20.0	37.0
3LD9 280-2B	83.5	44.0	23.0	20.0

3LD9 286-1A, 3LD9 286-4A

labeling plate

German/English, neutral

Front and floor mounting
3LD9 2.4-1B, 3LD9 2.4-3B
rotary operating mechanisms for four-hole mounting black, red/yellow

3LD9 2.4-1D, 3LD9 2.4-3D
rotary operating mechanisms for center-hole mounting black, red/yellow

3LD9 2.1-2A
terminal cover as additional touch protection
for snap fitting at top or bottom, 1-pole

Type	A	B	C
3LD9 201-2A	34.5	15.0	10.0
3LD9 221-2A	34.5	20.0	15.0
3LD9 251-2A	40.5	21.5	20.0
3LD9 281-2A	45.0	17.5	23.0

3LD Main and EMERGENCY-STOP Switches up to 125 A

Accessories
3LD9 2.1-.A
terminal cover as additional touch protection
for snap fitting at top or bottom, 1-pole

Type	A	B	C
3LD9 201-1A	34.5	15.0	46.0
3LD9 221-0A	34.5	20.0	46.0
3LD9 251-0A	40.5	21.5	60.0

Floor and distribution board mounting
3LD9 2.0-0C
4th contact element (neutral conductor)
for front mounting, leading switch-on, delayed switch-off

Type	A	B	C	G
3LD9 220-0C	54.5	40.5	15.5	31.5
3LD9 250-0CA	64.5	47.0	20.0	37.0
3LD9 280-0C	83.5	44.0	23.0	20.0

3LD9 2.0-2C

 N or PE terminalcontinuous

Type	A	B	C
3LD9 200-2C	50.0	40.0	13.0
3LD9 220-2C	54.5	40.5	15.5
3LD9 250-2CA	64.5	47.0	
3LD9 280-2C	83.5	44.0	23.0
37.0	20.0		

Overview

Design

All switch disconnectors feature double contact interruption and an isolating distance. As a result, the fuses of the switch disconnectors are de-energized in the OFF position.
The 3KM switch disconnectors with fuses also feature an isolating plug connector. This facilitates mounting and contact establishment in motor control centers (MCCs) in conjunction with vertical busbars.

Generally, all 3K. 5 switch disconnectors can be secured on the shaft with a padlock to prevent unauthorized reclosing.
Identical accessories for 3KA switch disconnectors and for 3 KL and 3 KM switch disconnectors with fuses simplify stock keeping.
Please inquire about a special variant with reduced values that is particularly resistant to atmospheres high in sulfur, e.g. in the paper and cellulose processing industries.

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KL Switch Disconnectors with Fuses up to 800 A

General data

Technical specifications

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107						
		3KL50	3KL52	3KL53	3KL55 ${ }^{1)}$	3KL57 ${ }^{1}$)	3KL61 ${ }^{1}$	3KL62 ${ }^{1)}$
Rated uninterrupted current I_{u} For fuse links according to DIN 43620, (when SITOR semiconductor fuses are used, a reduction of rated current is necessary, see Catalog SITOR Configuration, Order No. E20001-A700-P302)	A Size	$\begin{aligned} & 63 \\ & 00 \text { and } 000 \end{aligned}$	$\begin{aligned} & 125 \\ & 00 \text { and } 000 \end{aligned}$	$\begin{aligned} & 160 \\ & 00 \text { and } 000 \end{aligned}$	$\begin{aligned} & 250 \\ & 1 \text { and } 2 \end{aligned}$	$\begin{aligned} & \hline 400 \\ & 1 \text { and } 2 \end{aligned}$	$\begin{aligned} & 630 \\ & 3 \text { and } 2 \end{aligned}$	$\begin{aligned} & 800 \\ & 3 \text { and } 2 \end{aligned}$
Continuous free-air thermal current $I_{\text {th }}{ }^{2)}$	A	63	125	160	250	400	630	800
Rated insulation voltage U_{i}	V	690	1000	1000	1000	1000	1000	1000
Rated impulse voltage $U_{\text {imp }}$	kV	6	8	8	8	8	8	8
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ DC	$\begin{aligned} & \text { V } \\ & V \end{aligned}$	690 440 (3 conducting paths series-connected) 220 (2 conducting paths series-connected) ${ }^{3 \text {) }}$						
Rated short-circuit making capacity with fuses ${ }^{4}$ At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (peak value)	220	220	220	176	176	105	105
Rated conditional short-circuit current with fuses ${ }^{4}$ At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (rms value)	100	100	100	80	80	50	50
Max. rated current I_{n} of the fuses	A	80	160	160	400	400	630	800
Max. permissible power loss of the installed fuse LV HRC BS	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \text { (A2/A3) } \end{aligned}$	$\begin{aligned} & 9 \\ & 11.5 \text { (A4) } \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 62 \\ & 60.5 \end{aligned}$
Permissible let-through current of the fuses Maximum permissible let-through $I^{2} t$ value	kA $k A^{2} \mathrm{~s}$	$\begin{aligned} & 8 \\ & 55 \end{aligned}$	$\begin{aligned} & 17 \\ & 223 \end{aligned}$	$\begin{aligned} & 17 \\ & 223 \end{aligned}$	$\begin{aligned} & 30^{5)} \\ & 1000 \end{aligned}$	$\begin{aligned} & 30^{5)} \\ & 1000 \end{aligned}$	$\begin{aligned} & 50 \\ & 5400 \end{aligned}$	$\begin{aligned} & 50 \\ & 10500 \end{aligned}$
Switching capacity (infeed from top or bottom)								
At 400 V AC Breaking current I_{C} (p.f. $=0.35$) Rated operational current I_{e} at AC-21A, AC-22A, AC-23A Motor switching capacity AC-23A	A (rms value) A kW	500 63 30	1000 125 65	1280 160 80	2000 250 132	3200 400 200	5100 630^{6} 335	6400 $\left.800^{6}\right)$ 400
At 500 V AC Breaking current I_{C} (p.f. $=0.35$) Rated operational current I_{e} at AC-21A, AC-22A, AC-23A Motor switching capacity AC-23A	A (rms value) A kW	500 63 40	1000 125 90	$\begin{aligned} & 1280 \\ & 160 \\ & 110 \end{aligned}$	2000 250 185	3200 400 280	5100 $\left.630^{6}\right)$ 425	6400 800^{6} 500
At 690 V AC Breaking current I_{C} (p.f. $=0.35$) Rated operational current I_{e} at AC-21A, AC-22A, AC-23A Motor switching capacity AC-23A	A (rms value) A kW	500 63 50	1000 125 110	$\begin{aligned} & 1280 \\ & 160 \\ & 150 \end{aligned}$	$\begin{aligned} & 2000 \\ & 250 \\ & 220 \end{aligned}$	3200 400 375	5100 $\left.630^{6}\right)$ 560	6400 $800^{6)}$ 700
At 440 V DC (3 conducting paths series-connected) ${ }^{7}$) Breaking current $I_{\mathrm{C}}(L / R=15 \mathrm{~ms})$ Rated operational current I_{e} at DC-23A	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & 640 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000^{8)} \\ & 250^{10)} \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 2520^{9)} \\ & 630^{10)} \end{aligned}$	$\begin{aligned} & 2520^{9)} \\ & \left.630^{10}\right) \\ & \hline \end{aligned}$
Rated short-time current (1 s current)	kA (rms value)	2.5	3.2	3.2	8	11	32	32
Permissible load Depending on the ambient temperature for open-type installation in control panels (e.g. 8NA1) in control cubicles or control racks at $\begin{aligned} & 35^{\circ} \mathrm{C} \\ & 40^{\circ} \mathrm{C} \\ & 45^{\circ} \mathrm{C} \\ & 50^{\circ} \mathrm{C} \\ & 55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 63 \\ & 63 \\ & 63 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \\ & 125 \\ & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 160 \\ & 155 \\ & 150 \\ & 145 \\ & 140 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \\ & 240 \end{aligned}$	$\begin{aligned} & 400 \\ & 390 \\ & 380 \\ & 370 \\ & 360 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 610 \\ & 590 \\ & 570 \end{aligned}$	$\begin{aligned} & 800 \\ & 780 \\ & 760 \\ & 740 \\ & 720 \end{aligned}$
Permissible ambient temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \ldots+55 \text { for operation }{ }^{4)} \\ & -50 \ldots+80 \text { when stored } \end{aligned}$						
Mechanical endurance	Operating cycles	15000	15000	15000	12000	12000	3000	3000
Required operating torque	Nm	3	7.5	7.5	16	16	30	30
Degree of protection		IP00/IP20 (from the operator side, with fuse and terminal covers)						
Power loss of the switch disconnector at $I_{\text {th }}$ (plus power loss of the fuses)	W	8.5	22	36	33	86	140	225
Main conductor connections Busbar systems, max. dimensions ($w \times t$)	$\mathrm{mm} \times \mathrm{mm}$	25×9	45×10	45×10	40×12	40×15	40×17	40×17

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KL Switch Disconnectors with Fuses up to 800 A

General data

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107						
		3KL50	3KL52	3KL53	3KL55 ${ }^{1}$	3KL571)	3KL61 ${ }^{1}{ }^{\text {1 }}$	3KL62 ${ }^{1)}$
Cable lug, max. conductor cross-section (stranded)	mm^{2}	35	70	120	150	$\begin{aligned} & 2 \times 150 \text { or } \\ & 1 \times 240 \end{aligned}$	2×240	2×240
Tightening torque Terminal screws	Nm	$\begin{aligned} & 6 \ldots 7.5 \\ & \mathrm{M} 6 \end{aligned}$	$\begin{aligned} & 7 \ldots . .10 \\ & \mathrm{M} 6 \end{aligned}$	$\begin{aligned} & 18 \ldots 22 \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 35 \ldots 45 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 35 \ldots 45 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 56 \\ & \text { M12 } \end{aligned}$	$\begin{aligned} & 56 \\ & \text { M12 } \end{aligned}$
PE/ground terminals Flat bars Cable lug, max. conductor cross-section (stranded)	$\operatorname{mm}_{\mathrm{mm}^{2}} \times \mathrm{mm}$	--	--	--	$\begin{aligned} & 20 \times 2.5 \\ & 70 \end{aligned}$	$\begin{aligned} & 20 \times 2.5 \\ & 120 \end{aligned}$	--	
Auxiliary switch 1 NO + 1 NC (accessories) Max. number to be plugged		1	2	2	2	2	3	3
Rated operational current I_{e} at AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ $I_{\mathrm{e}} / \mathrm{AC}-12$ $I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=220 \mathrm{~V} / 230 \mathrm{~V}$ $I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=380 \mathrm{~V} / 400 \mathrm{~V}$ $I_{e} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=500 \mathrm{~V}$ $I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=690 \mathrm{~V}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 6 \\ & 4 \\ & 2.5 \\ & 1.2 \end{aligned}$						
Rated operational current I_{e} at DC $I_{e} / D C-13$ at $U_{e}=24 \mathrm{~V}$ $I_{e} / D C-13$ at $U_{e}=48 \mathrm{~V}$ $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=110 \mathrm{~V}$ $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=220 \mathrm{~V}$ $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=440 \mathrm{~V}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \\ & 1.2 \\ & 0.4 \\ & 0.2 \end{aligned}$						
Connection Solid Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(1 \ldots 2.5) \\ & \hline \end{aligned}$						
Weight								
Complete version Basic version	kg kg	$\begin{aligned} & 1.450 \\ & 0.950 \end{aligned}$	$\begin{aligned} & 2.560 \\ & 2.200 \end{aligned}$	$\begin{aligned} & 2.560 \\ & 2.200 \end{aligned}$	$\begin{aligned} & 5.400 \\ & 4.500 \end{aligned}$	$\begin{aligned} & 5.700 \\ & 4.800 \end{aligned}$	14.000	14.000

1) Technical specifications for CSA approval on request.
2) Configuring note: max. permissible operating temperature for fuse blades $135^{\circ} \mathrm{C}$, for connections $100^{\circ} \mathrm{C}$.
3) 110 V (one conducting path).
4) With 3 KL 61 for operation $-25^{\circ} \mathrm{C} \ldots+35^{\circ} \mathrm{C}$, at $+55^{\circ} \mathrm{C}: I_{\text {th }}=570 \mathrm{~A}$.
5) 3ND1 switchgear protection fuse.
6) $\mathrm{AC}-23 \mathrm{~B}$.
7) 220 V DC (L1 and L3 series-connected) or 110 V DC (one conducting path) at DC-23A.
8) At $440 \vee L / R=4 \mathrm{~ms}$, at $220 \mathrm{~V} / R=15 \mathrm{~ms}$.
9) $L / R=2.5 \mathrm{~ms}$.
${ }^{10)}$ At 440 V DC-22A, at 220 V DC-23A.

Permissible mounting position

3KL
Note:
For the 3KL switch disconnectors, complete kits for standard and EMERGENCY-STOP application are available for installation in the side and rear panels of control cabinets.

3KL, 3KMM, 3NJ6 Switch Disconnectors with Fuses 3KL Switch Disconnectors with Fuses up to 800 A

Dimensional drawings

3KL50, 63 A, 3-pole,
dimensional drawing for 4-pole version corresponds to
dimensional drawing for 3KL52;
without operating mechanism, with lyre-shaped contacts

1) To be kept free of conductive parts. Not necessary when using lyre-shaped contacts or covers (accessories).

3KL50, 30, 63 A, 3-pole,
dimensional drawing for 4-pole version corresponds to
dimensional drawing for 3KL52;
without operating mechanism, for BS fuses

3KL52, 125 A, 3KL53, 160 A, 3KL50, 63 A, 4-pole without operating mechanism, with lyre-shaped contacts

* To be kept free of conductive parts. Not necessary when using lyre-shaped contacts or covers (accessories).

Type	c	e	g	h	N
3KL52 NH	15	37	42	91	106
3KL53 NH	20	39	39.5	105	125
3KL52 A2/A3	15	37	42	91	106
3KL53 A4	20	39	39.5	105	125
4. pole	15	--	48	91	106

3KL50, 63 A
with shaft and 8UC6 operating mechanism

a	Shaft length	E0_00291	Shaft (profile
Max. 380	300; unchanged shaft from 8UC61	(R2	Engaged length
Min. 175	175-80; shortened shaft from 8UC61		min. 70 mm
$175<$ a <380	a-80	6.0	max. 150 mm

3KL52, 125 A, 3KL53, 160 A
with shaft and 8UC6 operating mechanism

3KL52, 125 A, 3KL53, 160 A, 3KL50, 63 A, 4-pole
without operating mechanism, for BS fuses

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses
 3KL Switch Disconnectors with Fuses up to 800 A

Surface mounting and installation

3KL55, 250 A, 3KL57, 400 A
without operating mechanism, with lyre-shaped contacts

Type	a	b	c
3KM55	40	4	M 10×30
3KM57	38	6	M 10×36
4. pole	80	4	M 10×30

3KL55, 250 A, 3KL57, 400 A
with shaft and 8UC6 operating mechanism

a	Shaft length
Max. 335	300; unchanged shaft from 8UC63
Min. 230	230-35; shortened shaft from 8UC63
230 < a < 335	a $_{-35}$

3KL61, 630 A, 3KL62, 800 A
without operating mechanism, with lyre-shaped contacts, with partitions

Total installation depth with handle:
$239+74,5+66,5=370$
(1) Profile 12×12.

Shaft length 110.
Shaft can be turned by 45°
4. pole for 3KL61

Schematics

Internal circuit diagram for 3KL

(for 3KL50 and 3KL51, only one auxiliary switch possible, not included in scope of supply; 4th pole is possible as main contact)

(auxiliary switch not included in scope of supply) Use for DC voltage at DC-23A 440 V

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KM Switch Disconnectors with Fuses and Isolating Plug Connector up to 400 A

General data

Overview

Design

All switch disconnectors feature double contact interruption and an isolating distance. As a result, the fuses are de-energized when the switch disconnectors are in the disconnected position.
The 3KM switch disconnectors with fuses also feature an isolating plug connector. This facilitates mounting and contact establishment in motor control centers (MCCs) in conjunction with vertical busbars.
Generally, all 3K.-5 switch disconnectors can be secured on the shaft with a padlock to prevent unauthorized reclosing.
Identical accessories for 3KA switch disconnectors and for 3KL and 3 KM switch disconnectors with fuses simplify stock keeping.
Please inquire about a special variant with reduced values that is particularly resistant to atmospheres high in sulfur, e.g. in the paper and cellulose processing industries.

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KM Switch Disconnectors with Fuses and Isolating Plug Connector up to 400 A

Technical specifications

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107				
		3KM50	3KM52	3KM53	3KM55 ${ }^{1}{ }^{\text {(}}$	3KM571)
Rated uninterrupted current I_{u} For fuse links according to DIN 43620, (when SITOR semiconductor fuse links are used, a reduction of rated current is necessary, see Catalog SITOR Configuration, Order No. E20001-A700-P302)	A Size	$\begin{aligned} & 63 \\ & 00 \text { and } 000 \end{aligned}$	$\begin{aligned} & 125 \\ & 00 \text { and } 000 \end{aligned}$	$\begin{aligned} & 160 \\ & 00 \text { and } 000 \end{aligned}$	$\begin{aligned} & \hline 250 \\ & 1 \text { and } 2 \end{aligned}$	$\begin{aligned} & 400 \\ & 1 \text { and } 2 \end{aligned}$
Continuous free-air thermal current $I_{\text {th }}{ }^{2}$)	A	63	125	160	250	400
Rated insulation voltage U_{i}	V	690	1000	1000	1000	1000
Rated impulse voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	8	8	8	8
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ DC	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	690 440 (3 conducting paths series-connected) 220 (2 conducting paths series-connected) ${ }^{3)}$				
Rated short-circuit making capacity with fuses ${ }^{4}$ At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690 \mathrm{~V}$ AC	kA (peak value)	220	220	220	176	176
Rated conditional short-circuit current with fuses ${ }^{4)}$ At $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 690$ V AC	kA (rms value)	100	100	100	80	80
Max. rated current I_{n} of the fuses	A	80	160	160	400	400
Max. permissible power loss of the installed fuse LV HRC BS	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 6 \\ & 8 \text { (A2/A3) } \end{aligned}$	$\begin{aligned} & 9 \\ & 11.5 \text { (A4) } \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$
Permissible let-through current of the fuses	kA	8	17	17	$30^{5)}$	$30^{5)}$
Maximum permissible let-through $I^{2} t$ value	$k A^{2} \mathrm{~s}$	55	223	223	1000	1000
Switching capacity (infeed from top or bottom)						
At 400 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	500	1000	1280	2000	3200
Rated operational current I_{e} at AC-21A, AC-22A, AC-23A	A	63	125	160	250	400
Motor switching capacity AC-23A	kW	30	65	80	132	200
At 500 V AC Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	500	1000	1280	2000	3200
Rated operational current I_{e} at AC-21A, AC-22A, AC-23A	A	63	125	160	250	400
Motor switching capacity AC-23A	kW	40	90	110	185	280
At 690 V AC						
Breaking current $I_{\text {C }}$ (p.f. $=0.35$)	A (rms value)	500	1000	1280	2000	3200
Rated operational current I_{e} at AC-21A, AC-22A, AC-23A	A	63	125	160	250	400
Motor switching capacity AC-23A	kW	50	110	150	220	375
At 440 V DC (3 conducting paths series-connected) ${ }^{6)}$ Breaking current $I_{\mathrm{C}}(L / R=15 \mathrm{~ms})$ Rated operational current I_{e} at DC-23A	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 125 \\ & \hline \end{aligned}$	$\begin{aligned} & 640 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000^{7)} \\ & 250^{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 \\ & 400 \\ & \hline \end{aligned}$
Rated short-time current (1 s current)	kA (rms value)	2.5	3.2	3.2	8	11
Permissible load Depending on the ambient temperature for open-type installation in control panels (e.g. 8NA1) in control cubicles or control racks at						
$35^{\circ} \mathrm{C}$	A	63	125	160	250	400
$40^{\circ} \mathrm{C}$	A	63	125	155	250	390
$45^{\circ} \mathrm{C}$	A	63	125	150	250	380
$50^{\circ} \mathrm{C}$	A	63	125	145	250	370
$55^{\circ} \mathrm{C}$	A	63	125	140	240	360
Permissible ambient temperature	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$-25 \ldots+55$ for operation ${ }^{5)}$ $-50 \ldots+80$ when stored				
Mechanical endurance	Operating cycles	15000	15000	15000	12000	12000
Required operating torque	Nm	3	7.5	7.5	16	16
Degree of protection		IP00/IP20 (from the operator side, with fuse and terminal covers)				
Power loss of the switch disconnector at $I_{\text {th }}$ (plus power loss of the fuses)	W	8.5	22	36	33	86
Main conductor connections Busbars, max. dimensions ($\mathrm{W} \times \mathrm{T}$) Cable lug, max. conductor cross-section (stranded)	$\mathrm{mm}_{\mathrm{mm}^{2}} \times \mathrm{mm}$	$\begin{aligned} & 25 \times 9 \\ & 35 \end{aligned}$	$\begin{aligned} & 45 \times 10 \\ & 70 \end{aligned}$	$\begin{aligned} & 45 \times 10 \\ & 120 \end{aligned}$	$\begin{aligned} & 40 \times 12 \\ & 150 \end{aligned}$	$\begin{aligned} & 40 \times 15 \\ & 2 \times 150 \text { or } \\ & 1 \times 240 \end{aligned}$

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KM Switch Disconnectors with Fuses and Isolating Plug Connector up to 400 A

General data

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107				
		3KM50	3KM52	3KM53	3KM55 ${ }^{1)}$	3KM571)
Tightening torque Terminal screws	Nm	$\begin{aligned} & \hline 6 \ldots 7 \\ & \mathrm{M} 6 \end{aligned}$	$\begin{aligned} & 7 \ldots 10 \\ & \mathrm{M} 6 \end{aligned}$	$\begin{aligned} & 18 \ldots 22 \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 35 \ldots 45 \\ & \text { M10. } \end{aligned}$	$\begin{aligned} & 35 \ldots 45 \\ & \text { M10 } \end{aligned}$
PE/ground terminals Flat bars Cable lug, max. conductor cross-section (stranded)	$\mathrm{mm}_{\mathrm{mm}^{2}} \times \mathrm{mm}$	--	--	--	$\begin{aligned} & 20 \times 2.5 \\ & 70 \end{aligned}$	$\begin{aligned} & 20 \times 2.5 \\ & 120 \end{aligned}$
Auxiliary switch 1 NO + 1 NC (accessories) Max. number to be plugged		1	2	2	2	2
Rated operational current I_{e} at AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ $I_{\mathrm{e}} / \mathrm{AC}-12$	A	10				
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=220 \mathrm{~V} / 230 \mathrm{~V}$	A	6				
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=380 \mathrm{~V} / 400 \mathrm{~V}$	A	4				
$I_{\mathrm{e}} / \mathrm{AC-15}$ at $U_{\mathrm{e}}=500 \mathrm{~V}$	A	2.5				
$I_{\mathrm{e}} / \mathrm{AC}-15$ at $U_{\mathrm{e}}=690 \mathrm{~V}$	A	1.2				
Rated operational current I_{e} at DC $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=24 \mathrm{~V}$ $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=48 \mathrm{~V}$	A	10				
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=48 \mathrm{~V}$	A	4				
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=110 \mathrm{~V}$	A	1.2				
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=220 \mathrm{~V}$	A	0.4				
$I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=440 \mathrm{~V}$	A	0.2				
Connection Solid Finely stranded with end sleeve	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2 \times(0.5 \ldots 1.5) \\ & 2 \times(1 \ldots 2.5) \\ & \hline \end{aligned}$				
Weight						
Complete version	kg	1.936	2.960	2.960	7.160	7.450
Basic version	kg	1.820	2.600	2.600	6.147	6.443

1) Technical specifications for CSA approval on request.
${ }^{2)}$ Configuring note: max. permissible operating temperature for fuse blades $135^{\circ} \mathrm{C}$, for connections $100^{\circ} \mathrm{C}$.
2) 110 V (one conducting path)
3) With 3 KL 61 for operation $-25^{\circ} \mathrm{C} \ldots+35^{\circ} \mathrm{C}$, at $+55^{\circ} \mathrm{C}: I_{\mathrm{th}}=570 \mathrm{~A}$.
4) 3ND1 switchgear protection fuse.
5) 220 V DC (L1 and L3 series-connected) or 110 V DC (one conducting path) at DC-23A.
6) At $440 \vee L / R=4 \mathrm{~ms}$, at $220 \vee L / R=15 \mathrm{~ms}$.
7) At 440 V DC-22A, at 220 V DC-23A.

Permissible mounting position

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KM Switch Disconnectors with Fuses and Isolating Plug Connector up to 400 A

For snapping onto busbars

Dimensional drawings

3KM50, 63 A
with shaft and 8UC6 operating mechanism

a	Shaft length
Max. 380	300; unchanged shaft from 8UC61
Min. 175	175-80; shortened shaft from 8UC61
175 < a < 380	a-80

3KM50, 63 A
without operating mechanism, for BS fuses

3KM52, 125 A
3KM53, 160 A
with shaft and 8UC6 operating mechanism

a	Shaft length
Max. 350	300; unchanged shaft from 8UC62
Min. 165	165-50; shortened shaft from 8UC62
165 < a < 350	a $_{-50}$

3KM50, 63 A
without operating mechanism, with lyre-shaped contacts

1) Keep this space free of conductive parts. Not necessary when using lyre-shaped covers or covers (accessory).

Drilling pattern and
connector cutout

NSE00290	1	NSEO_00291	Shaft (profile)
$-25+25-\varnothing 5,5$ -	ल	R2	Engaged length:
$5,5 \phi-\infty$	4	-0,1	max. 150 mm
$55,5^{\phi-9} 175$	Shaft middle		
1) Keep this space free of conductive parts. Not necessary when using lyre-shaped covers (included in the scope of supply) or covers (accessory).			

3KM52, 125 A
3KM53, 160 A
without operating mechanism, with lyre-shaped contacts (further dimensions as for 3KL52 and 3KL53)

Type	c	e	g	I	I
3KM52	15	37	42	3	$\varnothing 6.6$
3KM53	20	39	39.5	3.5	$\varnothing 9$

1) Keep this space free of conductive parts. Not necessary when using lyre-shaped covers (included in the scope of supply) or covers (accessory).

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KM Switch Disconnectors with Fuses and Isolating Plug Connector up to 400 A

For snapping onto busbars

3KM52, 125 A
3KM53, 160 A
without operating mechanism, for BS fuses

Type	c	e	g	l	I
3KM52	15	37	42	3	$\varnothing 6.6$
3KM53	20	39	39.5	3.5	$\varnothing 9$

NSE0_00296a	Shaft (profile)
R2	Engaged length: min. 90 mm max. 143 mm
$-8.0,1$	

3KM55, 250 A
3KM57, 400 A
with shaft and 8UC6 operating mechanism

a	Shaft length
Max. 335	300; unchanged shaft from 8UC63
Min. 230	230-35; shortened shaft from 8UC63
$230<a<335$	a_{-35}

3KX3 508-0AA busbar support
for $30 \mathrm{~mm} \times 5 \mathrm{~mm}$ busbars

Drilling pattern and cut-out in the mounting plate for mounting 3KM52

3KM55, 250 A
3KM57, 400 A
without shaft, without operating mechanism, with lyre-shaped contacts (further dimensions as for 3KL55)

Type	x	y	z
3KM55	4	40	M10 $\times 30$
3KM57	6	38	M10 $\times 36$

Drilling pattern and cut-out
in the mounting plate
for mounting 3KM55
and 3KM57

3KL, 3KM, 3NJ6 Switch Disconnectors with Fuses 3KM Switch Disconnectors with Fuses and Isolating Plug Connector up to 400 A

For snapping onto busbars

Cut-outs for 3K. 50, 3KA51
with 3KX3 516-... rear manual operating mechanism

Cut-outs for 3K . 52, 3K . 53
with 3KX3 526-.../3KX3 536-... rear manual operating mechanism

Cut-outs for 3K . 55, 3K . 57, 3K . 58
with 3 KX3 556-... rear manual operating mechanism

Schematics

Internal circuit diagram for 3KM

(for 3KM50 and 3KM51, only one auxiliary switch possible)

Design

The SENTRON 3NP4 and 3NP5 fuse switch disconnectors comprise a base and a removable fuse carrier with view and measuring window.
The base contains integral lyre-shaped contacts, arcing chambers and terminal fittings. The fuse links/isolating links are contained in the fuse carrier.
The fuse links can be replaced without tools.
The three conducting paths in the base and the fuse links in the fuse carrier are separated by partitions that overlap when opening and closing the device.
This type of failsafe protection is called "complete compartmentalization" and effectively prevents inter-phase arcing.
SENTRON 3NP5 fuse switch disconnectors are also equipped with locating springs, which are fitted to the side of the base. These enable the "high speed closing" of devices, regardless of the actuating speed of the operator.

LV HRC fuses of sizes LV HRC 000 to LV HRC 3 according to IEC 60269-2-1 and DIN VDE 43620 are used in the SENTRON 3NP4 and 3NP5 fuse switch disconnectors.
SITOR semiconductor fuses can continue to be used for a wide range of applications.
For more detailed information, please refer to the operating instructions for the SENTRON 3NP4 and 3NP5 fuse switch disconnectors.

Auxiliary switches

The SENTRON 3NP4 and 3NP5 fuse switch disconnectors can also be retrofitted with auxiliary switches for indicating the switch position of the fuse carrier.
One switch block (1 CO) can be mounted on size LV HRC 000 of the SENTRON 3NP4 fuse switch disconnector and two switch blocks (1 CO) can be mounted on sizes LV HRC 00 to LV HRC 3.

SENTRON 3NP5 fuse switch disconnectors can also be delivered with a 2 -pole auxiliary switch ($1 \mathrm{NO}+1 \mathrm{NC}$) if required. The version with fuse monitoring is fitted with this auxiliary switch as standard.

Function

Fuse monitoring by SIRIUS circuit breaker

For fuse monitoring, a SIRIUS circuit breaker is factory-fitted and hard-wired to the fuse carrier of the SENTRON 3NP4 and 3NP5 fuse switch disconnectors.
If the fuse carrier is closed, the three conducting paths of the SIRIUS circuit breaker are switched in parallel to the fuse links to be monitored. If the fuse carrier is open, all main current paths of the circuit breaker are off circuit.

The internal resistance of the circuit breaker is great enough not to impair the protective function of the monitored fuse links.
Failure of a fuse will trigger the circuit breaker. The auxiliary switch of the circuit breaker can be used for indication purposes or to disconnect the main circuit, e.g. through a contactor.

The signal cable for the SENTRON 3NP4 fuse switch disconnector size LV HRC 00 needs to be ordered separately. For sizes LV HRC 1 to LV HRC 3 the connection is via flat connectors.
Delivery of the SENTRON 3NP5 fuse switch disconnectors includes the signal cable, complete with connector.
SIRIUS circuit breakers cannot be used for fuse monitoring in branch circuits by circuit breakers where a fault may result in > 220 V DC feedback.

In the case of parallel cables and meshed systems, only a voltage difference of $>24 \mathrm{~V}$ at the switch will trigger the circuit breaker.

Electronic fuse monitors

For electronic fuse monitoring, the EF monitor is factory-fitted and hard-wired to the fuse carrier of SENTRON 3NP5 fuse switch disconnectors.
The EF monitor works independently of any loads. Failure of a fuse can be relayed to a control room through integrated auxiliary switches ($2 \mathrm{NO}+1 \mathrm{NC}$) by means of a centralized fault indication or used to isolate the load through e.g. a contactor.
Actuation of the auxiliary switch depends on the EF monitor. Version "A" stands for "open-circuit principle", version "R" for closed-circuit principle" (see schematic circuit diagram on page 17/44).
If a fuse is tripped, a green LED signal flashes (general fault) and the location of the failed fuse is indicated by a red LED. Using more than one device facilitates identification of the affected branch circuit.

The EF monitor is automatically reset to the standby position once the faulty fuses are replaced. This state is indicated visually by the status display (green LED).
The EF monitor is also suitable for operation in industrial networks badly afflicted by harmonics.

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors 3NP Fuse Switch Disconnectors up to 630 A

Technical specifications

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107				
		3NP40 1	3NP40 7	3NP42 7	3NP43 7	3NP44 7
Rated uninterrupted current I_{u} For fuse links according to DIN 43620	$\begin{aligned} & \text { A } \\ & \text { Size } \end{aligned}$	$\begin{aligned} & \hline 160^{1)} \\ & 00 \mathrm{C} / 000 \end{aligned}$	$\begin{aligned} & 160 \\ & 00 \end{aligned}$	$\begin{aligned} & 250 \\ & 1 \text { and } 0 \end{aligned}$	$\begin{aligned} & 400 \\ & 2 \text { and } 1 \end{aligned}$	$\begin{aligned} & 630 \\ & 3 \text { and } 2 \end{aligned}$
Continuous thermal current $I_{\text {th }}$	A	$160{ }^{1 /}$	160	250	400	630
Rated operational voltage $\boldsymbol{U}_{\mathrm{e}}$ AC $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ DC	V	690 220 (3 conducting paths series-connected)		690 440 (2 conducting paths series-connected)		
Rated insulation voltage $\boldsymbol{U}_{\mathrm{i}}$	V	690	690	$800^{3)}$	$800^{3)}$	$800^{3)}$
Rated impulse voltage $\boldsymbol{U}_{\text {imp }}$	kV	6	6	6	6	6
Rated conditional short-circuit current with fuses (for fast switch-on)						
With fuse links Rated current At 400 V AC (690 V)	Size/A kA (rms value)	$\begin{aligned} & 000 / 100(35) \\ & 50(50) \end{aligned}$	$\begin{aligned} & 00 / 160 \\ & 50 \end{aligned}$	$\begin{aligned} & 1 / 250 \\ & 50 \end{aligned}$	$\begin{aligned} & 2 / 400 \\ & 50 \end{aligned}$	$\begin{aligned} & 3 / 630 \\ & 50 \end{aligned}$
Maximum permissible let-through $I^{2} t$ value	$k A^{2} s$	56 (7.8)	158	551	1515	4340
Permissible let-through current of the fuse	kA (peak value)	11 (5)	15	25	35	55
Short-circuit strength with fuses (with closed switch)						
With fuse links Rated current At 690 V	Size/A kA (rms value)	$\begin{aligned} & 000 / 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 00 / 160 \\ & 50 \end{aligned}$	$\begin{aligned} & 1 / 250 \\ & 50 \end{aligned}$	$\begin{aligned} & 2 / 400 \\ & 50 \end{aligned}$	$\begin{aligned} & 3 / 630 \\ & 50 \end{aligned}$
Permissible let-through current of the fuse	kA (peak value)	15	15	25	35	55
Rated making and breaking capacity (infeed from top or bottom)						
At 400 V AC, with fuse links or isolating links Rated breaking current I_{C} (p.f. $=0.35$)	Size A (rms value)	$\begin{aligned} & \frac{000}{800} \\ & (\text { p. f. }=0.45) \end{aligned}$	$\frac{00}{800}$	$\begin{aligned} & \frac{1}{2000} \end{aligned}$	$\begin{aligned} & \underline{2} \\ & 3200 \end{aligned}$	$\underline{3}$ 5040
Rated operational current I_{e} for AC-21B, AC-22B, AC-23B	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 160 \\ & 100 \end{aligned}$	$\begin{aligned} & 160 \\ & 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \end{aligned}$
At 500 V AC, with fuse links or isolating links	Size	000	00	1	2	3
Rated breaking current $I_{\text {C }}($ p.f. $=0.35)$	A (rms value)	$\begin{aligned} & 320 \\ & (\text { p. f. }=0.45) \end{aligned}$	320	750	1200	1890
Rated operational current I_{e} for AC-21B, AC-22B, AC-23B	$\begin{aligned} & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 160 \\ & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 160 \\ & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \end{aligned}$
At 690 V AC, with fuse links or isolating links	Size	000	00	1	$\underline{2}$	$\underline{3}$
Rated breaking current $I_{\text {C }}(\mathrm{p} . \mathrm{f} .=0.35)$	A (rms value)	$\begin{aligned} & \text { 200/240 } \\ & \text { (p. f. }= \\ & 0.45 / 0.95 \text {) } \end{aligned}$	$\begin{aligned} & \text { 200/240 } \\ & \text { (p. f. }= \\ & 0.45 / 0.95 \text {) } \end{aligned}$	375	600	945
Rated operational current I_{e} for AC-21B, AC-22B, AC-23B	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 160 \\ & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 160 \\ & 50 \\ & 25 \end{aligned}$	250	400	630
At $220 \mathrm{~V} / 240 \mathrm{~V}$ DC, with fuse links ${ }^{2) 4) 5 \text {) }}$ or isolating links Rated operational current I_{e} at 220 V DC-23B/DC-21B 440 V DC-21B	Size A A	$\underline{000}$ $80 / 160$ --	$\underline{00}$ $80 / 160$ --	1 - -250	$\underline{2}$ - -400	$\underline{3}$ - -630

${ }^{\text {1) }} 125 / 160$ A only with $3 N Y 1236$ feeder terminals and with $3 N Y 1822$ (125 A) and 3NY1 824 (160 A) 21 mm wide fuse links; see accessories.
2) When switching without load (AC-20 B, DC-20 B), direct voltages up to 690 V DC can be applied.
3) For safety monitoring max. 690 V .
4) For degree of pollution 2, the switch disconnectors can be used up to 1000 V AC-20 B, DC-20 B (no-load switching).
5) Conducting paths in series: 3 for 3NP40; 2 for 3NP42, 3NP43 and 3NP44.

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors 3NP Fuse Switch Disconnectors up to 630 A

General data

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107				
		3NP40 1	3NP40 7	3NP42 7	3NP43 7	3NP44 7
Capacitor switching capacity						
At 400 V AC						
Capacitor rating	kvar	50	50	--	--	--
Rated current $I_{\text {n }}$	A	72	72	--	--	--
At 525 V AC						
Capacitor rating	kvar	50	50	--	--	--
Rated current $I_{\text {n }}$	A	55	55	--	--	--
Permissible ambient temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+55^{1)}$ for operation, $-50 \ldots+80$ when stored				
Mechanical endurance	Operating cycles	2000	2000	1600	1000	1000
Degree of protection (operator side)						
Without molded-plastic masking frame/cable lug cover		IP00 (3NP40 with box terminal and properly connected conductors: IP20)				
With molded-plastic masking frame/cable lug cover		IP30 (switch closed), IP20 (switch open)				
Power loss of the switch disconnector at $\boldsymbol{I}_{\text {th }}$ (plus power loss of the fuse links)						
Without busbar adapter	W	4.5 (at 100 A)	10	15	30	47
With busbar adapter	W	8.5 (at 100 A)	20	47	83	127
Main conductor connections						
Flat connector for cable lug, max. conductor cross-section (stranded)	mm^{2}	--	Up to 2×70 (M8)	Up to 150 (M10)	Up to 240 (M10)	Up to 2×240 (M12)
Box terminal/terminal (finely stranded with end sleeve)	mm^{2}	$1.5 \ldots 50$ (35)	2.5 ... 70 (50)	$70 . .150$	$120 . .240$	$150 \ldots 300$
Busbar (width \times thickness)	mm	--	22×5	$\begin{aligned} & 22 \ldots 30 \times \\ & 5 \ldots 10 \end{aligned}$	$\begin{aligned} & 22 \ldots 30 \times \\ & 5 \ldots 10 \end{aligned}$	$\begin{aligned} & 25 \ldots 40 \times \\ & 5 \ldots 10 \end{aligned}$
Louvered Cu strips, unperforated in terminals (width \times thickness)	mm	8×8	Up to 9×8	Up to 16×8	Up to 20×10	Up to 24×10
Tightening torques for terminal screws						
For flat connector	Nm	--	10... 12	25	25	30
With SIGUT box terminal/terminal	Nm	3... 3.5	8 ... 10	6	8	8
Auxiliary switch $1 \mathbf{C O}$ (accessories)						
3NY3 $03550 \mathrm{~Hz} / 60 \mathrm{~Hz}$ up to 230 V AC Rated operational current I_{e} at AC-14	A	$\begin{aligned} & 0.25\left(I_{\text {th }}=5 \mathrm{~A}\right) \\ & \mathrm{A} 2.8 \times 0.5 \end{aligned}$	$\text { at } 24 \mathrm{VDC}: I_{\mathrm{e}}=$	45 A; flat term	ons according	DIN 46244:
3NY3 $03050 \mathrm{~Hz} / 60 \mathrm{~Hz}$ up to 230 V AC Rated operational current I_{e} at AC-13	A	$0.1\left(I_{\text {th }}=0.1 \mathrm{~A}\right)$	plug-in sleeve	cording to DIN	245: A 2.8 ... 1	
Permissible mounting positions		Vertical or horiz	ntal installation	reduction of	cified switching	pacity)

${ }^{1)}$ Only with isolating links; otherwise, please observe specifications of fuse manufacturer.

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors 3NP Fuse Switch Disconnectors up to 630 A

General data

1) When observing degree of pollution 2 (instead of 3) operation is also possible up to $U_{i}=1000 \mathrm{~V}$.
2) Rated making and breaking current according to IEC 60947-3

Rated making current $I=10 \times I_{\mathrm{e}}(\mathrm{AC}-23) ; 3 \times I_{\mathrm{e}}(\mathrm{AC}-22)$;
$1.5 \times I_{\mathrm{e}}$ (AC-21)
Rated breaking current $I_{\mathrm{e}}=8 \times I_{\mathrm{e}}(\mathrm{AC}-23) ; 3 \times I_{\mathrm{e}}(\mathrm{AC}-22)$;
$1.5 \times I_{\mathrm{e}}$ (AC-21)
3) When using electronic fuse monitoring, infeed must be from the top.

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors
 3NP Fuse Switch Disconnectors up to 630 A

General data

		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107			3NP54
Type		3NP50	3NP52	3NP53	
Switching capacity with isolating links ${ }^{1)}$ (infeed from top or bottom)					
At 400 V AC, with isolating links Breaking current I_{C} (p.f. $=0.35$)	Size A (rms value)	$\frac{00}{1600}$	$\frac{1}{2500}$	$\frac{2}{2500}$	$\frac{3}{4000}$
Rated operational current I_{e} for AC-21B, AC-22B, AC-23B		$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 315 \end{aligned}$	$\begin{aligned} & 630 \\ & 500 \end{aligned}$
At 500 V AC, with isolating links Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	1300	2500	2500	4000
Rated operational current I_{e} for AC-21B, AC-22B, AC-23B		$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 400 \\ & 315 \end{aligned}$	$\begin{aligned} & 630 \\ & 500 \end{aligned}$
At $690 \vee \mathrm{AC}$, with isolating links Breaking current I_{C} (p.f. $=0.35$)	A (rms value)	800	1280	1600	2520
Rated operational current I_{e} for AC-21B, AC-22B, AC-23B		$\begin{aligned} & 160 \\ & 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 160 \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 630 \\ & 315 \end{aligned}$
At 220 V DC, with isolating links Breaking current $I_{\mathrm{C}}(L / R=15 \mathrm{~ms})$ Rated operational current I_{e} at DC-23B	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 640 \\ & 160 \end{aligned}$	$\begin{aligned} & 1000 \\ & 200 \end{aligned}$	$\begin{aligned} & 1600 \\ & 400 \end{aligned}$	$\begin{aligned} & 1600 \\ & 400 \end{aligned}$
Switching capacity for horizontal installation Up to 690 V AC-22B		No reduction in specified switching capacity (values for $\mathrm{AC}-23 \mathrm{~B}$ up to 690 V on request)			
${ }^{1)}$ Insert silver-plated isolating links.					

General data

Standards Type		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107			
		3NP50	3NP52	3NP53	3NP54
Capacitor switching capacity					
At 400 V AC Capacitor rating Rated current I_{n}	kvar A	$\begin{array}{r} 80 \\ 116 \end{array}$	$\begin{array}{r} 90 \\ 130 \end{array}$	$\begin{aligned} & 150 \\ & 216 \end{aligned}$	$\begin{aligned} & 250 \\ & 361 \end{aligned}$
At 525 V AC Capacitor rating Rated current I_{n}	kvar A	$\begin{aligned} & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 125 \\ & 137 \end{aligned}$	$\begin{aligned} & 200 \\ & 220 \end{aligned}$	$\begin{aligned} & 300 \\ & 330 \end{aligned}$
Permissible ambient temperature	${ }^{\circ} \mathrm{C}$	-25 ... +55 for	on ${ }^{1)}$, -50	stored	
Mechanical endurance	Operating cycles	1600			
Degree of protection					
Without molded-plastic masking frame		$1 P 00^{2}$			
With molded-plastic masking frame and closed fuse carrier on the operator side with open fuse carrier		$\begin{aligned} & \text { IP30 } \\ & \text { IP10 } \end{aligned}$			
Power loss of of the switch disconnector at $I_{\text {th }}$ (plus power loss of the fuse links)					
Main conductor connections					
Cable lug, max. conductor cross-section (stranded) Busbar Terminal clamp	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \ldots 120 \\ & 16 \ldots 22 \\ & 2.5 \ldots 50 \end{aligned}$	$\begin{array}{ll} 6 & \ldots \\ 22 & 150 \\ 22 & \ldots \\ 35 & \ldots \\ \hline \end{array}$	$\begin{aligned} & 6 \ldots 240 \\ & 22 \ldots 30 \end{aligned}$	$\begin{aligned} & 6 \ldots 2 \times 240 \\ & 22 \ldots 30 \\ & --\quad \\ & \hline \end{aligned}$
Tightening torque					
With cable lug With busbar With terminal clamp	Nm Nm Nm	$\begin{array}{r} 18 \ldots 22 \\ 18 \ldots 22 \\ 9 \ldots .11 \end{array}$	$\begin{gathered} 25 \ldots 30 \\ 25 \ldots 30 \\ 5 \ldots 6 \end{gathered}$	$\begin{aligned} & 25 \ldots 30 \\ & 25 \ldots 30 \\ & \text {-- } \end{aligned}$	$\begin{aligned} & 25 \ldots 30 \\ & 25 \ldots 30 \\ & -- \end{aligned}$
Terminal screws					
With cable lug With busbar With terminal clamp		$\begin{aligned} & \text { M8 } \\ & \text { M8 } \\ & \text { M8 } \end{aligned}$	M10 M10 $2 \times \mathrm{M} 6$	M10 M10 --	M10 M10 --
PE/ground terminals Cable lug according to DIN 46234 Busbar Terminal screws	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm} \end{aligned}$	$\begin{gathered} -- \\ -- \\ \hline- \end{gathered}$	$\begin{aligned} & 2.5 \ldots 70 \\ & 25 \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 6 \ldots 2 \times 70 \\ & 25 \\ & \text { M10 } \end{aligned}$	$\begin{aligned} & 6 \ldots 2 \times 120 \\ & 30 \\ & \text { M10 } \end{aligned}$
Auxiliary switch 1 NO + 1 NC (accessories) (the same voltage potential must be applied to both NO and NC contact)					
At $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ up to 400 V AC, rated operational current I_{e} at AC-12/AC-15 A Flat connector (DIN 46244)	A	$\begin{aligned} & 16 / 6 \\ & \text { A } 6.3 \ldots 0.8 \end{aligned}$			
Permissible mounting positions		Vertical or ho (partially red	tching cap	orizontal mou	
Fuse monitoring with 3RV motor starter protectors		See circuit b			
Electronic fuse monitoring					
Rated voltage $50 \mathrm{~Hz} / 60 \mathrm{~Hz} \mathrm{AC}$	V	400-15\% ...	0\%, self-p	eed from top)	
Max. inrush current Uninterrupted current Breaking current	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 20 \\ 5 \\ 5 \end{array}$			
Switching capacity	VA	1000			
Short-circuit strength (1 ms) Response time Temperature range (operation) Plug-in connectors/connections	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~S} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 100 \\ & <1 \\ & -10 \ldots+75 \\ & 6-\text { pole } \end{aligned}$			
Minimum required potential difference between upper and lower switch connections (e.g. for use in meshed systems)	V	>10			
Signaling contact for electronic fuse monitoring		$2 \mathrm{NO}+1 \mathrm{NO}$			
Rated operational current I_{e} At 250 V, DC-13 At 240 V, AC-15	A	$\begin{aligned} & 0.27 \\ & 1.5 \end{aligned}$			
Thermal free-air rated current $I_{\text {th }}$	A	5			

1) When using isolating links. If using fuse links, please observe specifications of fuse manufacturer.
2) For 3NP52 with terminal clamp connection, degree of protection IP10.
3) With busbar adapter.

Dimensional drawings

3NP40 10

3NP40 10
with 3NY1 237 3-phase busbar for 2 fuse switch disconnectors

3NY1 265
covering cap for 3NY1 238 3-phase busbar

Cut-out
for 3NP35 and 3NP4O 10

3NP40 10
with 3NY1 251 molded-plastic masking frames

3NP40 15-1CK01
with busbar adapter, flat, rails of width 12 mm or 15 mm and thickness 5 mm or 10 mm , bottom connection

3NP40 16-1CJ01

with busbar adapter, rails of width $12,15,20 \mathrm{~mm}$ or 30 mm and thickness 5 mm or 10 mm , flat, T, double-T profiles and other renowned busbar systems, bottom connection

3NP40 10
3NY1 995 quick retaining plate
with 3NY1 995 quick retaining plate mount- for 3NP40 10 and 3NP40 70 ing rail center-to-center clearance 125 mm

3NP40 10
with 3NY1 235 triple terminal

3NP40 10
with 3NY1 236 supply terminal

3NP40 15-1CJ01
with busbar adapter, flat, rails of width 12 mm or 15 mm and thickness 5 mm or 10 mm , bottom connection

3NP40 15-0CJ01
with busbar adapter, deep, rails of width 12 mm or 15 mm and thickness 5 mm or 10 mm , bottom connection

3NP40 16-1CK01
with busbar adapter, rails of width 12, 15, 20, 25 mm or 30 mm and thickness 5 mm or 10 mm , flat, T , double-T profiles and other renowned busbar systems, top connection

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors

 3NP Fuse Switch Disconnectors up to 630 A

 3NP Fuse Switch Disconnectors up to 630 A}

For power distribution

3NP40 70
for mounting

Drilling pattern for 3NP40 70

3NP40 75-0
with busbar adapter, deep,
rails of width 12 mm or 15 mm
and thickness 5 mm or 10 mm

3NP40 75-1
with busbar adapter, flat,
rails of width 12 mm or 15 mm
and thickness 5 mm or 10 mm

For metal frames
Cut-outs for 3NP4

[^2]3NP42 70, 3NP43 70, 3NP44 70
for mounting

Type	a	b	c	d	e	f
3NP42 70	184	243	66	45.5	215	57
3NP43 70	210	288	80	48	255	65
3NP44 70	256	300	94.5	48	267	81

3NY73 22 quick retaining
plate

Drilling pattern for 3NP43 70

(1) Bottom edge disconnector-base
(2) Center disconnector-base

For plastic frames
Cut-outs ${ }^{2)}$
for 3NP40 70

Cut-outs ${ }^{2)}$
for 3NP43

[^3]
3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors
 3NP Fuse Switch Disconnectors up to 630 A

For power distribution

3NP40 70-0F
for mounting and installation

3NP40 75-1F
with busbar adapter, flat, 40 mm ,
rails of width 12 mm or 15 mm and thickness 5 mm or 10 mm

3NP40 76-1

with busbar adapter,
busbars with a width of 12 mm to 30 mm and a thickness of 5 mm or 10 mm ,
flat, T and double-T profiles

3NP40 75-0F

with busbar adapter, deep, 40 mm ,
rails of width 12 mm or 15 mm
and thickness 5 mm or 10 mm

3NP40 76-0F
with busbar adapter, flat, 60 mm ,
rails of width 12 mm or 30 mm
and thickness 5 mm or 10 mm

3NP42 75-1 with busbar adapter,
$\begin{array}{ll}\text { 3NP42 76-1 } & \text { busbars with a width of } 12 \mathrm{~mm} \text { to } 30 \mathrm{~mm} \\ \text { 3NP43 76-1 } & \text { and a thickness of } 5 \mathrm{~mm} \text { or } 10 \mathrm{~mm}, \\ \text { 3NP44 76-1 } & \text { flat, T and double-T profiles }\end{array}$
3NP44 76-1 flat, T and double-T profiles

Type	a	$\mathrm{b}^{1)}$	c	d	e	f
3NP42 75-1	184	243	$83^{2)}$	45.5	111	40
3NP42 76-1	184	243	$83^{2)}$	45.5	111	60
3NP43 76-1	210	288	97	48	125	60
3NP44 76-1	256	300	112	48	139	60

1) For VBG4 plus dimension c of the cable lug covers (see page 17/41).
2) The 3 NY 820 molded-plastic masking frame is used for depth compensation (below) when installed together with size 000 or size 00 in STAB/SIKUS distribution boards.

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors 3NP Fuse Switch Disconnectors up to 630 A

3NY7 200 molded-plastic masking frame for 3NP40 7
for installation in any distribution board

3NY7 230 molded-plastic masking frame for 3NP43
for installation in any distribution board

3NY7 500 molded-plastic masking frame for one 3NP40 switch disconnector, left, for installation in SIKUS 3200, STAB 160 and 400 and SIKUS 630 distribution boards

3NY7 600 touch protection cover
for installation in ALPHA distribution boards for 3NP40 76 switch disconnectors

Cable lug cover for 3NP40 7 with flat connector, 3NY7 101

3NY7 201 molded-plastic masking frame for 3NP40 7.-
for 3NP40 7.-CA01

3NY7 240 molded-plastic masking frame for 3NP44
for installation in any distribution board

3NY7 501 molded-plastic masking frame for one 3NP40 switch disconnector, right, for installation in SIKUS 3200, STAB 160 and 400 and SIKUS 630 distribution boards

3NY7 601 touch protection cover
for 3NP40 75, 3NP40 76
switch disconnectors

Cable lug cover for 3NP42 to 3NP44, 3NY7 121, 3NY7 131, 3NY7 141

3NY7 220 molded-plastic masking frame for 3NP42
for installation in any distribution board

3NY7 820 molded-plastic masking frame for one 3NP42 70 switch disconnector for installation in STAB/SIKUS distribution boards

3NY7 502 molded-plastic masking frame for two 3NP40 switch disconnectors for installation in SIKUS 3200, STAB 160 and 400 and SIKUS 630 distribution boards

Type	a	b	c
3NY7 121	181	65	67
3NY7 131	207	79	50
3NY7 141	253	94	47

Dimensional drawings

3NP50 60, 160 A
for mounting

3NP50 60, 160 A
with fuse monitoring by 3RV1 motor starter protector, with plug-in connection

3NP50 60, 160 A
with molded-plastic masking frame for any type of installation

For plastic frames
Cut-out
for 3NP50 60, with and without auxiliary switch

$\rightarrow 130 \rightarrow$

3NY1 107 molded-plastic masking frame

Cut-out
for 3NY1 208 mounting kit

For metal frames
Cut-outs for 3NP5

		Type	Cover between installation kit			Panel cut-out min.		
			Molded-plastic masking frame behind panel					
			Type	B	H	B	H	$h^{1)}$
		3NP50 6	3NY1 1052)	135	215	130	206	115
	$\left.\right\|_{\substack{2 \\ \hline \\ \hline}}$	3NP50 6	3NY1 125					
		3NP52 6	3NY1 210	222	300	210	293	146
-B		3NP53 6	3NY1 211	245	300	235	293	146
		3NP54 6	3NY1 212	290	300	280	293	146
			Molded-plastic masking frame in front of panel					
			Type	B	H	B	H	$h^{1)}$
		3NP50 6	3NY1 105	135	215	130	205	115
		3NP50 6	3NY1 208	149	250	143	191	--
		3NP52 6	3NY1 210	220	300	210	262	132
		3NP53 6	3NY1 211	245	300	234	262	132
		3NP54 6	3NY1 212	290	300	279	262	132

1) $\mathrm{h}=$ distance from upper edge of panel cut-out to center of disconnector mounting.
2) With standard molded-plastic masking frame behind the control panel and corresponding control panel cut-out, the specified switching capacity is reduced to the following AC 23B values: at $400 \mathrm{~V} I_{\mathrm{e}} 160 \mathrm{~A}$, at 500 V from $I_{\mathrm{e}} 160 \mathrm{~A}$ to 125 A and at 690 V from $I_{\mathrm{e}} 100 \mathrm{~A}$ to 50 A .

3NP Fuse Switch Disconnectors up to 630 A

For extended technical requirements

3NP5. 60, 250 to 630 A
for mounting

3NP5. 60, 250 to 630 A with fuse monitoring
by 3RV motor starter protector, with plug-in connection

3NP50 65, 160 A with busbar adapter, rails of width 12 mm and thickness 5 mm or 10 mm

3NP5. 60, 160 to 630 A
with electronic fuse monitoring, with plug-in connection and control cable

3NP50 60, 160 A
with electronic fuse monitoring, with plug-in connection and control cable

3NP5. 60, 250 to 630 A
with molded-plastic masking frame, for installation

Type	a	b	c	d	e	f	g	h	I
3NP52 60	207	202	130	93	62	176	38	41	11.5
3NP53 60	231	226	130	106	70	192	39	39	11.5
3NP54 60	276	271	200	111	85	207	40.5	40.5	11.5
	k^{1}	1)	m	N	0	q	r	S	t
3NP52 60	M10	M8	336	25	32	212	3.6	156	210
3NP53 60	M10	M10	352	25	25	228	4.4	180	234
3NP54 60	M10	M10	367	30	25	243	6	225	279
	u	w	\times	y					
3NP52 60	89.5	220	186.5	200.5					
3NP53 60	105.5	245	202.5	216.5					
3NP54 60	120.5	290	217.5	231.5					

3NP50 65, 160 A with busbar adapter,
with fuse monitoring by 3RV motor starter protector, with plug-in connector

3NP5. 60, 250 to 630 A
with electronic fuse monitoring with plug-in connection and control cable

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors 3NP Fuse Switch Disconnectors up to 630 A

For extended technical requirements

Schematics

Function for auxiliary contacts - main contact elements with SENTRON 3NP4 and 3NP5

\square Contact closed
\square Contact open

Auxiliary switch
$\bigoplus_{1}^{2} \mathrm{I}^{2}$
for 3NP40 1 for 3NP5

SENTRON 3NP fuse switch disconnector with fuse monitoring (with 3RV1 motor starter protector, with auxiliary switch 1 NO + 1 NC)
Circuit diagram of main circuit
Circuit diagram of auxiliary circuit

Q1 = Fuse switch disconnector
Q2 = Motor starter protector
K1 = Contactor
S1 = ON button
S0 $=$ OFF pushbutton
F1 = Overload relay
F2 = Control-circuit fuse

SENTRON 3NP5 fuse switch disconnector with electronic fuse monitoring
Schematic circuit diagram

Version "A" (open-circuit principle):

auxiliary switches only pick up if fuse faulty and voltage is applied.
Version "R" (closed-circuit principle):
auxiliary contacts pick up as soon as voltage is applied and as long as fuses are intact.

Design

3NJ41 in-line fuse switch disconnectors
SENTRON $3 N J$ in-line fuse switch disconnectors for mounting on 185 mm busbar systems They are available in the following sizes and versions:
Size 1 for 250 A, 1- or 3-pole switchable
Size 2 for 400 A, 1 - or 3-pole switchable
Size 3 for 630 A, 1- or 3-pole switchable
Size 4a for 1250 A, 1-pole switchable.
The size 00 for 160 A, 3-pole switchable in-line fuse disconnectors are available for 100 mm busbar center-to-center clearance and only as a special version for 185 mm busbar center-to-center clearance.
Instead of one size 1 to 3 in-line fuse switch disconnector, two size 00 disconnectors with an adapter and masking frame can be used (see Accessories) on a $185-\mathrm{mm}$ busbar system.
The swiveling mechanism with 3-pole switchable disconnectors of sizes 1 to 3 is lockable and ensures simultaneous switching of all three phases.

For size 4 the following versions are available in addition to the standard version:
a slim version ($\mathrm{W} \times \mathrm{H}=248 \times 775 \mathrm{~mm}$)
a special version ($\mathrm{W} \times \mathrm{H}=147 \times 1115 \mathrm{~mm}$)
(delivery possibilities on request).
All SENTRON 3NJ in-line fuse switch disconnectors are fed by way of the busbars. The outgoing current is transferred by cable (see "Terminal positions").
With SENTRON 3NJ41 in-line fuse switch disconnectors it is possible to choose between having the cable connection on top or on bottom (standard version) by turning the contact carrier. The upper part can be removed completely. This ensures easy mounting.

Inspection holes

For voltage testing, all SENTRON $3 N J$ in-line fuse switch disconnectors are fitted with voltage test apertures.

Mounting position

The SENTRON 3NJ in-line fuse switch disconnectors can be mounted vertically or horizontally. When mounted horizontally, however, system-specific reduction factors and the coincidence factor (DIN VDE 0660 Part 500 4.7) according to the applicable system regulations must be observed.

Connections

Terminal position

Integration

Assembly kits as well as TTA modules and partly equipped side-by-side cabinets are available for installation in the SIKUS 3200 (8GG) modular distribution board system; see Components for Distribution Systems.
Installation in SIKUS Universal (8GF) is also possible. Please inquire.

General data

Technical specifications

Standards		IEC 60947-1, IEC 60947-3, VDE 0660 Part 107						
Type		3NJ41 0 3NJ5 0	3NJ41 2	3NJ41 3	3NJ41 4	3NJ41 8	3NJ41 5	3NJ56
Conventional thermal current Free air $I_{\text {th }}{ }^{1}$ Enclosed $I_{\text {the }}{ }^{2)}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 225 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 360 \\ & \hline \end{aligned}$	$\begin{aligned} & 630 \\ & 567 \\ & \hline \end{aligned}$	910	1000	1250
Rated insulation voltage U_{i}	V	750	1000	1000	1000	500	1000	1000
Rated operational voltage $\boldsymbol{U}_{\text {e }}$	$\begin{aligned} & 40 \mathrm{~Hz} \\ & \ldots 60 \mathrm{~Hz} \text { V } \\ & \mathrm{AC} \end{aligned}$	690	690	690	690	400	690	690
Rated conditional short-circuit current with fuses								
At 40 Hz to 60 Hz 690 V AC	kA (rms value)	50	50	50	50	50	--	50
Max. rated current I_{n} of the fuses		160	250	400	630	910	--	1250
Permissible let-through current of the fuses	kA (peak value)	15	28	39	52	53	--	80
For fuse links according to IEC 60269-2-1 or isolating links	Size/A	00/160	1/250	$\begin{aligned} & 1 \text { and } \\ & 2 / 250 \text { and } \\ & 400 \end{aligned}$	$\begin{aligned} & 2 \text { and } \\ & 3 / 400 \text { and } \\ & 630 \end{aligned}$	3/910	--	4a/1250
Rated operational current $I_{\text {e }}$								
At 400 V AC AC-22B	A	160	250	400	630	910	1000	1250
500 V AC AC-22B	A	160	250	400	630	--	1000	1250
690 V AC AC-21B	A	160	250	400	630	--	1000	1250
690 V AC AC-22B	A	100	200	315	500	--	600	--
220 V DC DC-21B	A	160	250	400	630	--	--	--
Rated switching capacity								
At 500 V AC P.f. $=0.65$	A	480	750	1200	1890	--	2400	3750
$690 \vee$ AC P.f. $=0.65$	A	380	600	945	1500	--		
220 V DC $\quad \mathrm{L} / R=1 \mathrm{~ms}$	A	240	375	600	945	--	--	--
Capacitive switching capacity	kvar	$50 \ldots 60$	105 ... 115	155 ... 185	250... 300	--	--	--
Rated short-time current (1 s current)	kA (rms value)	15	20	22	22	22	22	34
Permissible ambient temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$						
Mechanical endurance	Operating cycles	1400	1400	800	800	800	800	800
Electrical endurance	Operating cycles	200	200	200	200	100	100	100
Degree of protection								
With closed fuse carrier, With terminal cover and peripheral cover								IP10
With open fuse carrier		IP10						
Power loss of the main current paths at $I_{\text {th }}$	W	18	23	49	110	260	300	300
Main conductor connections								
Terminal screws		M8	M10	M12	M12	$2 \times$ M12	$2 \times \mathrm{M} 12$	M16
Flat bars	mm	24	42	42				
Cable lug, max. conductor cross-section (stranded)	mm^{2}	95	240	240	2403)	2×240	2×240	2×300
Tightening torque	Nm	$10 . . .15$	$30 . .35$	30 ... 35	30 ... 35	$30 . .35$	$30 . .35$	$50 \ldots 60$
Terminal clamp/V terminals	mm^{2}	1.5... 70	$25 . .300$	25... 300	25... 300	--	--	
Fixing screws Required tightening torque for mounting on busbars	Nm	$\begin{aligned} & \text { M8 } \\ & 16 \ldots 18 \end{aligned}$	$\begin{aligned} & \mathrm{M} 12 \\ & 35 \ldots 40 \end{aligned}$	$\begin{aligned} & \mathrm{M} 12 \\ & 35 \ldots 40 \end{aligned}$	$\begin{aligned} & \mathrm{M} 12 \\ & 35 \ldots 40 \end{aligned}$	$\begin{aligned} & \mathrm{M} 12 \\ & 35 \ldots 40 \end{aligned}$	$\begin{aligned} & \mathrm{M} 12 \\ & 35 \ldots 40 \end{aligned}$	$\begin{aligned} & \text { M16 } \\ & 50 \ldots 60 \end{aligned}$

1) When several devices are used next to each other, the load factor according to EN 60439 Part 1/DIN VDE 0660 Part 500, Table 1 must be observed.
2) Required enclosure volume is at least $0.185 \mathrm{~m}^{3}$.
3) A special kit is required for connection of $2 \times 240 \mathrm{~mm}^{2}$; delivery on request.

Dimensional drawings

3NJ41 .1-3, 250 to 630 A
1-pole switchable

3NJ41 51-5DB00 incoming block, 1000 A
1-pole switchable

Panel cut-out
with flush mounting for 3NJ56 43

Dimensional drawings

3NJ41 03, 160 A

3-pole switchable
for 100 mm center-
to-center clearance

3NJ41 . 3-3,
250 to 630 A
3-pole switchable
"ON" position

"OFF" position
(A) unlocked

Mounting of the in-line fuse switch disconnectors on busbars for 100 mm center-to-center clearance

Mounting of the in-line fuse switch disconnectors on busbars for 185 mm
center-to-center clearance
Minimum distance between the conductive parts of all bars: 100 mm

3NP, 3NJ4, 3NJ5 Fuse Switch Disconnectors
 3NJ4, 3NJ5 In-Line Fuse Switch Disconnectors up to 1250 A

3-pole switchable

3NJ41 03-3BF02
3-pole switchable

3NJ41 03-3BR02
3-pole switchable

Dimensional drawings

Blanking cover
for panel cut-out

3NJ49 12-2AA00
50 mm wide

Unequipped section covers

 for busbars3NJ49 12-3BA00
100 mm wide for 185 mm busbars

3NJ49 12-3CA00

50 mm wide for 100 mm busbars

3NJ59 74-0AB busbar supports

3NJ49 18-0EA00
adapters
for 60 mm busbar center-to-center clearance

3NJ49 18-0DA02

adapters

for 185 mm busbar
center-to-center clearance

 $\stackrel{1}{4}$

Width of busbars as required, but minimum clearance of 20 mm to the next busbar or conductive parts

1) Maximum screw-in length: 14 mm , tightening torque 30 Nm

3NJ49 11-3AA00

busbar terminals

[^0]: 1) 16 A versions have four contact elements; 3-pole changeover switches and 6-pole main control switches have six contact elements.
[^1]: ${ }^{1)}$ For labeling plates, see Accessory Parts.

[^2]: ${ }^{\text {1) }} \mathrm{h}=$ distance from upper edge of panel cut-out to center of disconnector mounting.

[^3]: 2) Cover is placed open on the switchgear cabinet panel, for cover behind control cabinet panel: cut-out dimensions on request
