Features

- Ultra-miniature $3.2 \times 5.0 \times 1.3 \mathrm{~mm}$ package
- Frequency Range 1.000 to 155.520 MHz
- Tristate (Enable/Disable) function as standard
- Supply voltage $1.8,2.5$ or 3.3 Volts

Description

QX5 ultra-miniature oscillators consist of a TTL/ HCMOS-compatible hybrid circuit and a miniature quartz crystal packaged in a low-profile, industry-standard ceramic package.

General Specifications

Frequency Range		1.000 to 155.520 MHz
Output Logic		HCMOS
Temperature Stability*		$\pm 100 \mathrm{ppm}$
		$\pm 50 \mathrm{ppm}$
		$\pm 25 \mathrm{ppm}$
		$\pm 20 \mathrm{ppm}$
Phase Jitter RMS		<1ps typ.
Aging per year		$\pm 5 \mathrm{ppm}$
Operating Temperature Range	Standard	-20 to $+70^{\circ} \mathrm{C}$
	Industrial	-40 to $+85^{\circ} \mathrm{C}$
	Extended	-40 to $+105^{\circ} \mathrm{C}$
	Automotive	-40 to $+125^{\circ} \mathrm{C}$
Storage Temperature Range		-55 to $+125^{\circ} \mathrm{C}$
* Frequency stability is inclusive of calibration tolerance at $25^{\circ} \mathrm{C}$, frequency change due to shock \& vibration, $\pm 10 \%$ supply voltage variation and stability over temperature range.		

Electrical Specifications

Supply Voltage		$1.8 \mathrm{Vdd} \pm 5 \%$	$2.5 \mathrm{Vdd} \pm 5 \%$	$3.3 \mathrm{Vdd} \pm 5 \%$
Input Current	1.000 to 32.000 MHz	7 mA	10 mA	15 mA
	32.100 to 50.000 MHz	15 mA	12 mA	20 mA
	50.100 to 67.000 MHz	-	-	25 mA
	67.100 to 80.000 MHz	-	-	25 mA
	80.100 to 155.520 MHz	-	-	40 mA
Output Voltage	Logic High (Voh)	90\% (80\% at 1.8) Vdd min.		
	Logic Low (Vol)	10% (20\% at 1.8) Vdd max.		
	Standard	40 to 60\%		
	Tight	45 to 55\%		
Output Current	Lol/Loh	$\pm 2 \mathrm{~mA} \mathrm{~min}$.		
Output Load		15pF max.		
Rise and Fall Time	1.000 to 32.000 MHz	5ns max.	5ns max.	7ns max.
	32.100 to 50.000 MHz	3.5 ns max.	5 ns max.	7ns max.
	50.100 to 67.000 MHz	-	-	7ns max.
	67.100 to 80.000 MHz	-	-	7ns max.
	80.100 to 155.520 MHz	-	-	7ns max.
Standby Current		10 4 A max.		
Enable-Disable Function		Tri-State		
Output Disable Time		300ns max.	150ns max.	
Output Enable Time		10 ms max .	10ms max.	
Start Up Time		10 ms max .		

Mechanical Dimensions

Pin Connection: \#1 E/D, \#2 GND, \#3 Output, \#4 VDC Enable/Disable Function: E/D (\#1) Output (\#3), High (Open) Operating, Low High Impedance

Part Numbering Guide

Qantek Code	Package	Supply Voltage	Frequency Stability	Frequency	Operating Temperature Range	Automotive Indicator	Load Capacitance	Tight Symmetry Indicator	Packaging
$Q=$ Qantek	$\mathrm{X} 5=3.2 \times 5.0$	$\begin{aligned} & 18=1.8 \mathrm{~V} \\ & 25=2.5 \mathrm{~V} \\ & 33=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{A}= \pm 25 \mathrm{ppm} \\ & \mathrm{~B}= \pm 50 \mathrm{ppm} \\ & \mathrm{C}= \pm 100 \mathrm{ppm} \\ & \mathrm{D}= \pm 20 \mathrm{ppm} \end{aligned}$	in MHz , always 8 digits including the decimal point (f.ie. 20.00000)	$\begin{aligned} & A=-20 \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{~B}=-40 \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C}=-40 \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{D}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	A = AEC-0200	$15=15 \mathrm{pF}$	$\mathrm{T}=45 / 55$	$\begin{aligned} & \mathrm{R}=\text { Tape\&Reel } \\ & \mathrm{M}=\text { Minireel (250pcs } \\ & \text { Tape\&Reel) } \end{aligned}$
Example: QX533B20.00000B15R								bold letters = recommended standard specification	

Tape and Reel Dimensions

Marking Code Guide

Contains frequency, Qantek manufacturing Code, production code (month and year), stability, temperature range and voltage indicator.

Month Codes				Year Codes						Stability		Temperature Range		Voltage	
January	A	July	G	2010	0	2011	1	2012	2	ppm	PN Code	${ }^{\circ} \mathrm{C}$	PN Code	Volt	PN Code
February	B	August	H	2013	3	2014	4	2015	5	20	D	-20 to $+70^{\circ} \mathrm{C}$	A	1.8	1
March	C	September	1							25	A	-40 to $+85^{\circ} \mathrm{C}$	B	2.5	2
April	D	October	J							50	B	-40 to $+105^{\circ} \mathrm{C}$	C	3.3	3
May	E	November	K							100	C	-40 to $+125^{\circ} \mathrm{C}$	D	5.0	5
June	F	December	L							custom	S	custom	S	custom	S
Example:	First Line: 20.000 (Frequency) Second Line: 0A1BB3 (Qantek					cond Lin	QA	BB3 (Qa	antek	anuary - 201	$11- \pm 50 \mathrm{pp}$	-40 to $+85^{\circ} \mathrm{C}-3.3$			

Solder Reflow Profile

Time (seconds)

Environmental Specifications

Mechanical Shock	MIL-STD-202, Method 213, C
Vibration	MIL-STD-202, Method 201 \& 204
Thermal Cycle	MIL-STD, Method 1010, B
Gross Leak	MIL-STD-202, Method 112
Fine Leak	MIL-STD-202, Method 112

