Electric Rotary Table

Basic type [mm]	
Model	H
LER10	42
LER30	53
LER50	68

High precision type [mm]

Model	H
LERH10	49
LERH30	62
LERH50	78

Space-

 saving

Shock-less/High speed actuation
Max. speed: $420^{\circ} / \mathrm{sec}(7.33 \mathrm{rad} / \mathrm{sec})$
Max. acceleration/deceleration: 3,000 $/ \mathrm{sec}^{2}\left(52.36 \mathrm{rad} / \mathrm{sec}^{2}\right)$
O Positioning repeatability: $\pm 0.05^{\circ}$

Repeatability at the end: $\pm 0.01^{\circ}$ (Pushing control/With external stopper)

- Rotation angle

$320^{\circ}\left(310^{\circ}\right), 180^{\circ}, 90^{\circ}$
The value indicated in brackets shows the value for the LER10.

- Energy-saving product

Size	Rotating torque [$\mathrm{N} \cdot \mathrm{m}$]		Max. speed [\%s]		Positioning repeatability ${ }^{[9]}$
	Basic	High torque	Basic	High torque	Basic Hightorque
10	0.2	0.3			
30	0.8	1.2	420	280	$\begin{gathered} \pm 0.05 \\ \text { (End: } \pm 0.01 \text {)* } \end{gathered}$
50	6.6	10			

Automatic 40\% power reduction after the table has stopped.

Series LER

Electric Rotary Table

Maximum rotation torque can be selected.
Belt deceleration ratio can be selected.

Model	Basic	High torque
LER10	0.2	0.3
LER30	0.8	1.2
LER50	6.6	10.0

Possible to rotate the table with power OFF by manual override.

Easy Mounting of Workpieces

Easy Mounting of the Main Body

With External Stopper/Rotation Angle: $90^{\circ} / 180^{\circ}$ Specification

Repeatability at the end: $\pm 0.01^{\circ}$

Application Examples

Rotation transfer after gripping in combination with a gripper

Vertical transfer: No change in speed due to load fluctuation

Step Data Input Type Series LECP6

Simple Setting to Use Straight Away OEasy Mode for Simple Setting

If you want to use it right away, select "Easy Mode."

Example of checking the operation status

Operation status can be checked.

Step	Axis 1
Step No.	0
Posn	50.00°
Speed	$200^{\circ} / \mathrm{s}$

Step	Axis 1
Step No.	1
Posn	80.00
Speed	100%

Gateway Unit Series LEC-G

Unit linking the LECP6 series and Fieldbus network
Two methods of operation
Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.

Features 3

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

Step data can be set in detail.
Signals and terminal status can be monitored.

- Parameters can be set.
-JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Each function (step data setting, test, monitor, etc.) can be selected from the main menu.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Controller

Programless Type series LECP1

No programming

Capable of setting up an electric actuator operation without using a PC or teaching box
(1) Setting position number

Setting a registered number for the stop position
Maximum 14 points

2 Setting a stop position

Moving the actuator to a stop position using FORWARD and REVERSE buttons

(3) Registration

Registering the stop position using SET button

Speed/Acceleration 16-level adjustment

Pulse Input Type series L_ECPA

A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

Return-to-origin command signal

Enables automatic return-to-origin action.
With force limit function (Pushing force/Gripping force operation available)
Pushing force/Positioning operation possible by switching signals.

Series LECP6/LECP1/LECPA

Function

Item	Step data input type LECP6	Programless type LECP1	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- No "position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	-
Operation command (//0 signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN^{*}] input only	Pulse signal
Completion signal	[INP] output	[OUT*] output	[INP] output

Setting Items

TB: Teaching box PC: Controller setting software

	Item	Contents	Easy mode		Normal mode	Step data input type LECP6	Pulse input type LECPA	Programless type LECP1*
			TB	PC	TB/PC			
Step data setting (Excerpt)	Movement MOD	Selection of "absolut position" and "reative position"	\triangle	\bigcirc	\bigcirc	Set at ABS/INC	No setting required	Fixed value (ABS)
	Speed	Transfer speed	-	-	\bigcirc	Set in units of 1% s		Select from 16-level
	Position	[Position]: Target position [Pushing]: Pushing start position	-	\bigcirc	\bigcirc	Set in units of 0.01°		Direct teaching JOG teaching
	Acceleration/Deceleration	Acceleration/deceleration during movement	-	\bigcirc	\bigcirc	Set in units of $1 \% \mathrm{~s}^{2}$		Select from 16-level
	Pushing force	Rate of force during pushing operation	\bigcirc	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	Select trom 3 -evel (weak, medium, strong)
	Trigger LV	Target force during pushing operation	\triangle	\bigcirc	-	Set in units of 1\%	Set in units of 1\%	No setting required (same value as pusting force)
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of 1% s	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required
	Moving force	Force during positioning operation	\triangle	\bigcirc	\bigcirc	Set to 100\%	Setto (Different values for each actuator)\%	
	Area output	Conditions for area output signal to turn ON	\triangle	-	-	Set in units of 0.01°	Set in units of 0.01 mm	
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	\bigcirc	\bigcirc	Set to 0.5° or more (Units: 0.01°)	Set to (Different values for each actuator) or more (Units: 0.01 mm)	
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	-	Set in units of 0.01°	Set in units of 0.01 mm	
	Stroke (-)	- side limit of position	\times	\times	-	Set in units of 0.01°	Set in units of 0.01 mm	
	ORIG direction	Direction of the return to origin can be set.	\times	\times	\bigcirc	Compatible	Compatible	Compatible
	ORIG speed	Speed during return to origin position	\times	\times	-	Set in units of 1% s	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	
	ORIG ACC	Acceleration during return to origin position	\times	\times	-	Set in units of $1 \% \mathrm{~s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	seting
Test	JOG		-	\bigcirc	\bigcirc	Continuous operation at the set speed can be tested while the switch is being pressed.	Continuous operation at the set speed can be tested while the switch is being pressed.	Hold down MANUAL button ((®) for uniform sending (speed is specified value)
	MOVE		\times	\bigcirc	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL button (\otimes)) once for sizing operation (speed, sizing amount are specified values)
	Return to ORIG		-	\bigcirc	\bigcirc	Compatible	Compatible	Compatible
	Test drive	Operation of the specified step data	-	-	(Continuous operation)	Compatible	Not compatible	Compatible
	Forced output	ON/OFF of the output terminal can be tested.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	\bigcirc	\bigcirc	Compatible	Compatible	
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible	
ALM	Status	Alarm currently being generated can be confirmed.	\bigcirc	\bigcirc	-	Compatible	Compatible	Compatible (display alarm group)
	ALM Log record	Alarm generated in the past can be confirmed.	\times	\times	-	Compatible	Compatible	Not compatible
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible	
Other	Language	Can be changed to Japanese or English.	\bigcirc	\bigcirc	-	Compatible	Compatible	

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

System Construction/General Purpose I/O

System Construction/Pulse Signal

System Construction/Fieldbus Network

Gateway (GW) unit Page 25
Applicable Fieldbus protocols
CC-Link Ver. 2.0
DeviceNet ${ }^{\text {TM }}$ PROFIBUS DP EtherNet/IPTM

* CC-Link Ver. 2.0

DeviceNet ${ }^{\text {TM }}$ only

-Controller Page 15

Option

-Controller setting software Page 22 (Communication cable and USB cable are included.) Part no.: LEC-W2

 (A-miniB type) (Provided by customer)

-Teaching box Page 23
(With 3 m cable)
Part no.: LEC-T1-3JG \square

-Controller Page 15

Applicable Fieldous protocols	Max. Number of comedable contollas
CC-Link Ver. 2.0	12
DeviceNet ${ }^{\text {TM }}$	8
PROFIBUS DP	5
EtherNet/IPTM	12

Compatible controller

Step motor controller
(Servo/24 VDC)
Series LECP6
Note 1) Connect the 0 V terminals for both the controller input power supply and gateway unit power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

SMC Electric Actuators

High Rigidity Slider Type AC Servo Motor

Guide Rod Slider Step Motor (Senora4 voci)

Rod Type Step Motor (Senoro4 voos) Senvo Motor (24 Voos)

Slide Table Step Motor (senore4 voci) Senv Motor (24 Voci)

\section*{| |
| :---: |
| | |
| | |

Miniature Step Motor (Seano24 VDOC)

CAT.ES100-92
Series L

Series LEPY

Size	Max. work load (kg)	Stroke (mm)
$\mathbf{6}$	1	$25,50,75$
$\mathbf{1 0}$	2	

Symmetrical type/L type Series LES $\square \mathbf{L}$

In-line motor type/D type Series LES $\square \mathbf{D}$

High rigidity type Series LESH

Basic type/R type Series LESH \square R

Size	Max. work load $\mathbf{(k g)}$	Stroke $(\mathbf{m m})$
$\mathbf{8}$	2	50,75
$\mathbf{1 6}$	6	50,100
$\mathbf{2 5}$	9	50,100 150

Symmetrical type/L type Series LESH \square L

In-line motor type/D type Series LESH \square D

Rotary Table (Step Motor (Sesoroza voci)

Controller/Driver

Gateway Unit

Fieldbus-compatible gateway (GW) unit Series LEC-G

Applicable Fieldbus protocols	$\text { CC-Link } \sqrt{2}$	DeviceNet		EtherNet/IP"
Max. number of connectable controllers	12	8	5	12

Driver

Features 12

Electric Rotary Table Series LER

Type	Rotating torque [$\mathrm{N} \cdot \mathrm{m}$]		Max. speed [$\%$ /s]		Positioning repeatability [${ }^{\circ}$]		Controller /Driver series	Reference page
	Basic	High torque	Basic	High torque	Basic	High torque		
LER10	0.2	0.3					Series LECP6	
LER30	0.8	1.2	420	280	(En	$\begin{aligned} & .05 \\ & \pm 0.01)^{*} \end{aligned}$	Series LECP1	Page 1
LER50	6.6	10					Series LECPA	

* Value when an external stopper is mounted.

Controller/Driver LEC

Type	Series	Compatible motor	Power supply voltage	Parallel I/O		Number of positioning pattern points	$\begin{aligned} & \text { Referernce } \\ & \text { page } \end{aligned}$
				Input	Output		
Step data input type	LECP6	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	11 inputs (Photo-coupler isolation)	13 outputs (Photo-coupler isolation)	64	Page 15
Programless type	LECP1	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	6 inputs (Photo-coupler isolation)	\qquad	14	Page 28
Pulse input type	LECPA	Step motor (Servo/24 VDC)	$\begin{gathered} 24 \text { VDC } \\ \pm 10 \% \end{gathered}$	5 inputs (Photo-coupler isolation)	9 outputs (Photo-coupler isolation)	-	Page 34

LECPA

Step Motor (Servo/24 vDC) Type

© Electric Rotary Table Series LER

Model Selection Page 1
How to Order Page 5
Specifications Page 6
Construction Page 7
Dimensions Page 8
Specific Product Precautions Page 11
© Step Motor (Servo/24 vDC) Controller/DriverStep Data Input Type/Series LECP6Page 15
Controller Setting Kit/LEC-W2 Page 22
Teaching Box/LEC-T1 Page 23
Gateway Unit/Series LEC-G Page 25
Programless Controller/Series LECP1 Page 28
Step Motor Driver/Series LECPA Page 34
Controller Setting Kit/LEC-W2 Page 41
Teaching Box/LEC-T1 Page 42

Selection Precedure

Operating
conditions

Step1
Moment of inertia—Angular acceleration/deceleration

(1) Calculation of moment of inertia
2) Moment of inertia-Check the angular acceleration/deceleration Select the target model based on the moment of inertia and angular acceleration and deceleration with reference to the (Moment of Inertia -Angular Acceleration/Deceleration graph).

Formula
 $\mathrm{I}=\mathrm{m} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{m} \times \mathrm{H}^{2}$

Selection example

$\mathrm{I}=2.0 \times\left(0.15^{2}+0.08^{2}\right) / 12+2.0 \times 0.04^{2}$
$=0.00802 \mathrm{~kg} \cdot \mathrm{~m}^{2}$

Step2 Necessary torque

(1)
Load type
- Static load: Ts
- Resistance load: Tf
- Inertial load: Ta

(2) Check the effective torque Confirm whether it is possible to control the speed based on the effective torque corresponding with the angular speed with reference to the (Effective Torque-Angular Speed graph).

Formula

Effective torque \geq Ts
Effective torque \geq Tf $\times 1.5$
Effective torque \geq Ta $\times 1.5$

Selection example

Inertial load: Ta
Ta $\times 1.5=\mathrm{I} \times \dot{\omega} \times 2 \pi / 360 \times 1.5$

$$
\begin{aligned}
& =0.00802 \times 1,000 \times 0.0175 \times 1.5 \\
& =0.21 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Step3 Allowable load

(1) Check the allowable load
- Radial load
- Thrust load
- Moment

- Thrust load
- Moment

Step4 Rotation time

Formula

Allowable thrust load $\geq \mathrm{mx} 9.8$
Allowable moment $\geq \mathrm{mx} 9.8 \times \mathrm{H}$

Selection example

- Thrust load
$2.0 \times 9.8=19.6 \mathrm{~N}$ < Allowable load OK
- Allowable moment
$2.0 \times 9.8 \times 0.04$
$=0.784 \mathrm{~N} \cdot \mathrm{~m}$ < Allowable moment OK

1. Thin bar

Position of rotation shaft:
Perpendicular to a bar through one end
2. Thin bar

Position of rotation shaft: Passes through the center of gravity of the bar.

3. Thin rectangular plate (cuboid)
Position of rotation shaft: Passes through the center of gravity of a plate.
6. Cylindrical shape (including a thin disk)
Position of rotation shaft: Center axis
5. Thin rectangular plate (cuboid)
Position of the rotation shaft: Passes through the center of gravity of the plate and perpendicular to the plate. (The same applies to thicker cuboids.)

9. When a load is mounted on the end of the lever

7. Sphere

Position of rotation shaft:

Load Type

Load type		
Static load: Ts	Resistance load: Tf	Inertial load: Ta
Only pressing force is necessary. (e.g. for clamping)	Gravity or friction force is applied to rotating direction.	Rotate the load with inertia.
	Gravity is applied. Friction force is applied.	Center of rotation and center of gravity of the load are concentric. Rotation shaft is vertical (up and down).
$\begin{aligned} & \text { Ts }=\text { F.L } \\ & \text { Ts: Static load (} \mathrm{N} \cdot \mathrm{~m} \text {) } \\ & \text { F: Clamping force }(\mathrm{N}) \\ & \text { L: Distance from the rotation center } \\ & \text { to the clamping position }(\mathrm{m}) \end{aligned}$		$\begin{aligned} & \mathrm{Ta}=\mathrm{I} \cdot \dot{\omega} \cdot 2 \pi / 360 \\ & (\mathrm{Ta}=\mathrm{I} \cdot \dot{\omega} \cdot \mathbf{0 . 0 1 7 5)} \\ & \mathrm{Ta}: \text { Inertial load }(\mathrm{N} \cdot \mathrm{~m}) \\ & \mathrm{I}: \text { Moment of inertia }\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \\ & \dot{\omega}: \text { Angular acceleration } / \mathrm{deceleration}\left(\% / \mathrm{sec}^{2}\right) \\ & \omega: \text { Angular speed }(\% / \mathrm{sec}) \end{aligned}$
Necessary torque: $\mathbf{T}=$ Ts	Necessary torque: T = Tf x 1.5 Note 1)	Necessary torque: $\mathbf{T}=\mathbf{T a x 1 . 5}$ Note 1)

[^0]Not resistance load: Neither gravity or friction force is applied to rotating direction.
Ex. 1) Rotation shaft is vertical (up and down).
Ex. 2) Rotation shaft is horizontal (lateral), and rotation center and the center of gravity of the load are concentric.

* Necessary torque is inertial load only. T = Ta x 1.5

Note 1) To adjust the speed, margin is necessary for Tf and Ta.

Series LER

Moment of Inertia-Angular Acceleration/Deceleration

LER10

LER30

LER50

Effective Torque-Angular Speed

LER10

LER30

LER50

Allowable Load

Size	Allowable radial load (N)		Allowable thrust load (N)				Allowable moment ($\mathrm{N} \cdot \mathrm{m}$)	
			(a)		(b)			
	Basic type	High precision type						
10	78	86			78	107	2.4	2.9
30	196	233			363	398	5.3	6.4
50	314	378			398	517	9.7	12.0

Table Displacement (Reference Value)

- Displacement at point A when a load is applied to point A 100 mm away from the rotation center.

LER $\square 10$

LER $\square 30$

Deflection Accuracy: Displacement at 180° Rotation (Guide)

LER $\square 50$

Deflection on the
top of the table
Deflection on the

Electric Rotary Table

Step Motor (Servo/24 VDC)

Series LER LER10, 30, 50

How to Order

Motor cable entry

\triangle Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LER series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be ceritified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.
3 Max. rotating torque $[\mathrm{N} \cdot \mathrm{m}]$

Symbol	Type	LER10	LER30	LER50
K	High torque	0.3	1.2	10
\mathbf{J}	Basic	0.2	0.8	6.6

6 Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

8 Controller/Driver type*1

Nil	Without controller/driver	
6N	LECP6	NPN
6P	(Step data input type)	PNP
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA	NPN
AP	(Pulse input type)	PNP

*1 For details about controllers/driver and compatible motors, refer to the compatible controllers/driver below.
(4) Rotation angle [${ }^{\circ}$]

Symbol	LER10	LER30	LER50
$\mathbf{N i l}$	310	320	
$\mathbf{2}$	External stopper: 180		
$\mathbf{3}$	External stopper: 90		

7 Actuator cable length [m]

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	\mathbf{A}	10^{*}
$\mathbf{3}$	3	B	15^{*}
$\mathbf{5}$	5	\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 6.
(9) I/O cable length [m]*1

Nil	Without cable
$\mathbf{1}$	1.5
$\mathbf{3}$	$3^{* 2}$
$\mathbf{5}$	$5^{* 2}$

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 21 (For LECP6), page 33 (For LECP1) or page 40 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
10 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail mounting*

* DIN rail is not included. Order it separately. (Refer to page 16.)

Compatible Controllers/Driver

* Refer to the operation manual for using the products.

Please download it via our website, http://www.smcworld.com

Type	Step data input type	Programless type	Pulse input type
Series	LECP6	LECP1	LECPA
Features	Value (Step data) input Standard controller	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Step motor (Servo/24 VDC)	
Maximum number of step data	64 points	14 points	-
Power supply voltage	24 VDC		
Reference page	Page 15	Page 28	Page 34

Specifications

Note 1) Pushing force accuracy is LER10: $\pm 30 \%$ (F.S.), LER30: $\pm 25 \%$ (F.S.), LER50: $\pm 20 \%$ (F.S.).
Note 2) The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the inertia moment.
Refer to page 3 "Moment of Inertia-Angular Acceleration/ Deceleration, Effective Torque-Angular Speed" graphs for confirmation.
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 4) Impact resistance: No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the controller) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation
Note 7) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

Table Rotation Angle Range

External stopper: $\mathbf{1 8 0}^{\circ}$
External stopper: 90°

[^1]Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) The number in brackets indicates when the direction of return to origin has changed.

Series LER

Construction

Basic type

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Worm screw	Stainless steel	Heat treated, specially treated
5	Worm wheel	Stainless steel	Heat treated, specially treated
6	Bearing cover	Aluminum alloy	Anodized
7	Table	Aluminum alloy	
8	Joint	Stainless steel	
9	Bearing holder	Aluminum alloy	
10	Bearing retainer	Aluminum alloy	
11	Home position bolt	Carbon steel	
12	Pulley A	Aluminum alloy	
13	Pulley B	Aluminum alloy	
14	Grommet	NBR	
15	Motor plate	Carbon steel	
16	Basic type Deep groove ball bearing		
16	High precision type Special ball bearing	-	
17	Deep groove ball bearing	-	
18	Deep groove ball bearing	-	
19	Deep groove ball bearing	-	
20	Belt	-	
21	Step motor (Servo/24 VDC)	-	

External stopper type

High precision type

Component Parts

No.	Description	Material	Note
$\mathbf{2 2}$	Table	Aluminum alloy	Anodized
$\mathbf{2 3}$	Arm	Carbon steel	Heat treated, electroless nickel treated
$\mathbf{2 4}$	Holder	Aluminum alloy	Anodized
$\mathbf{2 5}$	Adjuster bolt	Carbon steel	Heat treated, chromate treated

Electric Rotary Table Series LER

Dimensions

LER $\square 10 \square$ (Rotation angle: 310°)

LER $\square \mathbf{1 0 - 2}$ (Rotation angle: $\mathbf{1 8 0}^{\circ}$)
LER \square 10-3 (Rotation angle: $9 \mathbf{0 0}^{\circ}$)

Dimensions		$[\mathrm{mm}]$
Model	H1	H2
LER10	10	3.5
LERH10	17	10.5

Dimensions			
Model	H1	H2	H3
LER10	10	3.5	9
LERH10	17	10.5	16

Series LER

Dimensions

Electric Rotary Table Series LER

Dimensions

LER $\square 50 \square$ (Rotation angle: 320°)

$6 \times \mathrm{M} 6 \times 1.0 \times 10$

Dimensions		$[\mathrm{mm}]$
Model	H1	H2
LER50	16	5.5
LERH50	26	15.5

LER $\square 50-2$ (Rotation angle: $\mathbf{1 8 0}^{\circ}$)
LER $\square \mathbf{5 0} \mathbf{- 3}$ (Rotation angle: 90°)

Manual override screw (Both sides)

Dimensions			
Model	H1	H2	H3
LER50	16	5.5	15.5
LERH50	26	15.5	25.5

Series LER

Electric Rotary Table/ Specific Product Precautions 1

\triangle
Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.
Please download it via our website, http://www.smcworld.com

Design/Selection

\triangle Warning

1. If the operating conditions involve load fluctuations, ascending/descending movements, or changes in the frictional resistance, ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
Failure to provide such measures could accelerate the operation speed, which may be hazardous to humans, machinery, and other equipment.
2. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.

\triangle Caution

1. If the operating speed is set too fast and the moment of inertia is too large, the product could be damaged.
Set appropriate product operating conditions in accordance with the model selection procedure.
2. If more precise repeatability of the rotation angle is required, use the product with an external stopper, with repeatability of $\pm 0.01^{\circ}$ (180° and 90° with adjustment of $\pm 2^{\circ}$) or by directly stopping the workpiece using an external object utilizing the pushing operation.
When using angle adjustment, the initially set rotation angle may change.
3. When using the electric rotary table with an external stopper, or by directly stopping the load externally, ensure that the [Pushing operation] is utilized.
Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

Mounting

\triangle Warning

1. Do not drop or hit the electric rotary table to avoid scratching and denting the mounting surfaces.
Even slight deformation can cause the deterioration of accuracy and operation failure.
2. Tighten the load mounting screws to the specified torque.
Tightening to a torque greater than the specified range may cause malfunction, and insufficient tightening may cause displacement.

Mounting the workpiece to the electric rotary table

The load should be mounted with the torque specified in the following table by screwing the bolt into the mounting female thread.

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LER $\square \mathbf{1 0}$	$\mathrm{M} 4 \times 0.7$	1.4
LER $\square \mathbf{3 0}$	$\mathrm{M} 5 \times 0.8$	3.0
LER $\square \mathbf{5 0}$	$\mathrm{M} 6 \times 1$	5.0

Mounting

\triangle Warning

3. When mounting the electric rotary table, use screws with adequate length and tighten them with adequate torque within the specified torque range.
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Through-hole mounting

Body tapped mounting
Body mounting/bottom

Model	Bolt	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LER $\square \mathbf{1 0}$	$\mathrm{M} 6 \times 1$	5.0	12
LER $\square \mathbf{3 0}$	$\mathrm{M} 8 \times 1.25$	12.0	16
LER $\square \mathbf{5 0}$	$\mathrm{M} 10 \times 1.5$	25.0	20

4. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric rotary table if required.
5. If it is necessary to operate the electric rotary table when it is not energized, use the manual override screws.
When the product is operated with the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws that could lead to damage and malfunction of the product.

Series LER Electric Rotary Table/ Specific Product Precautions 2
 Be sure to read before handling. Refer to back cover for Safety Instructions and the Operation Manual for Electric Actuator Precautions.

\triangle

Handling

\triangle Caution

1. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a free moving connector (such as a coupling).
2. INP output signal
1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds the [Trigger LV] value (including thrust during operation), the INP output signal will turn on.
The [Trigger LV] should be set between 40% and [Pushing force].
a) To ensure that the clamping and external stop is achieved by [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.
3. When the workpiece is to be stopped by the electric rotary actuator with an external stopper or directly by an external object, utilize the "pushing operation". Do not stop the table with an external stopper or external object by using in the range of the "positioning operation mode".
If the product is used in the positioning operation mode, there may be galling or other problems when the product/workpiece comes into contact with the external stopper or external object.
4. When the table is stopped by the pushing operation mode (stopping/clamping), set the product to a position of at least 1° away from the workpiece. (This position is referred to as the pushing start position.)
If the pushing operations start position (stopping or clamping) is set to the same position as the external stop position, the following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

It is not possible to reach the pushing operation start position within the target time.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push
c. "Deviation over flow" alarm is generated.

Displacement exceeding the specified value is generated at the pushing start position.
5. There is no backlash effect when the product is stopped externally by pushing operation.
For the return to origin, the origin position is set by the pushing operation.
6. For the specification with an external stopper, an angle adjustment bolt is provided as standard.
The rotation angle adjustment range is $\pm 2^{\circ}$ from the angle rotation end.
If the angle adjustment range is exceeded, the rotation angle may change due to insufficient strength of the external stopper.
One revolution of the adjustment bolt is approximately equal to 1° of rotation.
7. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.

Maintenance

\triangle Danger

1. The high precision type bearing is assembled by pressing into position. It is not possible to disassemble it.

Controller/Driver

Step Motor (Servo/24 VDC) Series LECP6

Series LEC-G

Step Motor (Servo/24 VDC) Series LECPA

Controller (Step Data Input Type) Step Motor (Servo/24 VDC) Series LECP6

How to Order

©Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LER series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check that actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	Specifications
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)
Parallel output	13 outputs (Photo-coupler isolation)
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal Note 3)
Cable length [m]	I/O cable: 5 or less Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M $\Omega]$	Between the housing and SG terminal
Weight [g]	50 (500 VDC)

[^2]
Controller（Step Data Input Type）／Step Motor（Servo／24 vDC）Series LECP6

How to Mount

a）Screw mounting（LECP6ロロ－\square ）
（Installation with two M4 screws）

b）DIN rail mounting（LECP6 $\square \square \mathrm{D}-\square$ ） （Installation with the DIN rail）

DIN rail is locked．

Hook the controller on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it．

Note）When sizes 30 or 50 of the LER series are used，the space between the controllers should be 10 mm or more．

DIN rail

AXT100－DR－\square
＊For \square ，enter a number from the＂No．＂line in the table below．

No．	$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No．	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC－D0（with 2 mounting screws）

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards．

Series LECP6

Dimensions

a) Screw mounting (LECP6 $\square \square-\square$)

b) DIN rail mounting (LECP6 $\square \square \mathrm{D}-\square$)

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6

Wiring Example 1

Power Supply Connector: CN1 *Power supply plug is an accessory.
Power supply plug for LECP6
CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Wiring Example 2

Parallel I/O Connector: CN5

* When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Wiring diagram

LECP6N $\square \square-\square$ (NPN)

LECP6P $\square \square-\square$ (PNP)

CN5		Power supply 24 VDC for I/O signal
COM +	A1	\vdash
COM-	A2	
ino	A3	
IN1	A4	
IN2	A5	
IN3	A6	
IN4	A7	
IN5	A8	
SETUP	A9	
HOLD	A10	
DRIVE	A11	
RESET	A12	
SVON	A13	
OUT0	B1	Load
OUT1	B2	Load
OUT2	B3	Load
OUT3	B4	Load
OUT4	B5	Load
OUT5	B6	Load
BUSY	B7	Load
AREA	B8	Load
SETON	B9	Load
INP	B10	Load
SVRE	B11	Load
*ESTOP	B12	Load
*ALARM	B13	Load

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

[^3]
Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Positioning)		Need to be set. Need to be adjusted as required. -: Setting is not required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the target position
©	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0 . (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step	Data (Pushing)	© : Need to be set. O : Need to be adjusted as required
Necessity	Item	Details
\bigcirc	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
\bigcirc	Speed	Transfer speed to the pushing start position
\bigcirc	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
\bigcirc	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
\bigcirc	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) Series LECP6

Signal Timing
Return to Origin

If the actuator is within the "in position" range of the basic parameter, INP will turn ON, but if not, it will remain OFF.

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.
(When power supply is applied, "DRIVE" or "RESET" is turned ON or
"*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)
HOLD

[^4] not stop even if HOLD signal is input.

[^5]
Series LECP6

Options: Actuator Cable, I/O Cable

Actuator cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

I/O cable

\section*{LEC-CN5-1
 Cable length (L) [m]
 | 1 | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |}

* Conductor size: AWG28

Connector pin no.	Insulation color	Dot mark	Dot color
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Gray	\square	Black
A8	Gray	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	■ ■	Black
A12	Light brown	■ ■	Red
A13	Yellow	$\square \square$	Black

Series LEC

Hardware Requirements

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR} 7$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and testing of the drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

Series LEC

Teaching Box/LEC-T1

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range [$\left.{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight $[\mathrm{g}]$	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis - Setting of easy/normal mode • Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no.
	Setting of two items selected below (Position, Speed, Force, Acceleration, Deceleration)
	Monitor
	Display of step no. Display of two items selected below (Position, Speed, Force)
	Jog
	Return to origin Jog operation
	Test
	1 step operation
	ALM
	Active alarm display Alarm reset
	TB setting
	Reconnect Easy/Normal Set item

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data.
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit
 Series LEC-G

How to Order

\triangle Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LER series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
\qquad

Cable

Branch connector LEC-CGD
 Branch connectord
 Terminating resistor
 LEC-CGR

Cable between branches

Specifications

Model			LEC-G	GMJ2 \square	LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus		-Link	DeviceNet ${ }^{\text {TM }}$	PROFIBUS DP	EtherNet/IPTM
		Version Note 1)		r. 2.0	Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{array}{r} 156 \mathrm{k} / 62 \\ 5 \mathrm{M} \end{array}$	$\begin{aligned} & 25 \mathrm{k} / 2.5 \mathrm{M} / \\ & 1 / 10 \mathrm{M} \end{aligned}$	125 k/250 k/500 k	$9.6 \mathrm{k} / 19.2 \mathrm{k} / 45.45 \mathrm{k} /$ $93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} /$ $1.5 \mathrm{M} / 3 \mathrm{M} / 6 \mathrm{M} / 12 \mathrm{M}$	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note 2) }}$			-	EDS file	GSD file	EDS file
	I/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
	Power supply for communication	Power supply voltage [V] ${ }^{\text {Noiei 6] }}$		-	11 to 25 VDC	-	-
		Internal current consumption [mA]		-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating resistor		Not in	cluded	Not included	Not included	Not included
Power supply voltage [V] Note 6)			$24 \mathrm{VDC} \pm 10 \%$				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1A				
Controller specifications	Applicable controllers		Series LECP6, Series LECA6				
	Communication speed [bps] Note 3)		$115.2 \mathrm{k} / 230.4 \mathrm{k}$				
	Max. number of connectable controllers Note 4)			12	8 Note 5)	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smcworld.com
Note 3) When using a teaching box (LEC-T1- \square), set the communication speed to 115.2 kbps.
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

* This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: EtherNet/IPTM

Series LEC-G

Dimensions

DIN rail mounting (LEC-G $\square \square \square D)$

Applicable Fieldbus protocol: CC-Link Ver. 2.0

* Mountable on DIN rail (35 mm)

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Programless Controller
Series LECP1

How to Order

Actuator part number

(Except cable specifications and actuator options)
Example: Enter "LER10K-2" for the LER10K-2L-R11N1.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

Caution

[CE-compliant products]

EMC compliance was tested by combining the electric actuator LER series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC $\pm 10 \%$, Max. current consumption: 3A (Peak 5A) Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M Ω]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the bolt with the nut when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by 8 and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)	MANUAL	Manual reverse button	Perform reverse jog and inching.
(11)	PEED	Forward speed switch	16 forward speeds are available.
(12)	SPEED	Reverse speed switch	16 reverse speeds are available.
(13)		Forward acceleration switch	16 forward acceleration steps are available.
(14)	ACCEL	Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)
(Installation with two M4 screws)

2. Grounding

Tighten the bolt with the nut when mounting the ground wire as shown below.

Note) When sizes 30 or 50 of the LER series are used, the space between the controllers should be 10 mm or more.

\triangle Caution

\bullet M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.

- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

Size

Size
End width L: 2.0 to $2.4[\mathrm{~mm}]$
End thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Dimensions

Screw mounting（LEC $\square 1 \square \square-\square$ ）

DIN rail mounting（LEC $\square 1 \square \square \mathrm{D}-\square$ ）

Wiring Example 1

Power Supply Connector: CN1 * When you connect a CN1 power supply connector, please use the power supply cable (LEC-CK1-1). * Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP1

Terminal name Cable color	Function	Details	
0V	Blue	Common supply (-)	M24V terminal/C24V terminal/BK RLS terminal are common (-).
M24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC, etc., to the CN4 parallel I/O connector, please use the I/O cable (LEC-CK4-ם). . The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

■NPN

		Power supply 24 VDC for I/O signal
CN4		
COM+	1	
COM-	2	
OUTO	3	Load
OUT1	4	Load
OUT2	5	Load
OUT3	6	Load
BUSY	7	Load
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
IN0 to IN3	- Instruction to drive (input as a combination of INO to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	IN0
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart
O: OFF ©: ON

Position number	IN3	IN2	IN1	INO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Retun to origin	\bigcirc	\bigcirc	\bigcirc	\bigcirc

DPN

Output Signal

| Name | Details | | |
| :---: | :---: | :---: | :---: | :---: |
| | Turns on when the positioning or pushing is completed.
 (Output is instructed in the combination of OUT0 to 3.)
 Example - (operation complete for position no. 3) | | |
| OUT3 OUT2 OUT1 OUT0
 OFF OFF ON ON
 BUSY Outputs when the actuator is moving
 *ALARM Note) Not output when alarm is active or servo OFF | | | |

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUT0 - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUTO
1	\bigcirc	\bigcirc	\bigcirc	-
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	-
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	-
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	-	-
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bullet
10 (A)	\bigcirc	\bigcirc	-	\bigcirc
11 (B)	\bullet	\bigcirc	\bullet	-
12 (C)	-	\bigcirc	\bigcirc	\bigcirc
13 (D)	-	-	\bigcirc	-
14 (E)	\bigcirc	\bigcirc	-	\bigcirc
Retun to origin	\bigcirc	\bullet	\bullet	-

Signal Timing
(1) Return to Origin

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

"*ALARM" is expressed as negative-logic circuit.

Series LECP1

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Options

[Power supply cable]

LEC-CK1-1

Terminal name	Covered color	Function
OV	Blue	Common supply (-)
M24V	White	Motor power supply (+)
C24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

[I/O cable]

Terminal no.	Insulation color	Dot mark	Dot color	Function	Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM+	8	Gray	\square	Red	ALARM
2	Light brown	\square	Red	COM-	9	White	\square	Black	INO
3	Yellow	\square	Black	OUT0	10	White	\square	Red	IN1
4	Yellow	\square	Red	OUT1	11	Light brown	$\square \square$	Black	IN2
5	Light green	\square	Black	OUT2	12	Light brown	■ ■	Red	IN3
6	Light green	\square	Red	OUT3	13	Yellow	$\square \square$	Black	RESET
7	Gray	\square	Black	BUSY	14	Yellow	■ ■	Red	STOP

[^6]
Step Motor Driver Series LECPA

How to Order

\triangle Caution

［CE－compliant products］
（1）EMC compliance was tested by combining the electric actuator LER series and the LECPA series．The EMC depends on the configuration of the customer＇s control panel and the relationship with other electrical equipment and wiring．Therefore conformity to the EMC directive cannot be certified for SMC components incorporated into the customer＇s equipment under actual operating conditions．As a result it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole．
（2）For the LECPA series（step motor driver），EMC compliance was tested by installing a noise filter set（LEC－NFA）．
Refer to page 40 for the noise filter set．Refer to the LECPA Operation Manual for installation． ［UL－compliant products］ When conformity to UL is required， the electric actuator and driver should be used with a UL1310 Class 2 power supply．

＊Refer to the operation manual for using the products．Please download it via our website，http：／／www．smcworld．com

Specifications

Item	LECPA
Compatible motor	Step motor（Servo／24 VDC）
Power supply Note 1）	Power voltage： 24 VDC $\pm 10 \%$ Maximum current consumption： 3 A（Peak 5 A）Note 2） ［Including motor drive power，control power，stop，lock release］
Parallel input	5 inputs（Except photo－coupler isolation，pulse input terminal，COM terminal）
Parallel output	9 outputs（Photo－coupler isolation）
Pulse signal input	Maximum frequency： 60 kpps （Open collector）， 200 kpps （Differential） Input method： 1 pulse mode（Pulse input in direction）， 2 pulse mode（Pulse input in differing directions）
Compatible encoder	Incremental A／B phase（Encoder resolution： 800 pulse／rotation）
Serial communication	RS485（Modbus protocol compliant）
Memory	EEPROM
LED indicator	LED（Green／Red）one of each
Lock control	Forced－lock release terminal Note 3）
Cable length［m］	I／O cable： 1.5 or less（Open collector）， 5 or less（Differential） Actuator cable： 20 or less
Cooling system	Natural air cooling
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］	0 to 40 （No freezing）
Operating humidity range［\％RH］	90 or less（No condensation）
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］	-10 to 60 （No freezing）
Storage humidity range［\％RH］	90 or less（No condensation）
Insulation resistance［M Ω ］	Between the housing and SG terminal： 50 （500 VDC）
Weight［g］	120 （Screw mounting）， 140 （DIN rail mounting）

Note 1）Do not use the power supply of＂inrush current prevention type＂for the driver power supply．When conformity to UL is required，the electric actuator and driver should be used with a UL1310 Class 2 power supply．
Note 2）The power consumption changes depending on the actuator model．Refer to the specifications of actuator for more details．
Note 3）Applicable to non－magnetizing lock．

Series LECPA

How to Mount
a) Screw mounting (LECPA $\square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$) (Installation with the DIN rail)

DIN rail is locked.

Hook the driver on the DIN rail and press the lever of section \mathbf{A} in the arrow direction to lock it.

Note) The space between the drivers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 36 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterwards.

Dimensions

a) Screw mounting (LECPA $\square \square-\square$)

b) DIN rail mounting (LECPA $\square \square \mathrm{D}-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory.
CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/BK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA

Wiring Example 2
Parallel I/O Connector: CN5 * When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CL5-ם).

LECPAN $\square \square$ - \square (NPN)

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details". Note 2) Output when the power supply of the driver is ON. (N.C.)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM -	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

LECPAP $\square \square-\square$ (PNP)

CN5			г		Power supply 24 VDC $\pm 10 \%$ for I/O signal
Terminal name	Function	Pin no.			
COM +	24 V	1			
COM-	0 V	2			
NP+	Pulse signal	3	: [
NP-	Pulse signal	4			
PP+	Pulse signal	5	[Note 1)	
PP-	Pulse signal	6	:		
SETUP	Input	7	[
RESET	Input	8			
SVON	Input	9			
CLR	Input	10			
TL	Input	11	:		
TLOUT	Output	12		Load	
WAREA	Output	13	:	Load	
BUSY	Output	14		Load	
SETON	Output	15		Load	
INP	Output	16		Load	
SVRE	Output	17	: $<$	Load	
*ESTOP Note 2)	Output	18		Load	
*ALARM ${ }^{\text {Note 2 }}$)	Output	19	:	Load	
AREA	Output	20	7	Load	
	FG	$\begin{array}{\|c\|} \hline \text { Round temminal } \\ 0.5-5 \\ \hline \end{array}$	J		

Output Signal

Name	Details
BUSY	Outputs when the actuator is operating
SETON	Outputs when returning to origin
INP	Outputs when target position is reached
SVRE	Outputs when servo is on
*ESTOP Note 3)	Not output when EMG stop is instructed
*ALARM Note 3)	Not output when alarm is generated
AREA	Outputs within the area output setting range
WAREA	Outputs within W-AREA output setting range
TLOUT	Outputs during pushing operation

Note 3) Signal of negative-logic circuit ON (N.C.)

Pulse Signal Wiring Details

- Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

Note) Connect the current limit resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limit resistor R specifications
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ (0.5 W or more)
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ (0.1 W or more)

Signal Timing

Return to Origin

＊＂＊ALARM＂and＂＊ESTOP＂are expressed as negative－logic circuit．

Positioning Operation

Alarm Reset

[^7]

Pushing Operation

Note）If pushing operation is stopped when there is no pulse deviation，the moving part of the actuator may pulsate．

Series LECPA

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

Cable typed

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{1}$ /Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

 (* Produced upon receipt of order)

Driver side

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable color	Connector D terminal no.
Vcc	B-4	¢	Brown	12
GND	A-4	$1 \times \infty$	Black	13
$\overline{\mathrm{A}}$	B-5	\pm	Red	7
A	A-5		Black	6
\bar{B}	B-6	1	Orange	9
B	A-6		Black	8

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

Pin no.	Insulation color	Dot mark	Dot color
1	Light brown	\square	Black
2	Light brown	\square	Red
3	Yellow	\square	Black
4	Yellow	\square	Red
5	Light green	\square	Black
6	Light green	\square	Red
7	Gray	\square	Black
8	Gray	\square	Red
9	White	\square	Black
10	White	\square	Red
11	Light brown	$\square \square$	Black

Pin no.	Insulation color	Dot mark	Dot color
12	Light brown	■!	Red
13	Yellow	■	Black
14	Yellow	■	Red
15	Light green	■	Black
16	Light green	■	Red
17	Gray	■!	Black
18	Gray	■	Red
19	White	■	Black
20	White	■!	Red
$\begin{gathered} \text { Round teminal } \\ 0.5-5 \end{gathered}$	Green		

[Noise filter set]

Step Motor Driver (Pulse Input Type)

LEC-NFA

Contents of the set: 2 noise filters

(Manufactured by WURTH ELEKTRONIK: 74271222)

[^8]
Hardware Requirements

Series LECP6
Series LECA6
Series LECPA
Compatible Controllers/Driver

Step motor controller (Servo/24 VDC)	Series LECP6
Servo motor controller (24 VDC)	Series LECA6
Step motor driver (Pulse input type)	Series LECPA

(1) Controller setting software (CD-ROM)
(2) Communication cable
(3) USB cable
(Cable between the PC and the conversion unit)
How to Order

OS	IBM PC/AT compatible machine running Windows ${ }^{\circledR}$ XP (32-bit), Windows ${ }^{\circledR} 7$ (32-bit and 64-bit).
Communication interface	USB 1.1 or USB 2.0 ports
Display	XGA (1024 $\times 768$) or more

* Windows ${ }^{\circledR}$ and Windows ${ }^{\circledR 7}$ are registered trademarks of Microsoft Corporation in the United States.
* Refer to SMC website for version update information, http://www.smcworld.com

Screen Example

T.

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data
such as position, speed, force, etc.
- Setting of step data and testing of the drive can
be performed on the same page.
- Can be used to jog and move at a constant rate.
Easy operation and simple setting
- Allowing to set and display actuator step data
such as position, speed, force, etc.
- Setting of step data and testing of the drive can
be performed on the same page.
- Can be used to jog and move at a constant rate.
Easy operation and simple setting
- Allowing to set and display actuator step data
such as position, speed, force, etc.
- Setting of step data and testing of the drive can
be performed on the same page.
- Can be used to jog and move at a constant rate.
Easy operation and simple setting
- Allowing to set and display actuator step data
such as position, speed, force, etc.
- Setting of step data and testing of the drive can
be performed on the same page.
- Can be used to jog and move at a constant rate.
Easy operation and simple setting
- Allowing to set and display actuator step data
such as position, speed, force, etc.
- Setting of step data and testing of the drive can
be performed on the same page.
- Can be used to jog and move at a constant rate.
Easy operation and simple setting
- Allowing to set and display actuator step data
such as position, speed, force, etc.
- Setting of step data and testing of the drive can
be performed on the same page.
- Can be used to jog and move at a constant rate.

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test operation and testing of forced output can be performed.

SSMC

Teaching Box/LEC-T1

How to Order

Standard functions
 - Chinese character display
 - Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data	Step data no.
Monitor	Setting of two items selected below
Jog	Ver. 1.**:
Test	Position, Speed, Force, Acceleration, Deceleration
ALM	Ver. 2.**:
TB setting	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Monitor
Display of step no.
Display of two items selected below
(Position, Speed, Force)

Series LEC

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive Note 1) (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output) Note 2)
Monitor	- Drive monitor - Output signal monitor Note 2) - Input signal monitor Note 2) - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Note 1) Not compatible with the LECPA.
Note 2) The following signals are not compatible with the LECPA.
Input: CLR, TL
Output: TLOUT

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

Safety Instructions
These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

\triangle Caution:

Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of
Warning: risk serious injury

Danger indicates a hazard with a high level of risk
Danger: which, if not avoided, will result in death or serious injury.

\triangle Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.
2. Only personnel with appropriate training should operate machinery and equipment.
The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.
3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
4. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
5. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
6. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
7. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
8. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
9. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
10. An application which could have negative effects on people, property, or animals requiring special safety analysis.
11. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.
*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.
ISO 4413: Hydraulic fluid power - General rules relating to systems.
IEC 60204-1: Safety of machinery - Electrical equipment of machines.
(Part 1: General requirements)
ISO 10218-1: Manipulating industrial robots - Safety
etc.

\triangle Caution

1. The product is provided for use in manufacturing industries. The product herein described is basically provided for peaceful use in manufacturing industries.
If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.
If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".
Read and accept them before using the product.

Limited warranty and Disclaimer

1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first. ${ }^{* 2)}$
Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
*2) Vacuum pads are excluded from this 1 year warranty.
A vacuum pad is a consumable part, so it is warranted for a year after it is delivered.
Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

Compliance Requirements

1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Revision history	
Edition B	* Addition of programless controller, LECP1 series
$*$ Number of pages from 32 to 44	

SMC Corporation

Akihabara UDX 15F,
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN
Phone: 03-5207-8249 Fax: 03-5298-5362
http://www.smcworld.com
© 2013 SMC Corporation All Rights Reserved

CC-Link Direct Input Type

Step Motor Controller

CC-Link Ver. 1.10 compliant

3 types of operation mode available.

> | Single numerical data instructions (Occupied number of stations: 1) |
| :--- |
| [Max. number of connectable controllers: 42 units] |
| Can be operated by instructing the Movement MOD (movement |
| mode) and changing another item in the preset step data. |

Half numerical data instructions (Occupied number of stations: 2)
[Max. number of connectable controllers: 32 units]
Can be operated by changing up to six items in the preset step data.
Full numerical data instructions (Occupied number of stations: 4)
[Max. number of connectable controllers: 16 units]
Can be operated by inputting numerical data to all 12 step data items from the PLC.
The position and speed can be monitored by the PLC.
Step data can be edited from the PLC.
(Except single numerical data instructions)

Function that can be executed in each mode

Mode setting	Single numerical data instructions	Half numerical data instructions	Full numerical data instructions	
Number of numerical data modifiable items	1	6	12	
Occupied number of stations	1	2	4	
Max. number of connectable controllers	42	32	16	
Step no. instructions operation				
Numerical data instructions operation				
Monitor function of position/speed				
Step data editing function				

Series LECPMJ

How to Order

Straight type LEC-CMJ-S

T-branch type LEC-CMJ-T

Step Motor Controller (CC-Link Direct Input Type)

Specifications

Item			LECPMJ				
Compatible motor			Step motor (Servo/24 VDC)				
Power supply Note 1)			Power voltage: 24 VDC $\pm 10 \%$ Maximum current consumption: 3 A (Peak 5 A) Note 2) [Including motor drive power, control power, lock release]				
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
	Fieldbus		CC-Link Ver. 1.10				
	Communication speed [bps]		$156 \mathrm{k} / 625 \mathrm{k} / 2.5 \mathrm{M} / 5 \mathrm{M} / 10 \mathrm{M}$				
	Communication method		Broadcast polling				
	Station type		Remote device station				
	I/O occupation area		1 station $\binom{$ Input 32 points $/ 4$ words }{ Output 32 points $/ 4$ words }		2 stations ($\left.\begin{array}{c}\text { Input } 64 \text { points/8 words } \\ \text { Output } 64 \text { points } / 8 \text { words }\end{array}\right)$	$\begin{gathered} 4 \text { stations } \\ \binom{\text { Input } 128 \text { points/16 words }}{\text { Output } 128 \text { points/16 words }} \end{gathered}$	
	Applicable communication cable		CC-Link dedicated cable				
	Maximum cable length	Communication speed [bps]	156 k	625 k	2.5 M	5 M	10 M
		Total cable length [m]	1200	900	400	160	100
Serial communication			RS485 (Modbus protocol)				
Memory			EEPROM				
LED indicator			PWR, ALM, L ERR, L RUN				
Lock control			Forced-lock release terminal Note 3)				
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 (No condensation)				
Insulation resistance [M Ω]			Between the housing and FG terminal 50 (500 VDC)				
Weight [g]			170 (Screw mounting), 190 (DIN rail mounting)				

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) Applicable to non-magnetizing lock.
Function that can be executed in each mode

Mode setting [Occupied number of stations] ${ }^{\text {Note } 4)}$	Single numerical data instructions [1]	Half numerical data instructions [2]	Full numerical data instructions [4]
Step no. instructions operation	\bigcirc		
Numerical data instructions operation	\bigcirc		
Number of numerical data modifiable items	1	6	12
Monitor function of position/speed	\bigcirc		
Step data editing function	\bigcirc Note 5)		
Max. number of connectable controllers Note 6)	42	32	16

Note 4) The modes can be set by registering the occupied number of stations with basic parameter "Option setting 1" of the controller.
Note 5) It is possible to edit it from teaching box/controller setting software for "Single numerical data instructions". It is possible to edit it from teaching box/ controller setting software and PLC (CC-Link) for "Half numerical data instructions" and "Full numerical data instructions"
Note 6) Maximum number of units specified in CC-Link communication specifications.

Modifiable step data item in each mode

- Numerical data modifiable items

Mode setting	Step data item											
	Movement MOD	Speed	Position	Acceleration	Pushing speed	Pushing force	Deceleration	Trigger LV	Moving force	Area 1	Area 2	In position
Single numerical data instructions	\bigcirc					Only one item ranging	can be changed om Speed to In	from 11 items, position.				
Half numerical data instructions	\bigcirc	-	\bigcirc	Only one item ca Acceleration		-	Only one item can Deceleratio	be changed from on/Trigger LV.				
Full numerical data instructions	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Note 7) Step data items, except items that have been changed, reference data registered in the controller.
Note 8) Refer to the LECPMJ operation manual for details of the step data items.

Series LECPMJ

Dimensions

System Construction

SMC Corporation

Akihabara UDX 15F,
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN
Phone: 03-5207-8249 Fax: 03-5298-5362
http://www.smcworld.com
© 2013 SMC Corporation All Rights Reserved

[^0]: - Resistance load: Gravity or friction force is applied to rotating direction.

 Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center and the center of gravity of the load are not concentric.
 Ex. 2) Load moves by sliding on the floor.

 * The total of resistance load and inertial load is the necessary torque. $\mathbf{T}=(\mathbf{T f}+\mathbf{T a}) \times 1.5$

[^1]: * The figures show the origin position for each actuator

[^2]: Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply
 Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
 Note 3) Applicable to non-magnetizing lock.

[^3]: Note) Signal of negative-logic circuit ON (N.C.)

[^4]: * When the actuator is in the positioning range in the pushing operation, it does

[^5]: * "*ALARM" is expressed as negative-logic circuit.

[^6]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^7]: ＂＊ALARM＂is expressed as negative－logic circuit．

[^8]: * Refer to the LECPA series Operation Manual for installation.

