

Product Specification

Part Number: FDS20x2(116x37)TBP

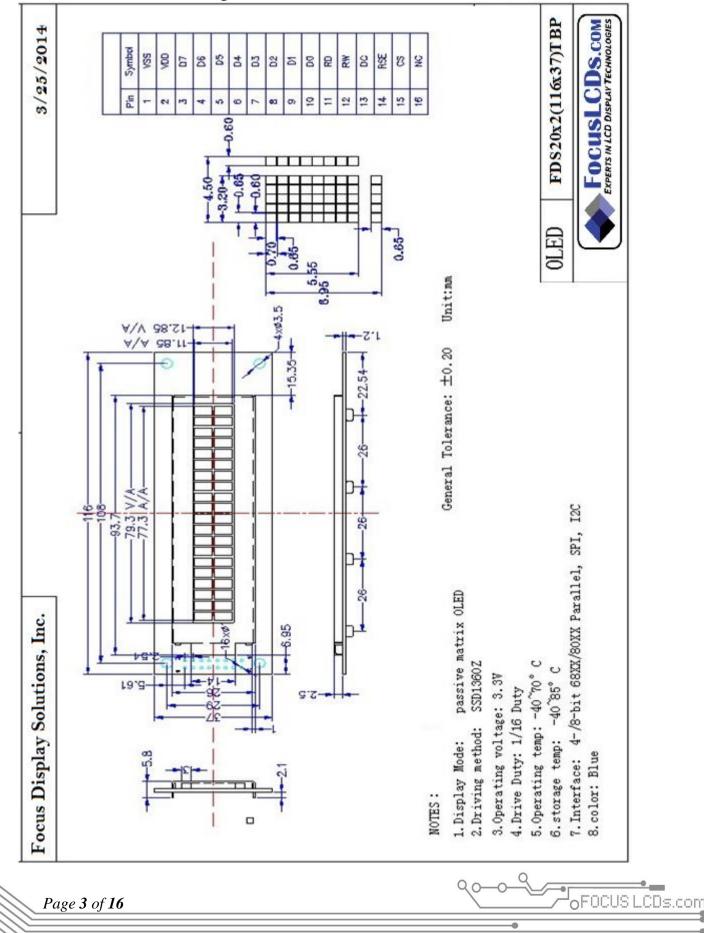
Revision:	Ver 1.0
Issue Date:	3/29/2014

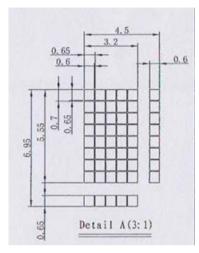
Approved By	Review By	Prepared By
	Control 🗌 Yes	
	Document 🗌 No	
	Confidential Yes	
	Document 🗌 No	

1.Module Basic Specification

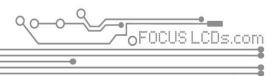
- **1.1 Display Specifications**
 - 1) Display Mode: Passive Matrix OLED
 - 2) Display Color: White
 - 3) Drive Duty: 1/16 Duty
 - 4) Controller Driver: SSD1360Z

1.2 Module Features


Items	Specification	Unit
Diagonal A/A Size	3.05	Inch
Number of dots	20 Characters (5x8 dots)x2 Lines	dot
Module size	116 x 37 x 5.8	mm
Active Area	77.3 x 11.85	mm
viewing Area	79.3 x 12.85	mm
Character Pitch	3.9 x 6.3	mm
Character Size	3.2 x 5.55	mm
Dot Pitch	0.65 x 0.70	mm
Dot Size	0.60x 0.65	mm
General Tolerance	± 0.20	mm


1.3 Mechanical Drawing

-


1.4 - Active Area / Address Mapping & Character Construction

	1	2	3	4	5	6	7	8	9	10	11	12	13
LINE1	04h	05h	06h	07h	08h	09h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh	10h
LINE2	44h	45h	46h	47h	48h	49h	4Ah	4Bh	4Ch	4Dh	4Eh	4Fh	50h

	14	15	16	17	18	19	20
LINE1	11h	12h	13h	14h	15h	16h	17h
LINE2	51h	52h	53h	54h	55h	56h	57h

FOCUSLCDS.COM EXPERTS IN LCD DISPLAY TECHNOLOGIES

1.5 Pin Definition

Pin number	Symbol	Туре	Function
1	VSS	Р	Power supply ground
2	VDD	Р	3.3V power supply
3~10	D7~D0	I/O	These are 8-bit bi-directional data bus to be connected to the microprocessor's data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK.When I2C mode is selected, D2 & D1 should be tired together and serve as SDA-out & SDA-in in application and D0 is the serial clock input SCL.
11	RD	Ι	When interface to a 6800-series microprocessor, this pin will be used as the Enable (E) signal, When interface to an 8080-microprocessor, this pin receives the Read(RD#)signal.
12	RW	Ι	This is read/write control input pin connecting to the MCU interface. When interface to a 6800-series microprocessor, Read mode will be carried out when this pin is pulled HIGH and write mode when low .When interface to an 8080-microprocessor, this pin will be the data Write input. When serial interface is selected, this pin must be connected to Vss
13	DC	Ι	This is DATA/COMMAND control pin. When it is pulled HIGH, the data at $D[0~7]$ is treated as data. When it is pulled LOW, the data at $D[0~7]$ will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams.
14	RSE	Ι	This pin is reset signal input (active LOW)
15	CS	Ι	This pin is chip select input (active LOW)

1.6 Jump

BS0 /BS1 /BS2:MUC bus interface selection pin.

BS2	BS1	BS0	Interface
0	0	0	Serial Interface
0	1	0	I ² C
1	0	0	8-bit 6800 parallel
1	1	0	8-bit 6800 parallel

Notes: "0" connection GND and "1" connection VDD.

SPI and I2C interface version PCB are available

FOCUSI

2.Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage for logic	V _{DD}	-0.3	3.6	V	1,2
Supply Voltage for display	V_{CC}	0	13	V	1,2
Operating Temperature	Тор	-40	70	°C	-
Storage Temperature	Тятб	-40	85	°C	-
Life time (100cd/m ²)(white)		20000	-	hour	3

Notes1:

All the above voltages are on the basis of "Vss =0V "

Notes2:

When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur, also for normal operations, it is desirable to use this module under the conditions according to Section 3."Optics and Electrical Characteristics "If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

Notes3:

 V_{CC} = 7.25V, Ta = 25 $^\circ~$ C, 50% Checkerboard.

Software configuration follows Section 6.4 Initialization. End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

3.Optics & Electrical Characteristics

3.1 Optics Characteristics

Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
Brightness	L _{br}	Note4	120	150	-	cd/m ²
C.I.E(White)	(x) (y)	C.I.E 1931	0.26 0.28	0.30 0.32	0.34 0.36	
Dark Room Contrast	CR		-	10,000:1	-	
View Angle			-	Free		- degree

Optical measurement taken at V_{DD} =2.8V, V_{CC} =7.25V. Software configuration follows Section 4.4 Initialization.

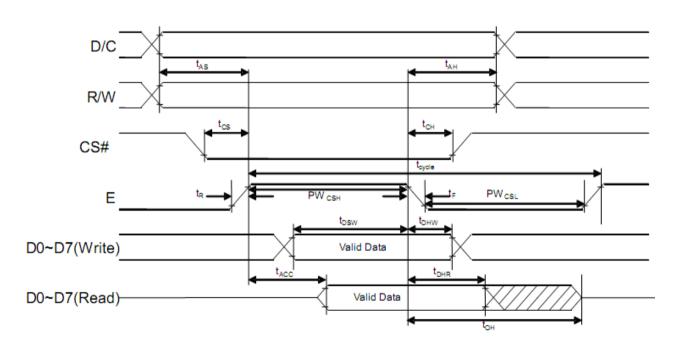
3.2 DC Characteristics

Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
Cumular Valtage for Logic	V	InternalRegulatorEnable(Output)	-	3.3	-	V
Supply Voltage for Logic	V_{DD}	InternalRegulatorDisable(Input)	2.4	-	3.6	V
Supply Voltage for I/O	V	5V Voltage Mode	4.4	-	5.5	V
Supply Voltage for I/O	V _{DDIO}	Low Voltage Mode	2.4	-	3.6	V
Supply Voltage for Display	V _{CC}	Note4	7	12	12.5	V
High Level Input	V_{IH}	-	$0.8 \times V_{DDIO}$	-	V _{DDIO}	V
Low Level Input	V _{IL}	-	0	-	$0.2 \times V_{DDIO}$	V
High Level Output	V _{OH}	$I_{OUT}=100\mu A, 3.3 MHz$	$0.9 \times V_{DDIO}$	-	V _{DDIO}	V
Low Level Output	V _{OL}	$I_{OUT}=100\mu A, 3.3 MHz$	0	-	$0.1 \times V_{DDIO}$	V
Operating Current for V_{DD}	I_{DD}	-	-	180	300	μA
Operating Currentfor V _{CC}	т	Note5	-	16	21	mA
(V _{CC} Supply Externally)	I _{CC}	Note6	-	27	32	mA
Sleep Mode Current for	I _{DD,SLEE}			1	10	
V _{DD}	Р	-	-	1	10	μA
Sleep Mode Current for	I _{CC} , SLEE		_	2	10	μΑ
V _{CC}	Р	-	-	Δ	10	μΑ

Note 4: VDD =2.8V,VCC =12V, 30% Display Area Turn on.

Note 5: VDD =2.8V,VCC =12V, 100% Display Area Turn on.

Software configuration follows Section 4.4 Initialization.

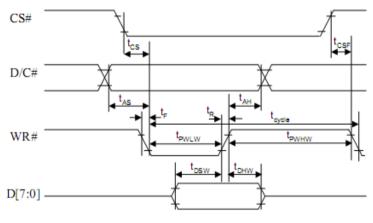


3.3 AC Characteristics

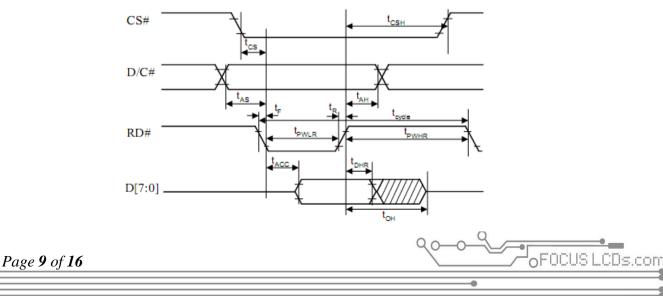
3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics:

 $(TA=25^{\circ}C, V_{DD} - V_{SS}=1.65V \text{ to } 3.3V)$

Symbol	Parameter	Min	Туре	Max	Unit
tcycle	Clock Cycle Time (write cycle)	400	-	-	ns
tas	Address Setup time	13	-	-	ns
tан	Address Hold time	17	-	-	ns
tdsw	Write Data Setup Time	35	-	-	ns
tdhw	Write Data Hold time	18	-	-	ns
tdhr	Read Data Hold Time	13	-	-	ns
toн	Output Disable Time	-	-	90	ns
tacc	Access Time (RAM) Access Time (command)	-	-	200	ns
PWcsl	Chip Select Low Pulse Width (read RAM)	250	-	-	ns
	Chip Select Low Pulse Width (read command)	250	-	-	ns
	Chip Select Low Pulse Width (write)	50	-	-	ns
РWсsн	Chip select High Pulse Width (read)	155	-	-	ns
	Chip Select High Pulse Width (write)	55	-	-	ns
tr	Rise Time	-	-	15	ns
tr	Fall Time	-	-	15	ns



3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics:


 $(TA=25^{\circ}C, V_{DD} - V_{SS}=1.65V \text{ to } 3.3V)$

Symbol	Parameter	Min	Туре	Max	Unit
tcycle	Clock Cycle Time (write cycle)	400	-	-	ns
tas	Address Setup time	13	-	-	ns
tан	Address Hold time	17	-	-	ns
tcs	Chip Select time	0	-	-	ns
tсsн	Chip select Hold Time To read signal	0	-	-	ns
tcsf	Chip select hold time	0	-	-	ns
tdsw	Write Data Setup Time	35	-	-	ns
tdhw	Write Data Hold time	18	-	-	ns
tdhr	Read Data Hold Time	13	-	-	ns
toн	Output Disable Time	-	-	70	ns
tacc	Access Time	-	-	200	ns
t PWLR	Read Low time	250	-	-	ns
tpwlw	Write Low time	50	-	-	ns
t PWHR	Read High time	155	-	-	ns
tpwhw	Write High time	55	-	-	ns
tr	Rise Time	-	-	15	ns
tf	Fall Time	-	-	15	ns

Write cycle

Read Cycle

4. Functional Specification

4.1 Commands

Command	R S	R/ W	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Description				
Clear	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM and set DDRAM address to "00H" from AC.				
Display Return Home	0	0	0	0	0	0	0	0	1	X	Set DDRAM address to "00H", return cursor to its original position, if shifted. The contents of DDRAM are not changed.				
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Assign cursor / blink moving direction with DDRAM address: I/D = "1": cursor/ blink moves to right & DDRAM address is increased by 1 (POR) I/D = "0": cursor/ blink moves to left & DDRAM address is decreased by 1 Assign display shift with DDRAM address. S = "1": make display shift of the enabled lines by the DS4 to DS1 bits in the shift enable instruction. Left/ right direction depends on I/D bit selection. S = "0": display shift disable (POR)				
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display/cursor/blink ON/OFF D = "1": display ON, D = "0": display OFF (POR), C = "1": cursor ON, C = "0": cursor OFF (POR), B = "1": blink ON, B = "0": blink OFF (POR).				
Cursor or Display Shif	0	0	0	0	0	1	S/ C	R/ L	X	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data. S/C = "1": display shift, S/C = "0": cursor shift, R/L = "1": shift to right, R/L = "0": shift to left				
Function set	0	0	0	0	1	D L	N	R E	BR 1	BR 0	Parallel bus width, DL when DL= "1" (POR): 8-bit, when DL = "0": 4-bit Numbers of display line, N when N = "1" (POR): 2-line, when N = "0": 1-line Extension register, RE ("0") Brightness ratio, BR[1:0] (% setting of different contrast level) 00: 100%, 01: 75%, 10: 50%, 11: 25%				
Set CGRAM address	0	0	0	1	C			enera Add	tor (C ress	G)	Set CGRAM address in address counter. (POR=00 0000)				
Set DDRAM Address	0	0	1	Disj	play I		DD) or Ac		Addro	ess /	Set DDRAM address in address counter. (POR=000 0000)				
Write data	1	0		Write Data							Write data into internal RAM (DDRAM / CGRAM).				
Read Data	1	1				Read	Data	L			Read data from internal RAM (DDRAM / CGRAM).				

Page 10 of 16

QO OFOCUS LCDs.com

FOCUSI

4.2 Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

- 4.2.1 Power up Sequence:
 - 1. Power up V_{DD}
 - 2. Send Display off command
 - 3. Initialization
 - 4. Clear Screen
 - 5. Power up V_{CC}
 - 6. Delay 100ms (When V_{CC} is stable)
 - 7. Send Display on command

4.2.2 Power down Sequence:

- 1. Send Display off command
- 2. Power down V_{CC}
- 3. Delay 100ms (When V_{CC} has reach 0 and panel is completely discharged)
- 4. Power down V_{DD}

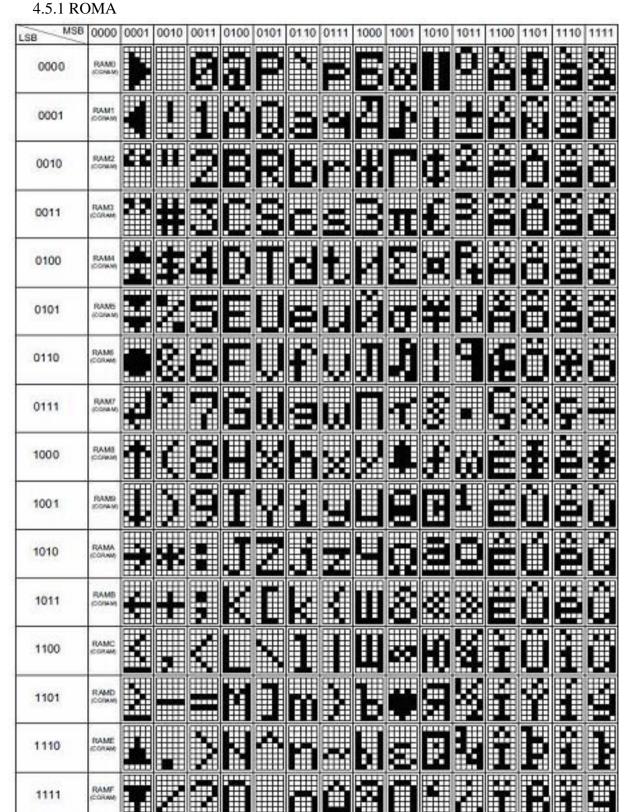
Note :

- 1) Since an ESD protection circuit is connected between V_{DD} and V_{CC} inside the driver IC, V_{CC} becomes lower than V_{DD} whenever V_{DD} is ON and V_{CC} is OFF.
- 2) V_{CC} should be kept float (disable) when it is OFF.
- 3) Power Pins (V_{DD} , V_{CC}) can never be pulled to ground under any circumstance.
- 4) V_{DD} should not be power down before V_{CC} power down.

4.3 **OLED Init_IC** Void Init_IC()

{

Write_Command(0x01); Write_Command(0x02); Write_Command(0x06); Write_Command(0x0c);	Write_Data(0x20); //Clear Display // Return Home // Entry Mode Set // Display ON /OFF Control
Write_Command(0xD3); Write_Command(0x00); Write_Command(0x40);	<pre>// Set Display Offset // Set Display Start Line</pre>
white_Command(0x40),	// Set Display Start Line
Write_Command(0X38);	// Function Set
Write_Command(0x3c);	// Function Set re
Write_Command(0x71); Write_Data(0x00);	// Function Selection A
Write_Command(0x72); Write_Data(0x04);	// Function Selection B
Write_Command(0x79);	// OLED characterization
Write_Command(0x81); Write_Command(0x70);	// contrast control
Write_Command(0xd5); Write_Command(0x80);	<pre>// display divide ratio/osc. freq. mode // Osc. Freq:360kHz,DivideRation:1</pre>
Write_Command(0xd9); Write_Command(0x22);	// set pre-charge period // set period
Write_Command(0xda); Write_Command(0x10);	// Set SEG Pins Hardware Configuration
Write_Command(0xDB); Write_Command(0x00);	// VCOMH deselect level mode
Write_Command(0xDC);	// Set VSL / GPIO
Write_Command(0x01);	// enanble GPIO
Write_Command(0x78); // Write_Command(0x38);	// close SD



}

4.4 SSD1360Z CGROM Character Code

Page **13** of **16**

C 90 -0 oFOCUS LCDs.com

FOCUSLCDS.COM EXPERTS IN LCD DISPLAY TECHNOLOGIES

TFT | OLED | Character | VATN Bistable | Graphic | Touch Panels Segment | Custom Solutions

4.5.2 RMOB

LSB	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	RAMO															
0001	RAM1 (CORAM)															
0010	RAM2 (DGRAW)							r			I					
0011	RAM3 (conum)															
0100	RAM4 (CORM)							ł,								
0101	RAMS (corw)											đ				
0110	RAM6 (CORAN)		8				ł		Ö			T				
0111	RAM7 (CORAM)									ø						Π
1000	RAM8 (CORAN)													ļ		
1001	RAM9 (CORW)															
1010	RAMA (CONAM)															
1011	RAMB (00/1AH)															
1100	RAMC														đ	
1101	RAMD (CORM)						IL TATES									
1110	RAME (CORAM)		L III													
1111	RAMF (CORAM)															

Page 14 of 16

oFOCUS LCDs.co

4.5.3 ROMC

SB MSB	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	RAMO (CGRAM)															
0001	RAM1 (CORAN)															
0010	RAM2 (CORMA)															
0011	RAMS (CORAM)									Π						
0100	RAMA (CORAM)															
0101	RAMS (CORAN)															
0110	RAME															
0111	RAM7 (CORAM)															
1000	RAMB (CGRIM)															
1001	RAM9 (CONAM)															
1010	RAMA (DORAM)															
1011	RAMB (CORAM)										**					
1100	RAMC CORM				_											
1101	RAMD (COREM)						COLUMN TWO IS NOT			The second second						
1110	RAME (CORAM)										R					
1111	RAMP (CORM)															10000

Page **15** of **16**

oFOCUS LCDs.com

- 5. Relibality
 - 5.1 Contents of Reliability Tests

Item	Conditions	Criteria		
High Temperature Operation	70°C, 240 hrs			
Low Temperature Operation	-40°C, 240 hrs			
High Temperature Storage	80°C, 240 hrs	The operational		
Low Temperature Storage	-40°C, 240 hrs	functions work.		
High Temperature/Humidity Operation	60°C, 90% RH, 120 hrs			
Thermal Shock	-40°C ⇔ 85°C, 24 cycles 60 mins dwell			

* The samples used for the above tests do not include polarizer.

* No moisture condensation is observed during tests.

5.2 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23+/-5°C; 55+/-15%RH.

6. Outgoing Quality Control Specifications

6.1 Environment Required

Customers test & measurement are required to be conducted under the following conditions:

∂	
Temperature:	23+/-5°C
Humidity:	55 + (-15% RH)
Fluorescent Lamp:	30W
Distance between the Panel & Eyes of the Inspector :	\geq 50cm
Finger glove (or finger cover) must be worn by the inspector.	\geq 30cm
Inspection table or jig must be anti-electrostatic.	

6.2 Sampling Plan

Level II, Normal Inspection, Single Sampling, MIL-STD-105E

