High Speed Fuses

Section Contents

	Page
General Applications	.122-123
North American fuses & accessories	.124-141
DFJ - High speed Class J fuse	125
Square Body fuses & accessories	. 142-213
BS 88 fuses & accessories	.214-222
Ferrule fuses & accessories	.223-243

Dogo

Scan this tag to get the latest product information for High Speed Fuses.

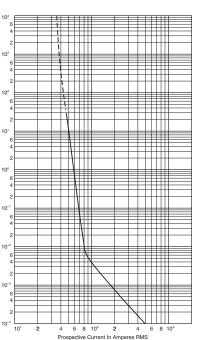
High Speed Fuses

General Applications

Rated Voltage

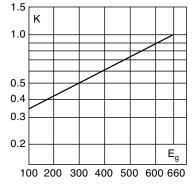
The AC voltage rating of Bussmann fuses is given in volts rms. Fuses tested to IEC are tested at 5% above their rated voltage. British Style BS 88 fuses are tested at 10% above its rated voltage. UL recognition tests are performed at the rated voltage.

Rated Current


Rated current is given in amps rms. Bussmann fuses can continuously carry the rated current.

Melting Characteristic

The melting characteristic shows the virtual melting time in seconds as a function of the prospective current in amps rms. The fuses are specially constructed for short-circuit protection against high level fault currents. Loading and operation of the fuse in the noncontinuous/dashed section of the melt curve must be avoided. The curve can also be read as the real melting time as a function of the RMS value of the pre-arc current.

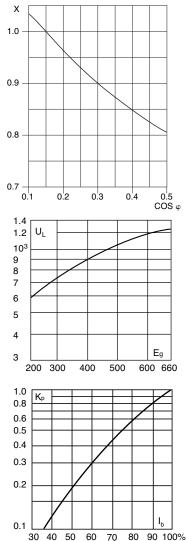

Pre-Arcing T

/irtual

Clearing Integrals

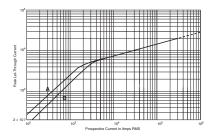
The total clearing I²t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing I²t is found by multiplying by correction factor, K, given as a function of applied working voltage, Eg, (rms).

Power Factor


For other power factor values, the total clearing integral can be calculated as a multiple of the clearing integrals, the correction factor K and the correction factor Х.

Arc Voltage

This curve gives the peak arc voltage, UI, which may appear across the fuse during its operation as a function of the applied working voltage, E_a, (rms) at a power factor of 15%.


Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_p , is given as a function of the RMS load current, Ib, in % of the rated current.

Cut-Off Current

A fuse operation relating to short-circuits only. When a fuse operates in its current-limiting range, it will clear a short-

circuit in less than $\ensuremath{\rlap/}{2}$ cycle. Also, it will limit the instantaneous peak let-through current to a value substantially less than

General Applications

that obtainable in the same circuit if that fuse were replaced with a solid conductor of equal impedance.

A asymmetrical current

B symmetrical current

Parallel Connection

When fuses are connected in parallel it is recommended that the applied voltage does not exceed 0.9 ${\rm U}_{\rm N}$ (the rated voltage of the fuse). This is due to the fact that the energy released within the fuses may be unevenly shared between the parallel connected barrels.

When fuses are connected in parallel, one must take into account that the current sharing is not necessarily equal. And it must be checked, that the maximum load current is not exceeded.

Series Connection

Fuses in series may not equally divide the applied voltage. It is recommended that series connected fuses should only be operated at fault currents that yield melting times less than 10 ms and a recovery voltage per fuse of less than or equal to 0.9 U_N (the rated voltage of the fuse).

Mounting Guidance

The recommendations below have to be followed when mounting a Bussmann fuse with end plate threaded holes.

1. Screw in studs: 5 N•m Max, 3 N•m Min

2. Attachment of the fuse to bussbar by means of nut and washer:

Thread	Torqu	e (N∙m)*
Configuration	Max	Min
5⁄16" − 18, M8	25	20
%" − 16, M10	45	40
∛"−24	45	40
½" – 13, M12	65	50
½" – 20	65	50
** **		

*1 N•m = 0.7375 lb-ft

Overloads

The design of Bussmann fuses is such that they can be operated under rather severe operating conditions imposed by overloads (any load current in excess of the maximum permissible load current).

In applications, there will be a maximum overload current, Imax, which can be imposed on the fuse with a corresponding duration and frequency of occurrence.

Time durations fall into two categories:

- 1. Overloads longer than one second
- 2. Overloads less than one second termed "impulse" loads.

The following table gives general application guidelines which, in the expression Imax < (% factor) x I_t . I_t is the

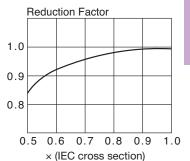
melting current corresponding to the time "t" of the overload duration as read from the time-current curve of the fuse. The guidelines in the table below determine the acceptability of the selected fuses for a given I_{max} .

Frequency of Occurrence Less than once per month Less than twice per week Several times per day Overloads (> 1 sec) I_{max} < 80% x I_t I_{max} < 70% x I_t I_{max} < 60% x I_t

 $\begin{array}{l} \mbox{Impulse Loads (< 1 sec)} \\ \mbox{I}_{max} < 70\% \ x \ \mbox{I}_t \\ \mbox{I}_{max} < 60\% \ x \ \mbox{I}_t \end{array}$

When impulse loads are an intrinsic/normal parameter of the load current either as single pulse or in trains of pulses or when their level is higher than the melting current at 0.01 seconds (per time-current curve), contact Bussmann for application assistance.

In addition to the parameters set forth in the preceding table, the RMS value of the load current as calculated for any period of 10 minutes or more should not exceed the maximum permissible load current.


Furthermore, it is important that a fuse should not be applied in the non-continuous/dashed portion of the associated time-current curve.

Any time-current combination point which falls in the non-continuous/dashed portion of the time-current curve is beyond the capability of the fuse to operate properly.

DC Operation

Depending upon the short-circuit time constant and the magnitude of the prospective short-circuit current, the dc voltage at which a fuse can be applied may be less than its ac rating. Long time constants require a lower dc voltage. Conversely, however, higher available prospective shortcircuit currents result in faster fuse openings and thus permit a fuse to be operated at a higher DC voltage.

Consult Bussmann for additional information and application assistance when fuses have to operate under DC conditions.

Reduction of permissible

Load Current Versus

Conductor Cross

Section

load current when the conductor cross section is less than that given in IEC Publication 269-1 & 4 valid for Bussmann high speed fuses.

Application Assistance

If you have application problems or need a fuse outside our standard program, please contact the nearest Bussmann representative. Phone numbers are shown on the back cover.

North American Fuses

Introduction

North Ame Catalog	erican Content	ts Amp	
Number	Volts	Range	Page
DFJ	600	1-600	125
FWA	130	1000-4000	126-127
FWA	150	70-1000	128-129
FWX	250	35-2500	130-131
FWH	500	35-1600	132-133
KAC	600	1-1000	134
KBC	600	35-800	135
FWP	700	5-1200	136-138
FWJ	1000	35-2000	139-140

Accessories

Fuse Bases

North American Fuse Ranges

Amps	Volts	AC	DC	
1000-4000	130	Х	Х	
70-1000	150	Х	Х	
35-2500	250	Х	Х	
35-1600	500	Х	Х	
1-1000	600	Х	_	
5-1200	700	Х	Х	
40-600	800	_	Х	
35-2000	1000	Х	_	

General Information

Bussmann offers a complete range of North American blade and flush-end style fuses and accessories. Their design and construction were optimized to provide:

- Low energy let-through (I²t)
- Low watts loss
- Superior cycling capability
- · Low arc voltage
- · Excellent DC performance

North American style fuses provide an excellent solution for medium power applications. While there are currently no published standards for these fuses, the industry has standardized on mounting centers that accept Bussmann fuses.

Voltage Rating

All Bussmann North American style fuses are tested at their rated voltage. Bussmann should be consulted for applications exceeding those values.

Accessories

External and internal open fuse indication is available for selected portions of the North American line. Fuse blocks are available for most applications.

141

Drive Fuse High Speed Fuses

DFJ Class J

Specifications

Description: High speed, current-limiting fuse. The Bussmann Drive Fuse will provide maximum protection for AC and DC drives and controllers and meet NEC[®] branch circuit protection requirements. The Drive Fuse has the lowest l²t of any branch circuit fuse to protect power semiconductor devices that utilize diodes, GTOs, SCRs and SSRs.

Dimensions: See page 21 for Class J dimensions. **Construction:** Melamine tube with silver fuse element.

Ratings:

Volts — 600Vac (or less), 450Vdc (or less)

Amps — 1-600A

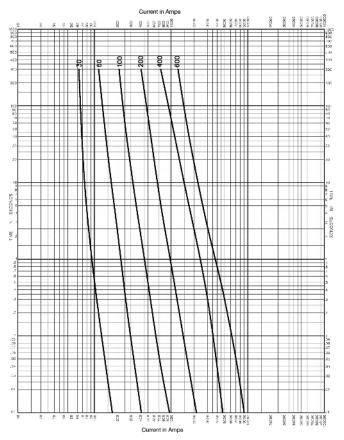
IR — 200kA RMS Sym., 100kA DC

Agency Information: CE, Std. 248-8, Class J, UL Listed, Guide JDDZ, File E4273, CSA Certified, Class 1422-02, File 53787.

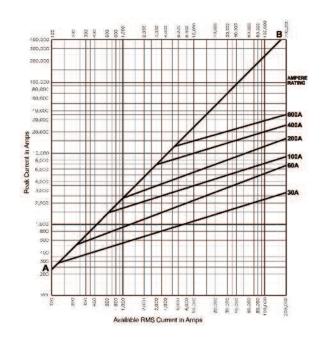
Features and Benefits

- Easily coordinated with existing and new variable speed drives and electric controllers.
- Standard Class J dimensions allowing the use of readily available fuse blocks, holders, and switches.
- Allows the lowest let-thru energy of any branch circuit overcurrent protective device.

Typical Applications


- Protection of AC and DC drives
- Equipment using power semiconductor devices

Catalog Numbers (Amps)


DFJ-1	DFJ-15	DFJ-70	DFJ-225
DFJ-2	DFJ-20	DFJ-80	DFJ-250
DFJ-3	DFJ-25	DFJ-90	DFJ-300
DFJ-4	DFJ-30	DFJ-100	DFJ-350
DFJ-5	DFJ-35	DFJ-110	DFJ-400
DFJ-6	DFJ-40	DFJ-125	DFJ-450
DFJ-8	DFJ-45	DFJ-150	DFJ-500
DFJ-10	DFJ-50	DFJ-175	DFJ-600
DFJ-12	DFJ-60	DFJ-200	

Data Sheet: 1048

Current Limitation Curves

tigh Speec Fuses

North American — FWA 130V: 1000-4000A

FWA

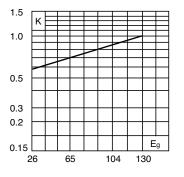
Specifications

Description: North American style flush-end high speed fuses.

Dimensions: See Dimensions illustrations.

Ratings:

Volts: - 130Vac

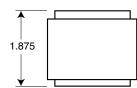

- Amps: 1000-4000A
 - IR: 200kA RMS Sym.
 - 50kA @130Vdc

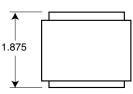
Agency Information: CE, UL Recognized JFHR2.E91958 on 1000-2000A fuses

Electrical Characteristics

Total Clearing I²t

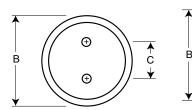
The total clearing I2t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing I2t is found by multiplying by correction factor, K, given as a function of applied working voltage, E_q, (rms).


Dimensions - in


Catalog Number	Fig.	в	С	D	Thread Depth
FWA-1000AH-2000AH	1	2.0	1.0	_	Tapped %"-24 x ½"
FWA-2500AH-3000AH	1	3.0	1.5	_	Tapped ½"-20 x ½"
FWA-4000AH	2	3.5	1.5	1.5	Tapped ½"-20 x ½"

1mm = 0.0394" / 1" = 25.4mm

Fig. 1: 1000-3000A


(←D→

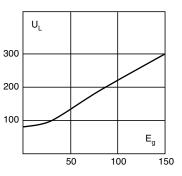
Ð

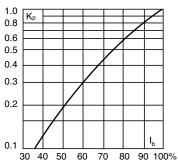
æ

Ð

Æ

Data Sheet: 720001




Arc Voltage

This curve gives the peak arc voltage, UL, which may appear across the fuse during its operation as a function of the applied working voltage, Eq, (rms) at a power factor of 15%.

Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_p, is given as a function of the RMS load current, Ib, in % of the rated current.

Catalog Numbers

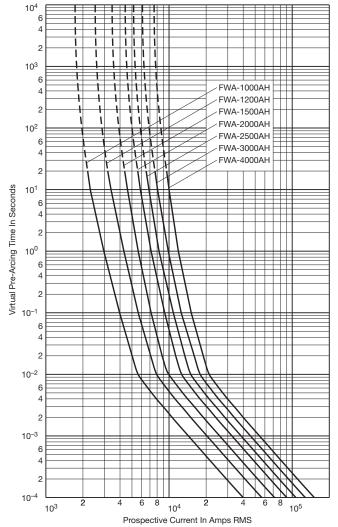
	Electrical Characteristics						
		I²t (A²	Sec)				
Catalog	Rated Current		Clearing	Watts			
Numbers	RMS-Amps	Pre-arc	at 130V	Loss			
FWA-1000AH	1000	170000	460000	60			
FWA-1200AH	1200	270000	730000	70			
FWA-1500AH	1500	520000	1400000	78			
FWA-2000AH	2000	860000	2400000	108			
FWA-2500AH	2500	1500000	4100000	130			
FWA-3000AH	3000	2100000	5700000	150			
FWA-4000AH	4000	3400000	9200000	257			

· Watts loss provided at rated current. · See accessories on page 141.

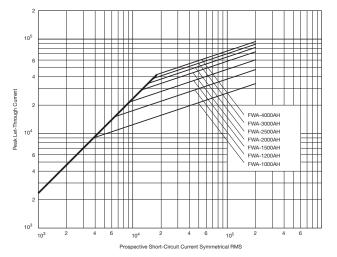
Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through (I²t)
- · Low watts loss
- · Superior cycling capability

Typical Applications


- DC Common bus
- · DC Drives
- Power converters/rectifiers
- Reduced voltage starters

↑ C


North American — FWA 130V: 1000-4000A

FWA 1000-4000A: 130V

Time-Current Curve

Peak Let-Through Curve

Data Sheet: 35785301

North American — FWA 150V: 70-1000A

lussmann

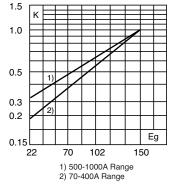
FWA

Specifications

Description: North American style stud-mount fuses.

Dimensions: See Dimensions illustrations.

Ratings:


- Volts: 150Vac/dc*
- Amps: 70-1000A
 - IR: 100kA Sym. (70-400A)
 - 200kA Sym. (450-1000A)
 - 20kA @150Vdc (70-800A)
 - 100kA @ 80Vdc (70-1000A)
- *1000A rated @ 80Vdc.

Agency Information: CE, UL Recognized JFHR2.E91958

Electrical Characteristics

Total Clearing I²t

The total clearing I²t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing I²t is found by multiplying by correction factor, K, given as a function of applied working voltage, E_q, (rms).

Dimensions - in

Fig. 1: 70-400A

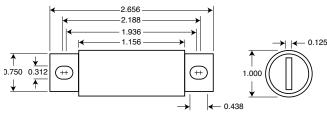
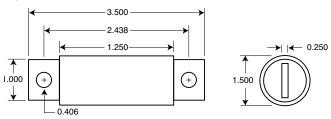
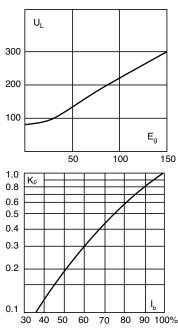



Fig. 2: 500-1000A

1mm = 0.0394" / 1" = 25.4mm

Data Sheet: 720002



Arc Voltage

This curve gives the peak arc voltage, U_I, which may appear across the fuse during its operation as a function of the applied working voltage, Eg, (rms) at a power factor of 15%.

Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, Kp, is given as a function of the RMS load current, Ib, in % of the rated current.

Catalog Numbers

	Electrical Characteristics							
	Rated	l²t (A	² Sec)					
Catalog	Current		Clearing	Watts				
Number	RMS-Amps	Pre-arc	at 150V	Loss				
FWA-70B	70	470	4000	6.9				
FWA-80B	80	670	6000	7.7				
FWA-100B	100	1200	12000	9.0				
FWA-125B	125	1870	18000	11.2				
FWA-150B	150	2700	26000	13.5				
FWA-200B	200	4780	45000	17.6				
FWA-250B	250	7470	70000	22.5				
FWA-300B	300	10760	100000	27.0				
FWA-350B	350	15700	140000	30.6				
FWA-400B	400	20300	180000	35.2				
FWA-500A	500	39000	120000	35.0				
FWA-600A	600	46000	140000	47.0				
FWA-700A	700	75000	220000	49.0				
FWA-800A	800	92000	280000	58.0				
FWA-1000A	1000	170000	510000	60.0				

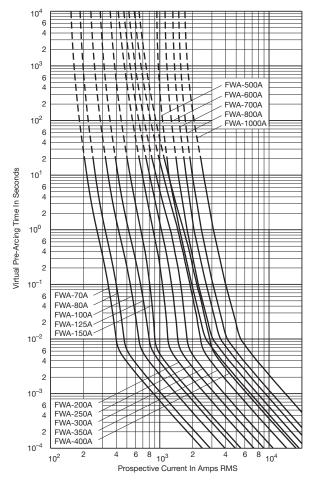
· Watts loss provided at rated current.

· See accessories on page 141.

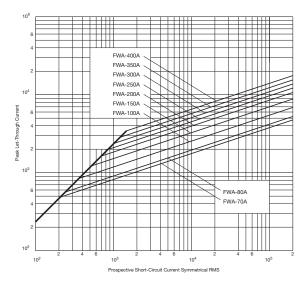
Features and Benefits

- Excellent DC performance
- · Low arc voltage and low energy let-through (I2t)
- Low watts loss
- Superior cycling capability

Typical Applications


- DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters

- 0.125


North American — FWA 150V: 70-1000A

FWA 70-1000A: 150V

Time-Current Curve

Peak Let-Through Curve

Data Sheet: 35785310

Bussmann

North American — FWX 250V: 35-2500A

FWX

Specifications

Description: North American style stud-mount and flush-end fuses.

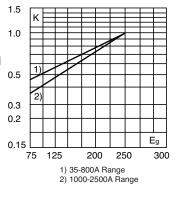
Dimensions: See Dimensions illustrations.

Ratings:

Volts: - 250Vac/dc

Amps: - 35-2500A

IR: - 200kA RMS Sym.


50kA@250Vdc (35-800A)

Agency Information: CE, UL Recognized JFHR2.E56412 & CSA Component Acceptance file Class 1422-30, (53787) on 35-800A fuses (50kA IR @250Vdc).

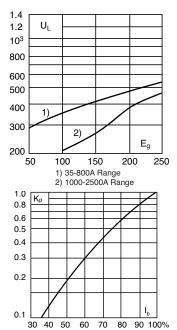
Electrical Characteristics

Total Clearing I²t

The total clearing l²t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing l²t is found by multiplying by correction factor, K, given as a function of applied working voltage, E_q , (rms).

Dimensions - in

Amn											Tapped Thread
Amp		-	_	-	_	_	_	_			
Range	Fig.	A	В	С	D	E	F	G	H	J	Depth
35-60	1	3.19	0.81	1.59	2.59	2.25	0.34	0.63	0.13	0.52	
70-200	1	3.13	1.22	1.59	2.44	2.19	0.34	1.00	0.19	0.47	
225-600	1	3.84	1.50	1.59	2.94	2.25	0.41	1.00	0.25	0.75	
700-800	1	3.84	2.00	1.59	3.03	2.28	0.41	1.50	0.25	0.78	
1000-1200	2	2.59	3.00	1.50	_	_	_	_	_	_	%"-24 x ½"
1500-2500	3	2.59	3.50	1.50	1.50	—	—	—	—	—	%"24 x ½"
1mm = 0.0394" / 1" = 25.4mm											


Fig. 1: 35-800A 1000-1200A 1500-2500A 1500-2500A 1500-2500A 1500-2500A 1500-2500A 1500-2500A 1500-2500A 1500-2500A 1000-1200A 1000-1200A1000-1200A

Arc Voltage

This curve gives the peak arc voltage, U_L , which may appear across the fuse during its operation as a function of the applied working voltage, E_g , (rms) at a power factor of 15%.

Power Losses

Watts loss at rated current is given in the electrical char acteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_p , is given as a function of the RMS load current, I_b , in % of the rated current.

Catalog Numbers

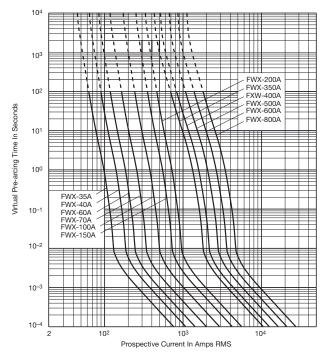
Catalog N	Catalog Numbers								
		ectrical Chara							
	Rated	I²t (A² S							
Catalog	Current		Clearing	Watts					
Number	RMS-Amps	Pre-arc	at 250V	Loss					
FWX-35A	35	50	230	4.2					
FWX-40A	40	60	310	5.2					
FWX-45A	45	80	390	5.7					
FWX-50A	50	100	520	6.0					
FWX-60A	60	140	740	8.1					
FWX-70A	70	330	1400	7.2					
FWX-80A	80	430	1850	8.1					
FWX-90A	90	570	2450	9.0					
FWX-100A	100	740	3150	10.0					
FWX-125A	125	1130	4850	12.5					
FWX-150A	150	1620	6950	15.7					
FWX-175A	175	2170	9300	18.5					
FWX-200A	200	2790	12000	22					
FWX-225A	225	3210	14700	24					
FWX-250A	250	3960	18100	27					
FWX-275A	275	4720	21600	31					
FWX-300A	300	6000	27300	32					
FWX-350A	350	10600	48600	39					
FWX-400A	400	14500	66100	44					
FWX-450A	450	22100	101000	49					
FWX-500A	500	28000	128000	54					
FWX-600A	600	41100	188000	62					
FWX-700A	700	48800	190000	72					
FWX-800A	800	59000	230000	84					
FWX-1000AH	1000	44000	360000	100					
FWX-1200AH	1200	92000	750000	103					
FWX-1500AH	1500	120000	880000	140					
FWX-1600AH	1600	160000	1200000	140					
FWX-2000AH	2000	320000	2300000	151					
FWX-2500AH	2500	670000	4700000	163					
Watts loss provid	ded at rated current	See access	pries on page 1	41					

Watts loss provided at rated current.
 See accessories on page 141.

Features and Benefits

- Excellent DC performance
- Low arc voltage and low energy let-through (l²t)
- Superior cycling capability

Typical Applications

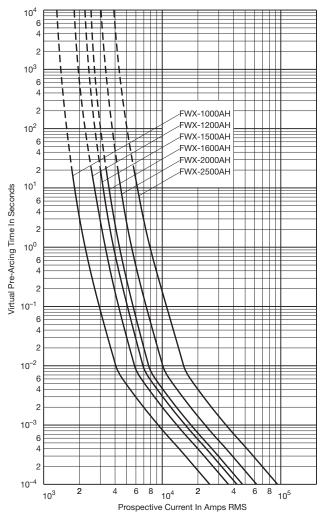

- DC Common bus
- DC Drives
- Power converters/rectifiers
- · Reduced voltage starters

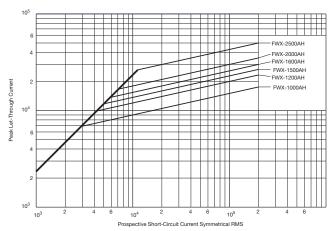
Data Sheet: 720005

North American — FWX 250V: 35-2500A

FWX 35-800A: 250V

Time-Current Curve


Peak Let-Through Curve


Data Sheet: 359

FWX 1000-2500A(H): 250V

Time-Current Curve

Peak Let-Through Curve

Data Sheet: 35785299

North American — FWH 500V: 35-1600A

FWH

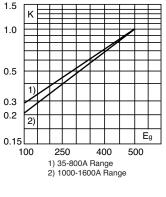
Specifications

Description: North American style stud-mount fuses.

Dimensions: See Dimensions illustration.

Ratings:

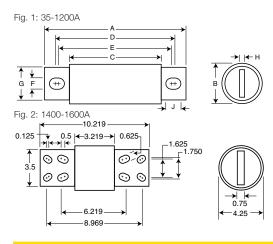
Volts: - 500Vac/dc (35-800A only)


- Amps: 35-1600A
 - IR: 200kA Sym.
 - 50kA @ 500Vdc (35-800A)

Agency Information: CE, UL Recognition JFHR2.E91958 FWH-_B (35-200A, 1000-1200A), JFHR2.E56412 FWH-_A (225-600A), CSA Component Acceptance Class 1422-30, File 53787 (35-1600A).

Electrical Characteristics

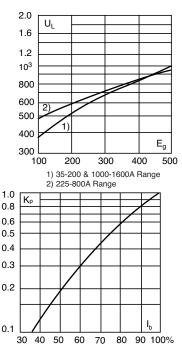
Total Clearing I²t


The total clearing l^2t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing l^2t is found by multiplying by correction factor, K, given as a function of applied working voltage, E_d, (rms).

Dimensions - in

Fig.	Α	В	С	D	Е	F	G	н	J
1	3.188	0.813	1.593	2.541	2.193	0.344	0.719	0.125	0.518
1	3.625	0.947	1.736	2.853	2.807	0.352	0.750	0.125	0.375
1	3.625	1.156	1.836	2.892	2.768	0.344	1.000	0.188	0.406
1	4.340	1.500	2.090	3.440	2.750	0.410	1.000	0.250	0.750
1	4.340	2.000	2.090	3.530	2.780	0.410	1.500	0.250	0.780
1	6.340	2.500	2.090	4.970	3.440	0.530	2.000	0.380	1.300
1	6.969	3.000	3.219	5.465	4.475	0.625	2.375	0.438	1.120
2	See D	rawing							
	1 1 1 1 1 1 1 1	1 3.625 1 3.625 1 3.625 1 4.340 1 4.340 1 6.340 1 6.969	1 3.188 0.813 1 3.625 0.947 1 3.625 1.156 1 4.340 1.500 1 4.340 2.000 1 6.340 2.500 1 6.969 3.000	3.188 0.813 1.593 1 3.625 0.947 1.736 1 3.625 1.156 1.836 1 4.340 1.500 2.090 1 4.340 2.000 2.090 1 6.340 2.500 2.090 1 6.969 3.000 3.219	1 3.188 0.813 1.593 2.541 1 3.625 0.947 1.736 2.853 1 3.625 1.156 1.836 2.892 1 4.340 2.000 3.640 1 4.340 2.000 2.090 3.530 1 6.340 2.500 2.090 4.970 1 6.969 3.000 3.219 5.465	1 3.188 0.813 1.593 2.541 2.193 1 3.625 0.947 1.736 2.853 2.807 1 3.625 0.947 1.736 2.853 2.807 1 3.625 1.156 1.836 2.892 2.768 1 4.340 1.500 2.090 3.440 2.750 1 4.340 2.000 2.090 3.530 2.780 1 6.340 2.500 2.090 4.970 3.440 1 6.969 3.000 3.219 5.465 4.475	1 3.188 0.813 1.593 2.541 2.193 0.344 1 3.625 0.947 1.736 2.853 2.807 0.352 1 3.625 1.156 1.836 2.892 2.768 0.344 1 4.340 1.500 2.090 3.440 2.750 0.410 1 4.340 2.000 2.090 3.530 2.780 0.410 1 6.340 2.000 2.090 3.440 0.530 1 6.340 2.500 2.990 4.970 3.440 0.530 1 6.969 3.000 3.219 5.465 4.475 0.625	1 3.188 0.813 1.593 2.541 2.193 0.344 0.719 1 3.625 0.947 1.736 2.853 2.807 0.352 0.750 1 3.625 0.947 1.736 2.853 2.807 0.352 0.750 1 3.625 1.156 1.836 2.892 2.768 0.344 1.000 1 4.340 1.500 2.090 3.440 2.750 0.410 1.000 1 4.340 2.000 2.090 3.530 2.780 0.410 1.500 1 6.340 2.500 2.090 4.970 3.440 0.530 2.000 1 6.969 3.000 3.219 5.465 4.475 0.625 2.375	1 3.188 0.813 1.593 2.541 2.193 0.344 0.719 0.125 1 3.625 0.947 1.736 2.853 2.807 0.352 0.750 0.125 1 3.625 0.947 1.736 2.853 2.807 0.352 0.750 0.125 1 3.625 1.156 1.836 2.892 2.768 0.344 1.000 0.188 1 4.340 1.500 2.090 3.440 2.750 0.410 1.000 0.250 1 4.340 2.500 2.090 3.530 2.780 0.410 1.500 0.250 1 6.340 2.500 2.090 3.430 0.530 2.000 0.380 1 6.969 3.000 3.219 5.465 4.475 0.625 2.375 0.438

1mm = 0.0394" / 1" = 25.4mm



Arc Voltage

This curve gives the peak arc voltage, U_L , which may appear across the fuse during its operation as a function of theapplied working voltage, E_g , (rms) at a power factor of 15%.

Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_p , is given as a function of the RMS load current, lb, in % of the rated current.

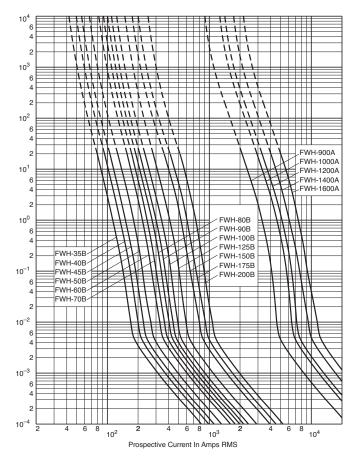
Catalog Numbers

	EI	Electrical Characteristics						
	Rated	l²t (A ² Sec)					
Catalog	Current		Clearing	Watts				
Numbers	RMS-Amps	Pre-arc	at 500V	Loss				
FWH-35B	35	34	150	8				
FWH-40B	40	76	320	7.5				
FWH-45B	45	105	450	7.5				
FWH-50B	50	135	670	7.5				
FWH-60B	60	210	900	9.9				
FWH-70B	70	210	900	10.6				
FWH-80B	80	305	1400	12.7				
FWH-90B	90	360	1600	15				
FWH-100B	100	475	2000	17				
FWH-125B	125	800	3500	25				
FWH-150B	150	1100	4600	30				
FWH-175B	175	1450	6200	35				
FWH-200B	200	1900	8500	40				
FWH-225A	225	4600	23300	39				
FWH-250A	250	6300	32200	41				
FWH-275A	275	7900	40300	46				
FWH-300A	300	9800	49800	51				
FWH-325A	325	13700	63800	53				
FWH-350A	350	14500	72900	58				
FWH-400A	400	19200	96700	65				
FWH-450A	450	24700	127000	74				
FWH-500A	500	29200	149000	84				
FWH-600A	600	41300	206000	108				
FWH-700A	700	55000	298000	120				
FWH-800A	800	76200	409000	129				
FWH-1000A	1000	92000	450000	145				
FWH-1200A	1200	122000	600000	180				
FWH-1400A	1400	200000	1000000	210				
FWH-1600A	1600	290000	1400000	230				
 Watts loss provi 	ded at rated current	See acce	essories on page	141.				

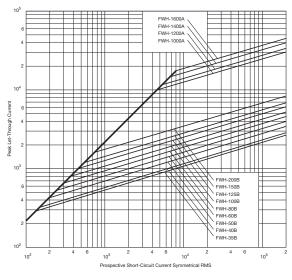
Features and Benefits

- Excellent DC performance
- Low arc voltage and low
- energy let-through (l2t)
- Superior cycling capability

Data Sheet: 720007

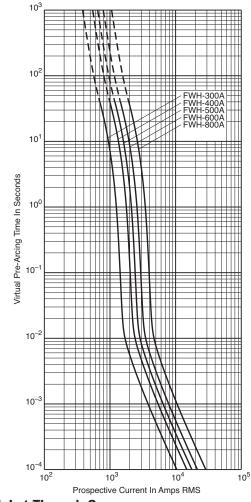

Typical Applications

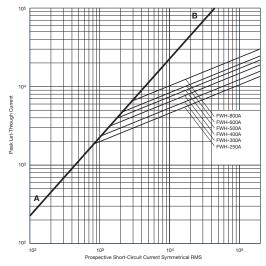
- DC Common bus
- DC Drives
- · Power converters/rectifiers
- · Reduced voltage starters


North American — FWH 500V: 35-1600A

FWH 35-200A(B) & 900-1600A(A): 500V

Time-Current Curve


Peak Let-Through Curve


Data Sheet: 35785304

FWH 250-800A: 500V

Time-Current Curve

Peak Let-Through Curve

Data Sheet: 360

High Speed Fuses

North American — KAC 600V: 1-1000A

KAC

Specifications

Description: North American style stud-mount fuses. These 600V fuses are supplied as replacements only. For new installations, Bussmann recommends the 700V FWP Series fuse.

Dimensions: See Dimensions illustrations.

Ratings:

Volts: - 600Vac

Amps: - 1-1000A

IR: – 200kA RMS Sym.

Agency Information: CE, UL Recognition JFHR2.E56413 on 1-600A only.

Catalog Numbers (Amps)

outding i		mp3/
KAC-1	KAC-25	KAC-175
KAC-2	KAC-30	KAC-200
KAC-3	KAC-35	KAC-225
KAC-4	KAC-40	KAC-250
KAC-5	KAC-45	KAC-300
KAC-6	KAC-50	KAC-350
KAC-7	KAC-60	KAC-400
KAC-8	KAC-70	KAC-450
KAC-9	KAC-80	KAC-500
KAC-10	KAC-90	KAC-600
KAC-12	KAC-100	KAC-700
KAC-15	KAC-110	KAC-800
KAC-17.5	KAC-125	KAC-1000
KAC-20	KAC-150	

· See accessories on page 141.

Features and Benefits

- · Low arc voltage and low energy let-through (I²t)
- Low watts loss
- Superior cycling capability

Typical Applications

- Power converters/rectifiers
- Reduced voltage starters

Dimensions - in

Amp											
Range	Fig.	Α	B1	B2	B3	C	D	E	F	G	H
1-30A	1	2.875	2.500	-	-	1.875	0.406	-	0.563	0.063	0.257
35-60A	2	4.375	-	3.750	3.500	2.750	0.625	0.343	0.813	0.094	0.468
70-100A	2	5.000	_	4.063	3.656	2.750	0.750	0.406	1.000	0.125	0.609
110-200A	2	5.140	-	4.390	3.766	2.906	1.000	0.406	1.500	0.188	0.718
225-400A	2	6.182	_	4.815	4.565	3.000	1.625	0.562	2.000	0.250	0.687
450-800A	1	6.250	4.750	-	_	3.063	2.000	-	2.500	0.250	0.563
1000A	1	7.250	4.750	-	-	3.063	2.750	-	3.500	0.375	0.563
1	A" 1 A"	05 4									

1mm = 0.0394" / 1" = 25.4mm

Fig. 1: 1-30 & 450-1000A

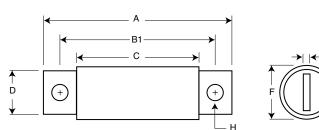



Fig. 2: 35-400A

Data Sheet: 720009

G

North American — KBC 600V: 35-800A

KBC 800

Bussmann

KBC

Specifications

Description: North American style stud-mount and flush-end fuses. These 600V fuses are supplied as replacements only. For new installations, Bussmann recommends the 700V FWP Series fuse.

Dimensions: See Dimensions illustrations.

Ratings:

Volts: - 600Vac

Amps: - 35-800A

IR: - 200kA RMS Sym.

Agency Information: CE, UL Recognition JFHR2.E56412 on 35-600A only.

Dimensions - in

Amp										
Range	Fig.	A	В	С	D	Е	F	G	Н	I
35-60A	1	4.375	3.750	3.500	2.750	0.343	0.625	0.813	0.094	0.468
70-100A	2	See Dr	awing							
110-200A	1	4.406	3.719	3.594	2.906	0.312	0.875	1.219	0.187	0.375
225-400A	1	5.125	4.188	3.563	2.906	0.406	1.000	1.500	0.250	0.719
450-600A	1	5.125	4.389	3.687	2.875	0.406	1.500	2.000	0.250	0.757
800A	3	See Dr	awing							

1mm = 0.0394" / 1" = 25.4mm

Fig. 1: 35-60 and 110-600A

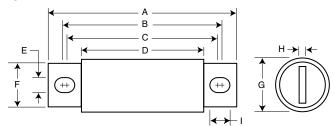


Fig. 2: 70-100A

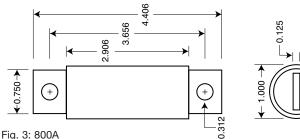
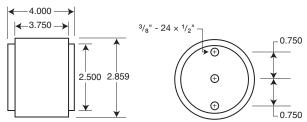



Fig. 3: 800A

Catalog Numbers (Amps)

		/
KBC-35	KBC-100	KBC-300
KBC-40	KBC-110	KBC-350
KBC-45	KBC-125	KBC-400
KBC-50	KBC-150	KBC-450
KBC-60	KBC-175	KBC-500
KBC-70	KBC-200	KBC-600
KBC-80	KBC-225	KBC-800
KBC-90	KBC-250	
See accessor	ies on page 141.	

Features and Benefits

- Low arc voltage and low energy let-through (I²t)
- · Low watts loss
- · Superior cycling capability

Typical Applications

- · Power converters/rectifiers
- · Reduced voltage starters

High Speec Fuses

North American — FWP 700V: 5-1200A

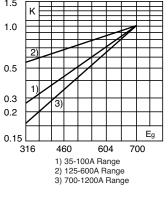
FWP

Specifications

Description: North American style stud-mount fuses.

Dimensions: See Dimensions illustrations.

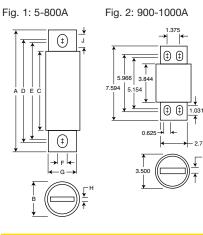
Ratings:

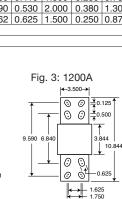

- Volts: 700Vac/dc
- Amps: 5-1200A
 - IR: 200kA RMS Sym.
 - 50kA @700Vdc

Agency Information: CE, UL Recognition JFHR2.E91958 FWP-_B (5-100A, 700-1200A), JFHR2.E56412 FWP-_A (125-600A) & CSA Component Acceptance file Class 1422-30, (53787) on 5-800A

Electrical Characteristics 1.5

Total Clearing I²t

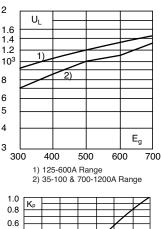

The total clearing I²t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing I²t is found by multiplying by correction factor, K, given as a function of applied working voltage, Eg, (rms).

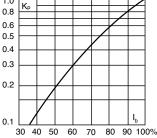


Dimensions - in

Amp										
Range	Fig.	Α	В	С	D	Е	F	G	н	
5-30	1	2.870	0.563	1.855	2.477	2.477	0.250	0.405	0.063	0.250
35-60	1	4.375	0.813	2.750	3.708	3.312	0.344	0.725	0.125	0.542
70-100	1	4.406	0.947	2.594	3.625	3.563	0.344	0.750	0.125	0.375
125-200	1	5.090	1.500	2.840	4.190	3.500	0.410	1.000	0.250	0.750
225-400	1	5.090	2.000	2.840	4.280	3.530	0.410	1.500	0.250	0.780
450-600	1	7.090	2.500	2.840	5.720	4.190	0.530	2.000	0.380	1.300
700-800	1	6.630	2.000	2.844	5.562	5.062	0.625	1.500	0.250	0.875
900-1000	2	See D	rawing							
1200	3	See D	rawing							

1mm = 0.0394" / 1" = 25.4mm


2,750


Arc Voltage

This curve gives the peak arc 1.6 voltage, UL, which may appear across the fuse during its operation as a function of the applied 6 working voltage, Eq, (rms) at a power factor of 15%.

Power Losses

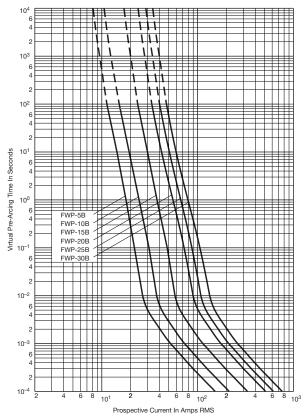
Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_n, is given as a function of the RMS load current, Ib, in % of the rated current.

Catalog Numbers

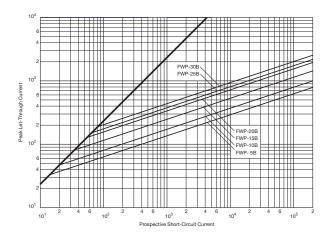
<u>Catalog I</u>	Numpers						
		Electrical Characteristics					
	Rated	l²t (A	² Sec)				
Catalog	Current		Clearing	Watts			
Numbers	RMS-Amps	Pre-arc	at 700V	Loss			
FWP-5B	5	1.6	10	1.5			
FWP-10B	10	3.6	20	4			
FWP-15B	15	10	75	5.5			
FWP-20B	20	26	180	6			
FWP-25B	25	44	340	7			
FWP-30B	30	58	450	9			
FWP-35B	35	34	160	12			
FWP-40B	40	76	320	12			
FWP-50B	50	135	600	12			
FWP-60B	60	210	950	15.5			
FWP-70B	70	305	2000	18			
FWP-80B	80	360	2400	21			
FWP-90B	90	415	2700	25			
FWP-100B	100	540	3500	27			
FWP-125A	125	1800	7300	28			
FWP-150A	150	2900	11700	32			
FWP-175A	175	4200	16700	35			
FWP-200A	200	5500	22000	43			
FWP-225A	225	7700	31300	45			
FWP-250A	250	10500	42500	48			
FWP-300A	300	17600	71200	58			
FWP-350A	350	23700	95600	65			
FWP-400A	400	31000	125000	78			
FWP-450A	450	36400	137000	94			
FWP-500A	500	45200	170000	107			
FWP-600A	600	66700	250000	122			
FWP-700A	700	54000	300000	125			
FWP-800A	800	78000	450000	140			
FWP-900A	900	91500	530000	150			
FWP-1000A	1000	120000	600000	170			
FWP-1200A	1200	195000	1100000	190			
· Watts loss prov	ided at rated current	· See accessorie	es on page 141.				

Features and Benefits

- Excellent DC performance
- Low arc voltage and low
- energy let-through (I²t)
- Superior cycling capability

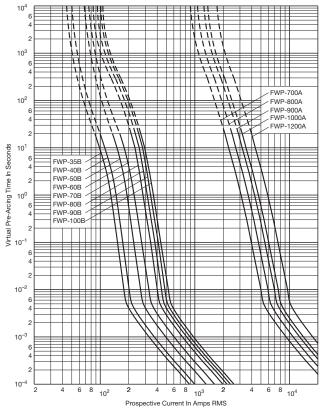

Data Sheet: 720012

- **Typical Applications** DC Common bus
- DC Drives
- Power converters/rectifiers
- Reduced voltage starters

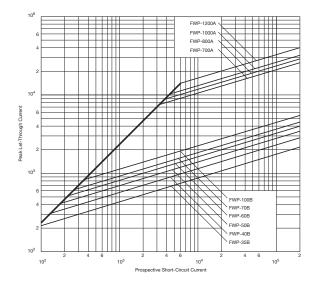

North American — FWP 700V: 5-1200A

FWP 5-30A(B): 700V

Time-Current Curve



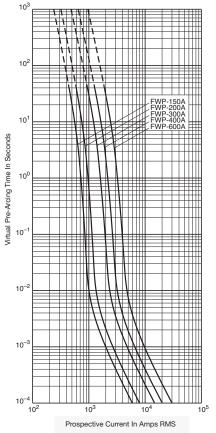
Peak Let-Through Curve



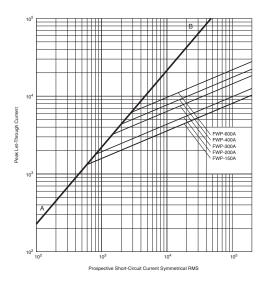
FWP 35-100A(B) & 700-1200A(A): 700V

Time-Current Curve

Peak Let-Through Curve



Data Sheet: 35785316


High Speed Fuses

FWP 150-600A: 700V

Time-Current Curve

Peak Let-Through Curve

North American — FWJ 1000V: 35-2000A

FWJ

Specifications

Description: North American style stud-mount fuses.

Dimensions: See Dimensions illustration.

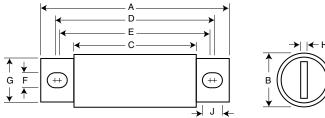
Ratings:

Volts: - 1000Vac/800Vdc

- Amps: 35-2000A
 - IR: 25kA (35-200A)
 - 100kA (250-2000A)
 50kA @ 800Vdc
 - (35-200A, 450-600A)

Agency Information: CE, UL Recognition JFHR8.E91958 on 35-600A only.

Electrical Characteristics

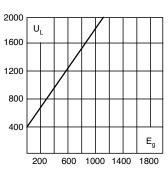

Total Clearing I²t

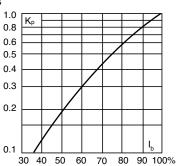
The total clearing l²t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing l²t is found by multiplying by correction factor, K, given as a function of applied working voltage, E_q , (rms).

Dimensions - in

Amp										
Range	Fig.	Α	В	С	D	E	F	G	Н	
35-60	1	5.000	0.940	3.110	4.235	4.180	0.352	0.750	0.125	0.380
70-100	1	4.932	1.125	3.085	4.266	4.156	0.352	1.000	0.188	0.407
125-200	1	5.685	1.526	3.261	4.803	4.055	0.445	1.000	0.250	0.819
250-400	1	5.768	2.000	3.500	4.811	4.150	0.433	1.500	0.250	0.764
500-600	1	7.201	2.500	3.465	5.984	4.706	0.562	2.000	0.375	1.201
800-2000	1	6.811	3.500	3.312	5.472	4.962	0.625	2.750	0.500	0.880
1mm = 0.0	394"	/ 1" = 25	.4mm							

Fig. 1: 35-2000A




Arc Voltage

This curve gives the peak arc voltage, U_L , which may appear across the fuse during its operation as a function of the applied working voltage, E_g , (rms) at a power factor of 15%.

Power Losses

Watts loss at rated current is given in the electrical the characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_p, is given as a function of the RMS load current, I_b, in % of the rated current.

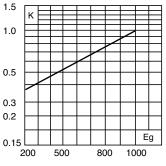
Catalog Numbers

Catalog I	vumbers						
	Electrical Characteristics						
	Rated	I2t (A2	Sec)				
Catalog	Current		Clearing	Watts			
Numbers	RMS-Amps	Pre-arc	at 1000V	Loss			
FWJ-35A	35	210	2000	7			
FWJ-40A	40	300	2500	8			
FWJ-50A	50	470	3500	10			
FWJ-60A	60	670	5000	11			
FWJ-70A	70	1100	6900	12			
FWJ-80A	80	1550	9700	13			
FWJ-90A	90	1900	12000	14			
FWJ-100A	100	2800	17500	15			
FWJ-125A	125	4800	35000	16			
FWJ-150A	150	6300	45000	25			
FWJ-175A	175	7500	65000	30			
FWJ-200A	200	11700	80000	32			
FWJ-250A	250	16000	112000	50			
FWJ-300A	300	23500	164000	56			
FWJ-350A	350	33000	231000	62			
FWJ-400A	400	47000	330000	67			
FWJ-500A	500	39500	329000	95			
FWJ-600A	600	61000	520000	105			
FWJ-800A	800	87000	500000	182			
FWJ-1000A	1000	190000	1100000	206			
FWJ-1200A	1200	370000	2100000	240			
FWJ-1400A	1400	470000	2700000	248			
FWJ-1600A	1600	700000	4000000	267			
FWJ-1800A	1800	925000	5300000	239			
FWJ-2000A	2000	1330000	7600000	244			

Watts loss provided at rated current.
See accessories on page 141.

Features and Benefits

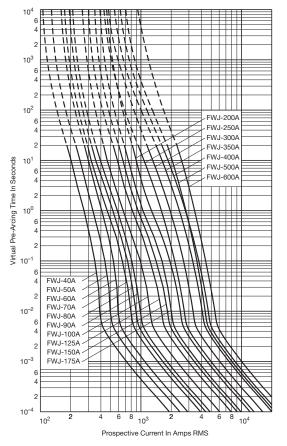
- Excellent DC performance
- Low arc voltage and low energy let-through (l²t)
- Low watts loss
- Superior cycling capability


Typical Applications

- · DC Common bus
- DC Drives
- Power converters/rectifiers
- · Reduced voltage starters

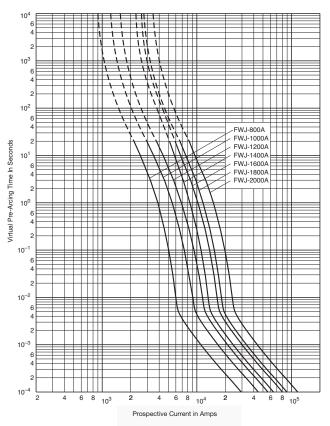
Data Sheet: 720027

For product data sheets, visit www.cooperbussmann.com/DatasheetsEle

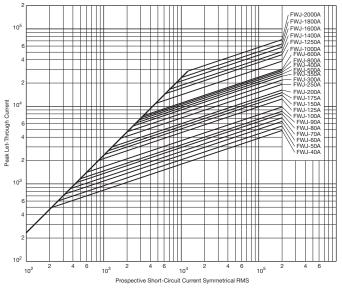


High Speed Fuses

North American — FWJ 1000V: 35-2000A


FWJ 35-600A: 1000V

Time-Current Curve


FWJ 800-2000A: 1000V

Time-Current Curve

Data Sheet: 35785309

Peak Let-Through Curve

Data Sheet: 35785303

For product data sheets, visit www.cooperbussmann.com/DatasheetsEle

North American Fuse Accessories

Fuse Bases (Blocks)

Modular Style

Bussmann offers a comprehensive line of fuse bases that provide the user with design and manufacturing flexibility. Two identical half bases make up a Bussmann modular fuse base. These "split" units can be panel mounted any distance apart to accommodate any length fuse.

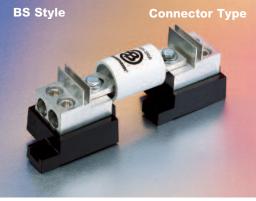
Stud Type (Not sold in pairs)

The simpler design is the C5268 Series modular fuse base. With this design, the fuse terminal and cable (with termination) are mounted on the same stud, minimizing labor needed for installation. The stud type base is available in the configuration shown in the table below.

Catalog Number	Max Fuse Amp Rating	Stud Height (in)	Stud Dia. & Threads
C5268-1	200	1.00	%6 ″-18
C5268-2	200	1.75	%6 ″-18
C5268-3	200	0.75	%6 ″-18
C5268-4	100	1.00	1⁄4″-20
C5268-5	100	1.75	1⁄4″-20

Connector Type

Bussmann also offers a modular style fuse base that utilizes a tin-plated connector (for wire termination and heat dissipation) and a plated-steel stud (for fuse mounting). The connector type fuse base is available in the configurations shown below. Consult Bussmann for additional product details.


Modular Base Style	Max Voltage	Max Fuse Amp Rating	Data Sheet Number	
1BS101	600	100	1206	
1BS102	600	400	1207	
1BS103	600	400	1208	
1BS104	600	600	1209	
BH-0xxx	700	100	1200	
BH-1xxx	2500	400	1201	
BH-2xxx	5000	400	1202	
BH-3xxx	1250	700	1203	

Refer to page 306 for BH style holders.

Fixed Center Base Style

Bussmann offers a comprehensive line of fixed mount style fuse bases under the trademark TRON[™] rectifier fuse blocks. The cable and fuse connections are similar to the stud type fuse base — both are mounted on the same stud. Consult Bussmann for complete product details.

