

# **Product Specification**

# Part Number: FDS16x2(75x31)TBP

| <b>Revision:</b> | Ver 1.0   |
|------------------|-----------|
|                  |           |
| Icouo Doto.      | 2/15/2014 |
| issue Date:      | 2/15/2014 |

| Approved By | Review By          | <b>Prepared By</b> |
|-------------|--------------------|--------------------|
|             |                    |                    |
|             |                    |                    |
|             |                    |                    |
|             | Control 🗌 Yes      |                    |
|             | Document 🗌 No      |                    |
|             | Confidential 🗌 Yes |                    |
|             | Document 🗌 No      |                    |
|             |                    |                    |





# **1.Module Basic Specification**

- **1.1 Display Specifications** 
  - 1) Display Mode: Passive Matrix OLED
  - 2) Display Color: Blue (monochrome)
  - 3) Drive Duty: 1/16 Duty
  - 4) Controller Driver: SSD1311
  - 1.2 Module Features

| Items             | Specification                                        | Unit |
|-------------------|------------------------------------------------------|------|
| Diagonal A/A Size | 2.06                                                 | Inch |
| Number of dots    | 16 Characters ( $5 \times 8$ dots ) $\times 2$ Lines | dot  |
| Module size       | $80 \times 36 \times 6.3$                            | mm   |
| Active Area       | $51.175 \times 10.78$                                | mm   |
| viewing Area      | 53.175×12.78                                         | mm   |
| Character Pitch   | 3.235×5.71                                           | mm   |
| Character Size    | $2.65 \times 5.07$                                   | mm   |
| Dot Pitch         | $0.54 \times 0.64$                                   | mm   |
| Dot Size          | $0.49 \times 0.59$                                   | mm   |
| General Tolerance | $\pm 0.20$                                           | mm   |











# **FOCUSLCDS.COM** EXPERTS IN LCD DISPLAY TECHNOLOGIES

### 1.4 Pin Definition

| Pin number | Symbol | Туре | Function                                                                                                                                                                                                                                                                                                                                                                              |
|------------|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | VSS    | P    | Power supply ground                                                                                                                                                                                                                                                                                                                                                                   |
| 2          | VDD    | Р    | 3.3V power supply                                                                                                                                                                                                                                                                                                                                                                     |
| 3~10       | D7~D0  | I/O  | These are 8-bit bi-directional data bus to be connected to<br>the microprocessor's data bus. When serial mode is<br>selected, D1 will be the serial data input SDIN and D0<br>will be the serial clock input SCLK. When I <sup>2</sup> C mode is<br>selected, D2 & D1 should be tired together and serve as<br>SDAout & SDAin in application and D0 is the serial<br>clock input SCL. |
| 11         | RD     | Ι    | When interface to a 6800-series microprocessor, this pin<br>will be used as the Enable(E) signal, When interface to<br>an 8080-microprocessor, this pin receives the<br>Read(RD#)signal.<br>This is read/write control input pin connecting to the                                                                                                                                    |
| 12         | RW     | Ι    | MCU interface. When interface to a 6800-series<br>microprocessor, Read mode will be carried out when this<br>pin is pulled HIGH and write mode when low .When<br>interface to an 8080-microprocessor, this pin will be<br>the data Write input. When serial interface is selected,<br>this pin must be connected to Vss                                                               |
| 13         | DC     | I    | This is DATA/COMMAND control pin. When it is<br>pulled HIGH, the data at $D[0~7]$ is treated as data. When<br>it is pulled LOW, the data at $D[0~7]$ will be transferred<br>to the command register. For detail relationship to MCU<br>interface signals, please refer to the Timing<br>Characteristics Diagrams.                                                                     |
| 14         | RSE    | Ι    | This pin is reset signal input (active LOW)                                                                                                                                                                                                                                                                                                                                           |
| 15         | CS     | Ι    | This pin is chip select input (active LOW)                                                                                                                                                                                                                                                                                                                                            |

#### 1.5 Jump

| BS0 /BS1 /BS2:MUC bus inter | rface selection pin. |
|-----------------------------|----------------------|
|-----------------------------|----------------------|

| BS2 | BS1 | BS0 | Interface           |
|-----|-----|-----|---------------------|
| 1   | 0   | 0   | 8-bit 6800 parallel |
| 1   | 0   | 1   | 4-bit 6800 parallel |
| 1   | 1   | 0   | 8-bit 8080 parallel |
| 1   | 1   | 1   | 4-bit 8080 parallel |

Notes: "0"connection GND and "1"connection V<sub>DD</sub>.





# **FOCUSLCDS.COM** EXPERTS IN LCD DISPLAY TECHNOLOGIES

| Parameter                                 | Symbol   | Min   | Max | Unit | Notes |
|-------------------------------------------|----------|-------|-----|------|-------|
| Supply Voltage for logic                  | $V_{DD}$ | -0.3  | 5.5 | V    | 1,2   |
| Supply Voltage for display                | $V_{CC}$ | 0     | 13  | V    | 1,2   |
| Operating Temperature                     | Тор      | -40   | 70  | °C   | -     |
| Storage Temperature                       | Тятс     | -40   | 85  | °C   | -     |
| Life time (100cd/m <sup>2</sup> )(yellow) |          | 50000 | -   | hour | 3     |
| Life time (100cd/m <sup>2</sup> )(green)  |          | 50000 | -   | hour | 3     |
| Life time (100cd/m <sup>2</sup> )(blue)   |          | 50000 | -   | hour | 3     |

# 2.Absolute Maximum Ratings.

#### Notes1:

All the above voltages are on the basis of "Vss =0V "

#### Notes2:

When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur, also for normal operations, it is desirable to use this module under the conditions according to Section 3."Optics and Electrical Characteristics "If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

#### Notes3:

 $V_{CC} = 7.25 V$ , Ta = 25° C, 50% Checkerboard.

Software configuration follows Section 6.4 Initialization. End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

# **3.Optics & Electrical Characteristics**

| Characteristics    | Symbol          | Conditions | Min          | Тур          | Max          | Unit              |
|--------------------|-----------------|------------|--------------|--------------|--------------|-------------------|
| Brightness         | L <sub>br</sub> | Note4      | 120          | 150          | -            | cd/m <sup>2</sup> |
| C.I.E(Blue)        | (x)<br>(y)      | C.I.E 1931 | 0.46<br>0.45 | 0.50<br>0.49 | 0.54<br>0.53 |                   |
| Dark Room Contrast | CR              |            | -            | 10,000:1     | -            |                   |
| View Angle         |                 |            | -            | Free         | -            | degree            |

3.1 Optics Characteristics

Optical measurement taken at  $V_{DD} = 2.8V, V_{CC} = 7.25V$ . Software configuration follows Section 4.4 Initialization.







# 3.2 DC Characteristics

Note 4:  $V_{DD} = 2.8V, V_{CC} = 12V, 30\%$  Display Area Turn on. Note 5:  $V_{DD} = 2.8V, V_{CC} = 12V, 100\%$  Display Area Turn on. Software configuration follows Section 4.4 Initialization.

| Characteristics                      | Symbol                 | Conditions                      | Min                | Тур | Max                   | Unit |
|--------------------------------------|------------------------|---------------------------------|--------------------|-----|-----------------------|------|
| Supply Voltage fot Lagia             | V                      | InternalRegulatorEnable(Output) | -                  | 3.3 | -                     | V    |
| Supply voltage for Logic             | V DD                   | InternalRegulatorDisable(Input) | 2.4                | -   | 3.6                   | V    |
| Supply Voltage for I/O               | V                      | 5V Voltage Mode                 | 4.4                | -   | 5.5                   | V    |
| Supply voltage for 1/O               | V DDIO                 | Low Voltage Mode                | 2.4                | -   | 3.6                   | V    |
| Supply Voltage for<br>Display        | V <sub>CC</sub>        | Note4                           | 7                  | 12  | 12.5                  | V    |
| High Level Input                     | $V_{IH}$               | -                               | 0.8×V <sub>D</sub> | -   | V <sub>DDIO</sub>     | V    |
| Low Level Input                      | $V_{IL}$               | -                               | 0                  | -   | $0.2 \times V_{DDIO}$ | V    |
| High Level Output                    | $V_{OH}$               | $I_{OUT}$ =100 $\mu$ A,3.3MHz   | $0.9 \times V_D$   | -   | V <sub>DDIO</sub>     | V    |
| Low Level Output                     | $V_{OL}$               | $I_{OUT}$ =100 $\mu$ A,3.3MHz   | 0                  | -   | $0.1 \times V_{DDIO}$ | V    |
| Operating Current for $V_{DD}$       | $I_{DD}$               | -                               | -                  | 180 | 300                   | μA   |
| Operating Currentfor V <sub>CC</sub> | т                      | Note5                           | -                  | 16  | 21                    | mA   |
| (V <sub>CC</sub> Supply Externally)  | I <sub>CC</sub>        | Note6                           | -                  | 27  | 32                    | mA   |
| Sleep Mode Current for $V_{DD}$      | I <sub>DD,SLEEP</sub>  | -                               | -                  | 1   | 10                    | μΑ   |
| Sleep Mode Current for $V_{CC}$      | I <sub>CC</sub> ,sleep | -                               | -                  | 2   | 10                    | μΑ   |







## 3.3 AC Characteristics

3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics:

| 0 - |                                                           |
|-----|-----------------------------------------------------------|
|     | $(TA=25^{\circ}C.V_{DD} - V_{SS}=1.65V \text{ to } 3.3V)$ |

| Symbol | parameter                                  | Min | Туре | Max | Unit |
|--------|--------------------------------------------|-----|------|-----|------|
| tcycle | Clock Cycle Time (write cycle)             | 400 | -    | -   | ns   |
| tas    | Address Setup time                         | 13  | -    | -   | ns   |
| tан    | Address Hold time                          | 17  | -    | -   | ns   |
| tdsw   | Write Data Setup Time                      | 35  | -    | -   | ns   |
| tdhw   | Write Data Hold time                       | 18  | -    | -   | ns   |
| tdhr   | Read Data Hold Time                        | 13  | -    | -   | ns   |
| toн    | Output Disable Time                        | 10  | -    | 90  | ns   |
| tacc   | Access Time (RAM)                          |     |      | 125 | ne   |
|        | Access Time (command)                      | -   | -    | 123 | 115  |
| PWcsl  | Chip Select Low Pulse Width (read RAM)     | 250 | -    | -   | ns   |
|        | Chip Select Low Pulse Width (read command) | 250 | -    | -   | ns   |
|        | Chip Select Low Pulse Width (write)        | 50  | -    | -   | ns   |
| PWcsh  | Chip select High Pulse Width (read)        | 155 | -    | -   | ns   |
|        | Chip Select High Pulse Width (write)       | 55  | -    | -   | ns   |
| tr     | Rise Time                                  | -   | -    | 15  | ns   |
| tF     | Fall Time                                  | -   | -    | 15  | ns   |





125

\_

15

15

-250

50

155

55

ns

ns

ns

ns

ns

ns

ns

#### 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics:

(TA=25°C, V<sub>DD</sub> -V<sub>SS</sub>=1.65V to 3.3V) Symbol Min Туре Unit parameter Max tcycle Clock Cycle Time (write cycle) 400 ns Address Setup time 13 tas ns Address Hold time 17 tah ns Chip Select time 0 tcs ns Chip select Hold Time To read signal 0 tcsh ns Chip select hold time 0 tcsf ns Write Data Setup Time 35 tosw ns Write Data Hold time **t**DHW 18 ns Read Data Hold Time 13 **tdhr** ns **Output Disable Time** 10 90 tон ns



(Read Timing)



tacc

**tPWLR** 

**tPWLW** 

**tPWHR** 

tрwнw

tr

tF

Access Time

Read Low time

Write Low time

Read High time

Write High time

**Rise Time** 

Fall Time







(Write Timing)







# 4. Functional Specification

#### 4.1 Commands

| Command                      | R<br>S | R/<br>W | DB<br>7 | DB<br>6 | DB<br>5 | DB<br>4     | DB<br>3           | DB<br>2           | DB<br>1 | DB<br>0 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Execution<br>time<br>fosc=250khz |
|------------------------------|--------|---------|---------|---------|---------|-------------|-------------------|-------------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Clear<br>Display             | 0      | 0       | 0       | 0       | 0       | 0           | 0                 | 0                 | 0       | 1       | Clear the screen & return to the address 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.64ms                           |
| Return Home                  | 0      | 0       | 0       | 0       | 0       | 0           | 0                 | 0                 | 1       | X       | Set DDRAM address to "00H", return<br>cursor to its original position, if shifted.<br>The contents of DDRAM are not changed.                                                                                                                                                                                                                                                                                                                                  | 1.64ms                           |
| Entry Mode<br>Set            | 0      | 0       | 0       | 0       | 0       | 0           | 0                 | 1                 | I/D     | S       | Assign cursor / blink moving direction<br>with DDRAM address:<br>I/D = "1": cursor/ blink moves to right &DDRAM address is increased by 1 (POR) $I/D = "0": cursor/ blink moves to left &DDRAM address is decreased by 1Assign display shift with DDRAMaddress.S = "1": make display shift of the enabledlines by the DS4 to DS1 bits in the shiftenable instruction. Left/ right directiondepends on I/D bit selection.S = "0": display shift disable (POR)$ | 40µs                             |
| Display<br>ON/OFF<br>Control | 0      | 0       | 0       | 0       | 0       | 0           | 1                 | D                 | С       | В       | Set display/cursor/blink ON/OFF<br>D = "1": display ON,<br>D = "0": display OFF (POR),<br>C = "1": cursor ON,<br>C = "0": cursor OFF (POR),<br>B = "1": blink ON,<br>B = "0": blink OFF (POR).                                                                                                                                                                                                                                                                | 40µs                             |
| Cursor or<br>Display<br>Shif | 0      | 0       | 0       | 0       | 0       | 1           | S/C               | R/L               | x       | x       | Set cursor moving and display shift control<br>bit, and the direction, without changing<br>DDRAM data.<br>S/C = "1": display shift,<br>S/C = "0": cursor shift,<br>R/L = "1": shift to right,<br>R/L = "0": shift to left                                                                                                                                                                                                                                     | 40µs                             |
| Feature set                  | 0      | 0       | 0       | 0       | 1       | DL          | N                 | F                 | x       | X       | Setting the length of the data bus (DL),<br>and display the number of rows (N) and<br>character font (F)<br>DL=1: 8 bits F=0: 5x7 dots<br>DL=0: 4 bits F=1: 5x10 dots<br>N=0: 1 row show<br>N=1: 2 row show                                                                                                                                                                                                                                                   | 40µs                             |
| Set<br>CGRAM<br>address      | 0      | 0       | 0       | 1       | Ch      | aracte      | r Gene<br>Ad      | erator (<br>dress | CG) R   | AM      | Set CGRAM address in address counter.<br>(POR=00 0000)                                                                                                                                                                                                                                                                                                                                                                                                        | 40µs                             |
| Set<br>DDRAM<br>Address      | 0      | 0       | 1       | D       | ispla   | y Dat<br>Cı | a (DD)<br>ursor A | RAM<br>ddress     | Addre   | ss /    | Set the DD RAM address, DD RAM data to be transmitted and received in this order                                                                                                                                                                                                                                                                                                                                                                              | 40µs                             |
| Write data                   | 1      | 0       |         |         |         | W           | rite Da           | ita               |         |         | Write data into internal RAM<br>(DDRAM / CGRAM ).                                                                                                                                                                                                                                                                                                                                                                                                             | 46µs                             |
| Read Data                    | 1      | 1       |         |         |         | R           | ead Da            | ta                |         |         | Read data from internal RAM<br>(DDRAM / CGRAM ).                                                                                                                                                                                                                                                                                                                                                                                                              | 46µs                             |

Page 10 of 11

90 oFOCUS LCDs.com



FOCUSI

#### 4.2 Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

4.2.1 Power up Sequence:

- 1. Power up  $V_{DD}$
- 2. Send Display off command
- 3. Initialization
- 4. Clear Screen
- 5. Power up  $V_{CC}$
- 6. Delay 100ms (When V<sub>CC</sub> is stable)
- 7. Send Display on command

4.2.2 Power down Sequence:

- 1. Send Display off command
- 2. Power down  $V_{CC}$
- 3. Delay 100ms (When  $V_{CC}$  is reach 0 and panel is completely discharges)
- 4. Power down  $V_{DD}$

Note :

- 1) Since an ESD protection circuit is connected between  $V_{\text{DD}}$  and  $V_{\text{CC}}$  inside the driver IC,
  - $V_{CC}$  becomes lower than  $V_{DD}$  whenever  $V_{DD}$  is ON and  $V_{CC}$  is OFF.
- 2)  $V_{CC}$  should be kept float (disable) when it is OFF.
- 3) Power Pins ( $V_{DD}$ ,  $V_{CC}$ ) can never be pulled to ground under any circumstance.
- 4)  $V_{\text{DD}}$  should not be power down before  $V_{\text{CC}}$  power down.

#### 4.3 Reset Circuit

Page 11 of 11

When RES# input is low, the chip is initialized with the following status:

- 1. Display off, Cursor off, Blink off.
- 2. Power Down off.
- 3. 5-dot font is default.
- 4. Display Shift Disable.
- 5. CGRAM address is 00h. SEGRAM address is 00h.
- 6. DDRAM address is 00h.
- 7. Display start line is set at display RAM address 0
- 8. Column address counter is set at 0
- 9. Normal scan direction of the COM outputs
- 10. Contrast control register is set at 7Fh