GEN1600T / Signal Conditioner for RTD, Thermocouple \& Slidewire sensors

INTRODUCTION

The GEN1600T accepts resistance or mV signals from RTD, Slidewire or Thermocouple sensors. The flexible design allows the use of any resistive sensor within the range of (10 to 10500) Ω. Including P $\mathrm{P} 100,500,1000, \mathrm{Ni}$ or Cu sensors, slide wire sensors up to $100 \mathrm{~K} \Omega$ and 13 different thermocouple types. Other sensor characteristics or your own 22 point linearisation characteristic (for slidewire, linear resistance or mV) can be downloaded into the product enabling you to adapt it exactly to your application.

The output stage offers either voltage, bipolar voltage or current re-transmission signals. The retransmission signal can be ranged to a scale anywhere within the input process range. A transmitter power supply is provided on the output meaning the product can accept sink or source mA applications. While the voltage output will drive 2 mA into $5 \mathrm{~K} \Omega @ 10 \mathrm{~V}$

For ease of use, a high efficiency switch mode power supply is fitted as standard and does not require any adjustment between ac or dc applications. Operating voltages are (10 to 48) V dc and $(10$ to 32$) \mathrm{V} \mathrm{ac}$

A USB interface is fitted for quick and easy configuration. Just connect a standard USB cable between the GEN1600T and your PC. Using the configuration software, your PC will automatically upload the existing configuration data and guide you through any changes you wish to make. To further help save time, the GEN1600T does not need to be wired to a power supply during the configuration process, it is powered via the USB interface from your PC.

SPECIFICATION @2 $0^{\circ} \mathrm{C}$

RESISTANCE RID INPUT

Standard RTD
Slide wire
Resistance
Thermal Drift
Excitation current
Lead effect

PT100, PT500, PT1000, Cu100, Cu1000, Ni100, Ni120, Ni1000, Cu53, library
Pot range (1 to 100) K Ω, Signal (0 to 100) \%, accuracy 0.1%
(10 to 500$) \Omega \pm 0.055 \Omega$, (500 to 2500) $\Omega \pm 0.5 \Omega$, (2500 to 10500) $\Omega \pm 10.0 \Omega$.
(0 to 500) $\Omega 0.013 \Omega \mathrm{C},(500$ to 2500$) \Omega 0.063 \Omega \Omega^{\prime} \mathrm{C}$,
(2500 to 10500) $\Omega 0.27 \Omega \Omega^{\prime} \mathrm{C}$
< 200 uA
Max lead resistance 20Ω per leg, Effect $0.002{ }^{\circ} \mathrm{C} / \Omega$

THERMOCOUPLE mV INPUT

Standard TC mV
Thermal Drift
Cold Junction

OUTPUT CURRENT

Current Source
Current Sink
Accuracy
OUTPUT VOLTAGE

Range

Current Drive
SUPPLY
Range
Power
GENERAL
Response time
Isolation
Indication
USER INTERFACE

Type

Baud rate
Equipment

Types K,J,E,N,T,R,S,L, U,B,C(w 5),D(W3), G(W),library
(-100 to 200) $\mathrm{mV} \pm 0.02 \%$ of full scale.
Thermocouple offset $0.1 \mathrm{C}^{\mathrm{C}} / \mathrm{C}$, span $0.05^{\circ} \mathrm{C} / \mathrm{C}$
Range (-40 to 85) ${ }^{\circ} \mathrm{C}$, Accuracy $\pm 0.2^{\circ} \mathrm{C}, \pm 0.05^{\circ} \mathrm{C} / \mathrm{C}$

Range (0 to 21.5) mA , Max Load 750Ω
Range (0 to 21.5) mA , Supply (10 to 30) V dc , Voltage effect $0.2 \mathrm{uA} / \mathrm{V}$
(mA Out/ 2000) or 5 uA which ever is the greater, Drift $1 \mathrm{uA/C}$
(0 to 10.1) V or $(-10.1$ to 10.1) V , Accuracy $\pm 5 \mathrm{mV}$
$\pm 2 \mathrm{~mA}$, Min load $5000 \Omega @ 10 \mathrm{~V}$
(10 to 48) VDC , (10 to 32) VAC Protected by internal 500 mA resettable fuse.
< 1W Full Pow er

Start up 5 seconds, Update 300 mS , Response 400 mS , Warm up 2 minutes.
Supply to input to output 500 V dc.
LED, Green when output (-0.1 to 100.1) \%, else red

USB 2.0

19,200 baud
PC running windows XP or later, USB cable.

USER INTERFACE FUNCTIONS

Scaling
User signal to process value scaling, for simplified setup.
Filter Adjustable time constant (0 to100) Seconds.
User Linearisation (Profile) (2 to 22) segments Ω (slide wire) and mV to process.
Process Units
Temperature units
Tag Number
Process Output
Signal Output
User offset
Active scaling

ENVIRONMENT

Operating Ambient Storage Ambient Configuration Ambient Installation Enclosure

APPROVALS

CE
SENSORS RTD
Platinum IEC
Platinum IPTS-68
Ni100 DIN 0.00618
Ni1 200.00672
Ni 1000
Ni1000 Tk5000
Ni 507.5
Ni 604
Cu 53
Cu100 0.00427
Cu1000
Silicon

4 Characters (signal input only)
'C or ${ }^{\circ} \mathrm{F}$ (TC, RTD inputs only)
20 Characters
Range in process units
Select type, signal range and (temperature only) error signal.
Enter sensor offset (Temperature mode only).
Set output process range against active sensor input

(-30 to 70) C'; (10 to 90) \%RH (non condensing)
(-30 to 70) 'C; (10 to 90) \%RH (non condensing)
(10 to 30) ${ }^{\circ} \mathrm{C}$
DIN Rail enclosure offering Protection $>=$ IP65.

BS EN 61326

Accuracy $=0.2 \mathrm{C}+(0.05 \%$ of reading) (Plus sensor) Pt100 (-200 to 850) C, Pt500 (-200 to 750) 'C, Pt1000 (-200 to 600 $)^{\circ} \mathrm{C}$
Pt100 (0.00391) + Pt100 (0.00392) (-200 to 630) C
(-60 to 180) ${ }^{\circ} \mathrm{C}$
(-80 to 260) ${ }^{\circ} \mathrm{C}$
(-60 to 180) ${ }^{\circ} \mathrm{C}$
(-50 to 150) ${ }^{\circ} \mathrm{C}$
(-80 to 360) ${ }^{\circ} \mathrm{C}$
(-200 to 200) ${ }^{\circ} \mathrm{C}$
(-50 to 180) ${ }^{\circ} \mathrm{C}$
(-80 to 260) ${ }^{\circ} \mathrm{C}$
(-80 to 260) ${ }^{\circ} \mathrm{C}$
KTY81-110-120-121-122-150-210-220-221-222-250 (-55 to 175) C

KTY82-110-120-121-122-150-210-220-221-222-250 (-55 to 175) C KTY81-151, KTY82-151, KTY83-210-220-250-121-122 (-55 to 175) 'C KTY84-130-150 (-40 to 300) C

SENSORS THERMOCOUPLE

Types
Accuracy $\pm 0.1 \%$ of full scale $\pm 0.5{ }^{\circ} \mathrm{C}$ (plus sensor error) $K(-200 \text { to } 1370)^{\circ} \mathrm{C}, \mathrm{J}(-100 \text { to } 1200)^{\circ} \mathrm{C}, \mathrm{E}(-200 \text { to } 1000)^{\circ} \mathrm{C}, \mathrm{N}(-180 \text { to } 1300)^{\circ} \mathrm{C}$ $\mathrm{L}(-100 \text { to } 600)^{\circ} \mathrm{C}, \mathrm{U}(0 \text { to } 600)^{\circ} \mathrm{C}, \mathrm{B}(0 \text { to } 1800)^{\circ} \mathrm{C}, \mathrm{C}-\mathrm{D}-\mathrm{W}(0 \text { to 2300 })^{\mathrm{C}} \mathrm{C}$ Accuracy $\pm 0.2 \%$ of full scale $\pm 0.5^{\circ} \mathrm{C}$ (plus sensor error) T (-200 to 400) ${ }^{\circ} \mathrm{C}$
Accuracy $\pm 0.1 \%$ of full scale plus $\pm 0.5{ }^{\circ} \mathrm{C}$ (range 800 to 1600) ${ }^{\circ} \mathrm{C}$ $R(0 \text { to } 1760)^{\circ} \mathrm{C}, \mathrm{S}(0 \text { to } 1760)^{\circ} \mathrm{C}$

MECHANICAL
Style
Terminals
DIN 43880, Colour grey, material Polymide 6.6, weight <70 grams 2.5 mm Maximum

ELECTRICAL INSTALLATION

1.0 TUSN OFF SUPPLY BEFORE WOEXING ON ANY ELECTRICAL CONNECTION. 2.0 SUPPLY IS OVER VOLTAGE PBOTEC TED AND FUSED WITH AN INTERNAL RESET TABLE FUse.

CONNECTION
For cable length < 3 Metres no screen or twast pair required.
Use recommended types for cable length (3 to 30) metres.

Input Wires
Resktance sllide
Resermocouple wire
Screened Cable

Output Wires
Screened cable or
twisted pair

Note:
Open circuit signal detection is not
avallable on mV Input (Pins 7a \&).
Short crount, mil hput (Pns 7 a 8) with
read 0 mh at liput

