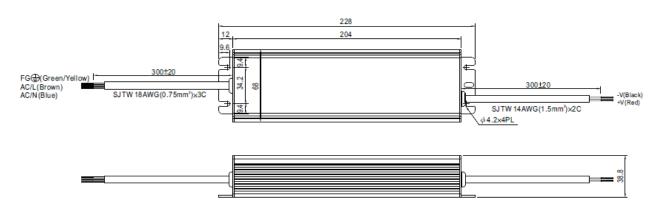
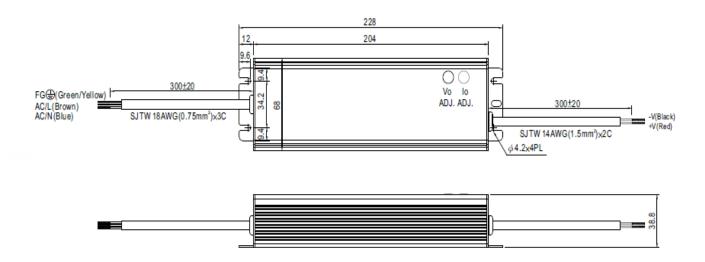


Dimmable Constant Voltage LED Driver 187.2W 36V 5.2A RS HLG-185-36A

RS Stock number 738-2429

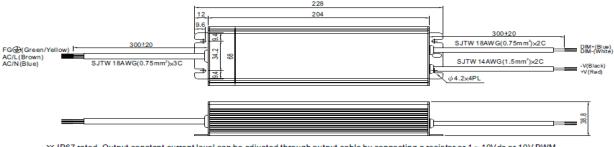
- Features :
- Universal AC input / Full range
- Built-in active PFC function
- High efficiency up to 94%
- · Protections: Short circuit / Overload / Over voltage / Over temperature
- Cooling by free air convection
- · OCP point adjustable through output cable or internal potential meter
- IP67 / IP65 design for indoor or outdoor installations
- Three in one dimming function (1~10Vdc or PWM signal or resistor)
- Suitable for LED lighting and street lighting applications
- Compliance to worldwide safety regulations for lighting
- Suitable for dry / damp / wet locations


MODEL			HLG-185-12	HLG-185-15	HLG-185-20	HLG-185-24	HLG-185-30	HLG-185-36	HLG-185-42	HLG-185-48	HLG-185-54		
	DC VOLTAGE		12V	15V	20V	24V	30V	36V	42V	48V	54V		
оитрит	CONSTANT CURRENT REGION Note.4		6~12V	7.5~15V	10~20V	12~24V	15~30V	18~36V	21~42V	24~48V	27~54V		
	RATED CURRENT		13A	11.5A	9.3A	7.8A	6.2A	5.2A	4.4A	3.9A	3.45A		
	RATED POWER		156W	172W	186W	187.2W	186W	187.2W	184.8W	187.2W	186.3W		
	RIPPLE & NOISE (max.) Note.2		150mVp-p	150mVp-p	150mVp-p	150mVp-p	200mVp-p	200mVp-p	200mVp-p	200mVp-p	200mVp-p		
	VOLTAGE ADJ. RANGE Note.6		10.8~13.5V	13.5~17V	17~22V	22~27V	27~33V	33~40V	38~46V	43~53V	49~58V		
	CURRENT ADJ. RANGE		Can be adjusted by internal potential meter or through output cable										
			6.5~13A	5.75~11.5A		3.9~7.8A	3.1~6.2A	2.6~5.2A	2.2~4.4A	1.95~3.9A	1.72~3.45A		
	VOLTAGE TOLERANCE Note.3		±2.5%	±2.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%		
	LINE REGULATION		±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%		
	LOAD REGULATION		±2.0%	±1.5%	±1.0%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%		
	SETUP, RISE TIME	E Note.8	2500ms, 80m	s at full load	230VAC/115	VAC ; B type:	2500ms, 200ms	s at 95% load	230VAC / 115	SVAC			
	HOLD UP TIME (T)	yp.)	16ms at full load 230VAC / 115VAC										
INPUT	VOLTAGE RANGE	Note.5	90~264VAC 127~370VDC										
	FREQUENCY RAN	IGE	47~63Hz										
	POWER FACTOR		PF≥0.95/230	VAC PF;	≥0.98/115VAC	C at full load an	d rated output v	voltage P	F≥0.9 at 50 ~	100% load			
	EFFICIENCY (Typ.)		92%	93%	93.5%	94%	94%	94%	94%	94%	94%		
		12V	1.8A / 115 VAC 0.8A / 230 VAC										
	AC CURRENT	15V~54V	2.1A / 115VAC 0.9A / 230VAC										
	INRUSH CURRENT (Typ.)		COLD START 75A/230VAC										
	LEAKAGE CURRENT		<0.75mA / 240VAC										
PROTECTION			95 ~ 108%										
	OVERCORRENT	Note.4	Protection type : Constant current limiting, recovers automatically after fault condition is removed										
	SHORT CIRCUIT		Constant current limiting, recovers automatically after fault condition is removed										
	OVER VOLTAGE		14~17V	18~21V	23~27V	28~34V	34~38V	41~46V	47 ~ 53V	54~60V	59~65V		
			Protection type : Shut down o/p voltage with auto-recovery or re-power on to recovery										
	OVERTEMPERATURE		100°C ±10°C (RTH2)										
			Protection type : Shut down o/p voltage, recovers automatically after temperature goes down										
	WORKING TEMP.		-40 ~ +60 °C @ full load ;+70 °C @ 60% load (Refer to derating curve)										
ENVIRONMENT	WORKING HUMIDITY		20 ~ 95% RH non-condensing										
	STORAGE TEMP., HUMIDITY		-40 ~ +80°C, 10 ~ 95% RH										
	TEMP. COEFFICIENT		±0.03%/°C (0~50°C)										
	VIBRATION		10 ~ 500Hz, 5G 12min./1cycle, period for 72min. each along X, Y, Z axes										
SAFETY & EMC	SAFETY STANDARDS Note.7		UL8750, EN61347-1, EN61347-2-13 independent IP65 or IP67 approved ; Design refer to UL60950-1, TUV EN60950-1										
	WITHSTAND VOLTAGE		I/P-O/P:3.75KVAC I/P-FG:1.88KVAC O/P-FG:0.5KVAC										
	ISOLATION RESISTANCE		I/P-O/P, I/P-FG, O/P-FG:100 M O hms / 500 V D C / 25 °C / 70% RH										
	EMI CONDUCTION & RADIATION												
	HARMONIC CURRENT		Compliance to EN61000-3-2 Class C (≥50% load) ; EN61000-3-3										
	EMS IMMUNITY		Compliance to EN61000-4-2,3,4,5,6,8,11; ENV50204, EN61547, EN55024, heavy industry level (surge 4KV), criteria A										
OTHERS	MTBF		192.2Khrs min. MIL-HDBK-217F (25°C)										
	DIMENSION		228*68*38.8n										
	PACKING		1.15Kg; 12pc	s/14.8Kg/0.760	UFT								


Mechanical Specification

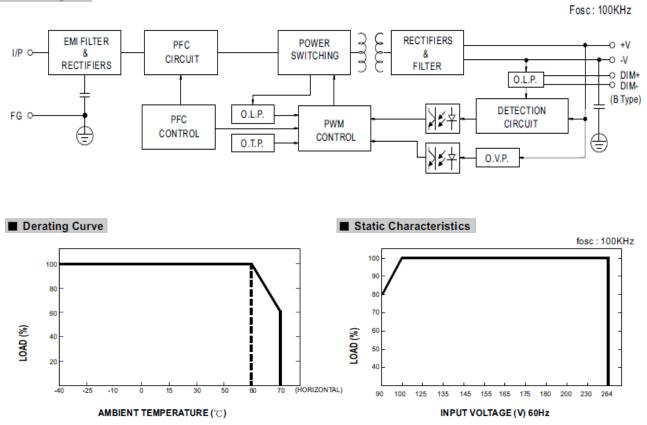
Case No.994D Unit:mm

Blank: (HLG-185)



A Type: (HLG-185-_A)

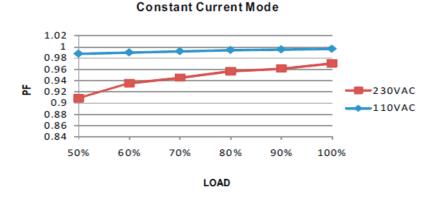
B Type:(HLG-185-_B)

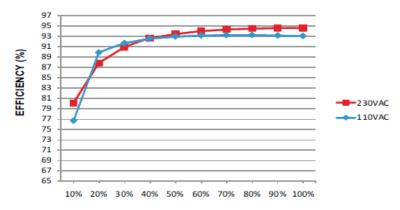


※ IP67 rated. Output constant current level can be adjusted through output cable by connecting a resistor or 1 ~ 10V dc or 10V PWM signal between DIM+ and DIM-.

※ Please DO NOT connect "DIM-" to "-V".

st Reference resistance value for output current adjustment (Typical)											
Resistance value	10Κ Ω	20Κ Ω	30Κ Ω	40K Ω	50K Ω	60K Ω	70Κ Ω	80K Ω	90Κ Ω	100K Ω	OPEN
Percentage of rated current	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	102%~108%
Dimming value	1V	2V	3V	4V	5V	6V	7V	8V	9V	10V	OPEN
Percentage of rated current	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	102%~108%
※ 10V PWM signal for output current adjustment (Typical): Frequency range :100HZ ~ 3KHz											
Duty value	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	OPEN
Percentage of rated current	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	102%~108%
	Reference resistance value for of Resistance value Percentage of rated current 1 ~ 10V dimming function for out Dimming value Percentage of rated current 10V PWM signal for output current Duty value	Reference resistance value for output cur Resistance value 10K Ω Percentage of rated current 10% 1 ~ 10V dimming function for output current 10% Dimming value 1V Percentage of rated current 10% 10V Percentage of rated current 10% 10V PWM signal for output current adjust 10% Duty value 10%	Reference resistance value for output current adju Resistance value 10KΩ 20KΩ Percentage of rated current 10% 20% 1 ~ 10V dimming function for output current adjust Dimming value 1V 2V Percentage of rated current 10% 20% 10V PPW signal for output current adjustment (Tyr) Duty value 10% 20%	Reference resistance value for output current adjustment (° Resistance value 10KΩ 20KΩ 30KΩ Percentage of rated current 10% 20% 30% 1 ~ 10V dimming function for output current adjustment (Typort adjustment) 1V 2V 3V Dimming value 1V 2V 3V Percentage of rated current 10% 20% 30% 10V PWM signal for output current adjustment (Typical): Fr 10% 20% 30%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ Percentage of rated current 10% 20% 30% 40% 1 ~ 10V dimming function for output current adjustment (Typical) Dimming value 1V 2V 3V 4V Percentage of rated current 10% 20% 30% 40% 10V PWM signal for output current adjustment (Typical): Frequency Duty value 10% 20% 30% 40%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ 50KΩ Percentage of rated current 10% 20% 30% 40% 50% 1 ~ 10V dimming function for output current adjustment (Typical) Dimming value 1V 2V 3V 4V 5V Percentage of rated current 10% 20% 30% 40% 50% 10V PWM signal for output current adjustment (Typical): Frequency range :10 10% 20% 30% 40% 50%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ 50KΩ 60KΩ Percentage of rated current 10% 20% 30% 40% 50% 60% 1 ~ 10V dimming function for output current adjustment (Typical) 1 2V 3V 4V 5V 6V Dimming value 1V 2V 3V 4V 50% 60% 10V PWM signal for output current adjustment (Typical): Frequency range :100HZ ~ 3F 10% 20% 30% 40% 50% 60%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ 50KΩ 60KΩ 70KΩ Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 1 ~ 10V dimming function for output current adjustment (Typical) Typical) Typical) 50% 60% 70% 0 imming value 1V 2V 3V 4V 5V 6V 7V Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 10V PWM signal for output current adjustment (Typical): Frequency range :100HZ ~ 3KHz Duty value 10% 20% 30% 40% 50% 60% 70%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ 50KΩ 60KΩ 70KΩ 80KΩ Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 80% 1 ~ 10V dimming function for output current adjustment (Typical) 1V 2V 3V 4V 5V 6V 7V 8V Dimming value 1V 2V 3V 4V 50% 60% 70% 80% 10V PWM signal for output current adjustment (Typical): Frequency range :100HZ ~ 3KHz Duty value 10% 20% 30% 40% 50% 60% 70% 80%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ 50KΩ 60KΩ 70KΩ 80KΩ 90KΩ Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 80% 90% 1 ~ 10V dimming function for output current adjustment (Typical) Typical) 40% 50% 60% 70% 80% 90% 1 ~ 10V dimming function for output current adjustment (Typical) 1V 2V 3V 4V 5V 6V 7V 8V 9V Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 80% 90% 10V PWM signal for output current adjustment (Typical): Frequency range :100HZ ~ 3KHz 10% 20% 30% 40% 50% 60% 70% 80% 90%	Reference resistance value for output current adjustment (Typical) Resistance value 10KΩ 20KΩ 30KΩ 40KΩ 50KΩ 60KΩ 70KΩ 80KΩ 90KΩ 100KΩ Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 80% 90% 100KΩ 1 ~ 10V dimming function for output current adjustment (Typical) 2V 3V 4V 5V 6V 7V 8V 9V 10V Dimming value 1V 2V 3V 4V 5V 6V 7V 8V 9V 10V Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Percentage of rated current 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10V PWM signal for output current adjustment (Typical): Frequency range :10/HZ ~ 3/HZ 20% 30% 40% 50% 60% 70% 80% 90% 100

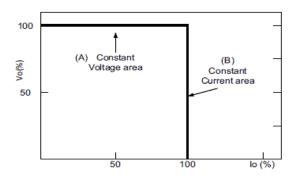

Block Diagram


Power Factor Characteristic

Power factor will be higher than 0.9 when output loading is 50% or higher.

EFFICIENCY vs LOAD (48V Model)

HLG-185 series possess superior working efficiency that up to 94% can be reached in field applications.



DRIVING METHODS OF LED MODULE

There are two major kinds of LED drive method "direct drive" and "with LED driver".

A typical LED power supply may either work in "constant voltage mode (CV) or constant current mode (CC)" to drive the LEDs.

Mean Well's LED power supply with CV+ CC characteristic can be operated at both CV mode (with LED driver, at area (A) and CC mode (direct drive, at area (B).

Typical LED power supply I-V curve

RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by engineers as giving comparable quality to that of the leading brands without paying a premium price.

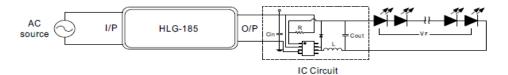
EN

O Direct driving :

Under direct driving, the power supply will work in "constant current mode (CC)" and output voltage of the power supply will be clamped by sum of forward voltage (VF) of the LED strip.

The total forward voltage of series connecting LEDs is suggested for 60%~95% of power supply rated output voltage due to concern of the best PF value and efficiency.

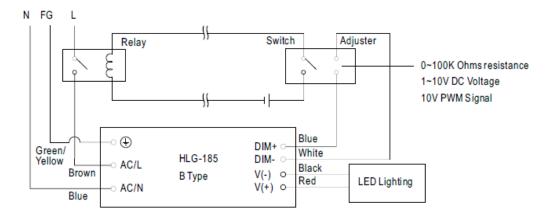
With LED driver :


Using additional driver, the power supply will work in "constant voltage mode (CV)" and output voltage of the power supply will be kept in rated value. In this drive mode, several design issues need to be considered:

1.Output voltage of PSU must be higher than total forward voltage of series connecting LEDs by 3V minimum.

2.Input capacitor (Cin) of LED driver circuit should use 47uF ~ 100uF(typ.) of rating depends on the operating frequency of the LED driver.

The higher the operating frequency is used, the smaller value of Cin should be chosen, and vice versa.


3.Do not use B type with LED driver.

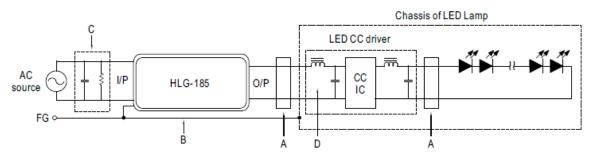
DIMMING OPERATION(for B-type only)

Using the built-in dimming function on B-type model can't turn the lighting fixture totally dark. Please refer to the connection method below to achieve 0% brightness of the lighting fixture connecting to the LED power supply unit.

O Dimming connection diagram for turning the lighting fixture ON/OFF :

Using a switch and relay can turn ON/OFF the lighting fixture.

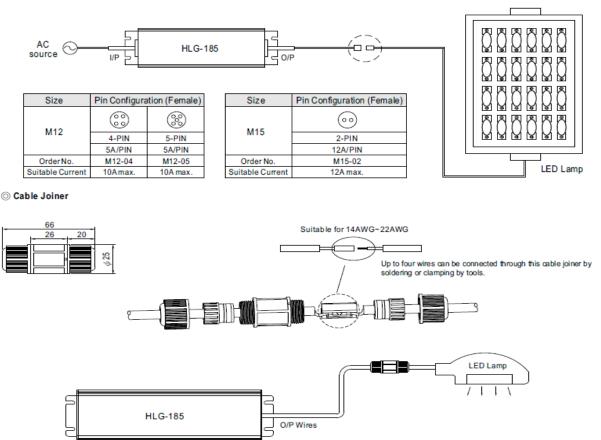
1. Output constant current level can be adjusted through output cable by connecting a resistor or 1~10Vdc or 10V PWM signal between DIM+ and DIM-.


2. The LED lighting fixture can be turned ON/OFF by the switch.

RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by engineers as giving comparable quality to that of the leading brands without paying a premium price.

EN

EMI DEBUG SUGGESTION



- A. Add a common mode ferrite choke on output wires to reduce the common emission between 10M ~ 300MHz per lighting EMI regulation.
- B. Chassis of LED lamp and chassis of HLG-185 or the FG wire should be connected to the safety ground to reduce the EMI noise, including the conduction and radiation emission.
- C. The additional X-Cap and discharge resistor can reduce the low/frequency conduction noise between 9K ~ 1MHz per lighting EMI regulation.
- D. L-C filter should be added at the DC input of LED constant current driver to avoid the differential emission and high frequency noise generated by the CC driver.

WATERPROOF CONNECTION

O Waterproof connector

Waterproof connector can be assembled on the output cable of HLG-185 to operate in dry/wet/damp or outdoor environment.

