Switching Transistors

NPN Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	15	Vdc
Collector-Emitter Voltage	V _{CES}	40	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	V _{EBO}	4.5	Vdc
Collector Current – Continuous	Ι _C	200	mAdc

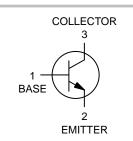
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board (Note 1) T _A = 25°C Derate above 25°C	PD	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

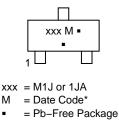
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.



ON Semiconductor®


http://onsemi.com

SOT-23 CASE 318 STYLE 6

MARKING DIAGRAM

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

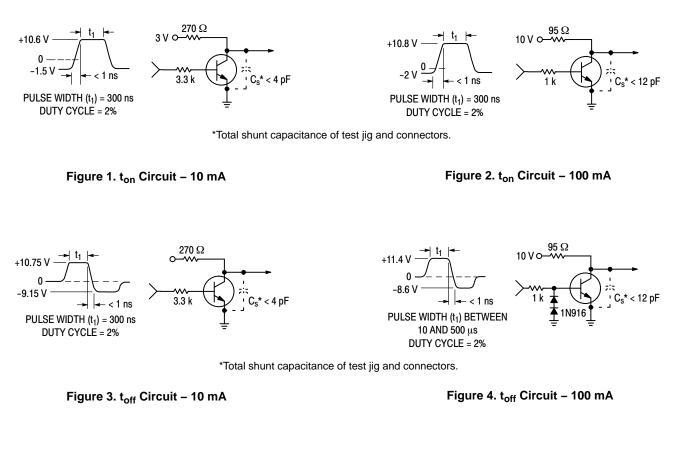
ORDERING INFORMATION

Device	Package	Shipping [†]	
MMBT2369LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
SMMBT2369LT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
MMBT2369ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel	
SMMBT2369ALT1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please

Brochure, BRD8011/D.

refer to our Tape and Reel Packaging Specifications


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Somiconductor Componente Inductrios III.C. 2014

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 3) ($I_C = 10 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	15	_	_	Vdc
Collector – Emitter Breakdown Voltage $(I_{C} = 10 \ \mu Adc, \ V_{BE} = 0)$	V _{(BR)CES}	40	-	_	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	40	-	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.5	-	_	Vdc
	I _{СВО}			0.4 30	μAdc
Collector Cutoff Current MMBT2369A (V _{CE} = 20 Vdc, V _{BE} = 0)	I _{CES}	_	_	0.4	μAdc
ON CHARACTERISTICS	ŀ	4	1	ł.	I
$ \begin{array}{l} \text{DC Current Gain (Note 3)} \\ \text{MMBT2369 (I}_{C} = 10 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, V}_{CE} = 0.35 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, V}_{CE} = 0.35 \text{ Vdc}, \\ \text{MMBT2369A (I}_{C} = 30 \text{ mAdc, V}_{CE} = 0.4 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 100 \text{ mAdc, V}_{CE} = 2.0 \text{ Vdc}) \\ \text{MMBT2369A (I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ Vdc}) \\ \end{array} $	h _{FE}	40 - 40 20 30 20 20	- - - - - -	120 120 - - - - -	_
$\begin{array}{l} \mbox{Collector} - \mbox{Emitter Saturation Voltage (Note 3)} \\ \mbox{MMBT2369 (I}_{C} = 10 \mbox{ mAdc}, I_{B} = 1.0 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 10 \mbox{ mAdc}, I_{B} = 1.0 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 10 \mbox{ mAdc}, I_{B} = 1.0 \mbox{ mAdc}, T_{A} = +125^{\circ}\mbox{C}) \\ \mbox{MMBT2369A (I}_{C} = 30 \mbox{ mAdc}, I_{B} = 3.0 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}, I_{B} = 10 \mbox{ mAdc}) \\ \mbox{MMBT2369A (I}_{C} = 100 \mbox{ mAdc}) \\ \mbox{MMT24 (I}$	V _{CE(sat)}	- - - -	- - - -	0.25 0.20 0.30 0.25 0.50	Vdc
$ \begin{array}{l} \text{Base-Emitter Saturation Voltage (Note 3)} \\ \text{MMBT2369/A (I}_{C} = 10 \text{ mAdc, I}_{B} = 1.0 \text{ mAdc}) \\ \text{MMBT2369A (I}_{C} = 10 \text{ mAdc, I}_{B} = 1.0 \text{ mAdc, T}_{A} = -55^{\circ}\text{C}) \\ \text{MMBT2369A (I}_{C} = 30 \text{ mAdc, I}_{B} = 3.0 \text{ mAdc}) \\ \text{MMBT2369A (I}_{C} = 100 \text{ mAdc, I}_{B} = 10 \text{ mAdc}) \\ \end{array} $	V _{BE(sat)}	0.7 _ _ _	- - - -	0.85 1.02 1.15 1.60	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	_	_	4.0	pF
Small Signal Current Gain (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	h _{fe}	5.0	-	_	-
SWITCHING CHARACTERISTICS					
Storage Time ($I_{B1} = I_{B2} = I_C = 10 \text{ mAdc}$)	t _s	_	5.0	13	ns
Turn–On Time (V _{CC} = 3.0 Vdc, I _C = 10 mAdc, I _{B1} = 3.0 mAdc)	t _{on}	_	8.0	12	ns
Turn–Off Time $(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = 3.0 \text{ mAdc}, I_{B2} = 1.5 \text{ mAdc})$	t _{off}	_	10	18	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

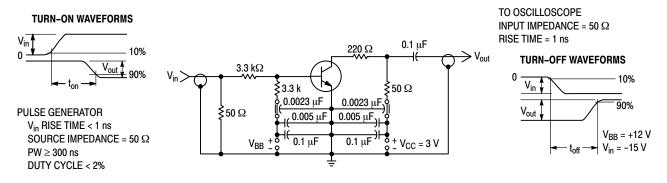


Figure 5. Turn-On and Turn-Off Time Test Circuit

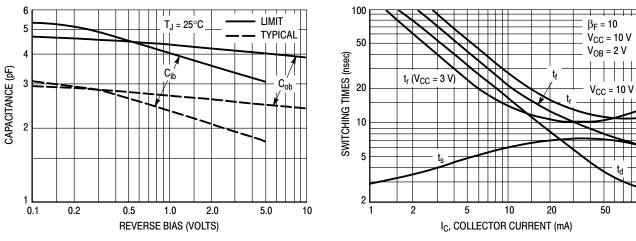
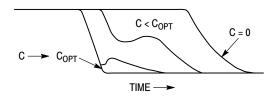
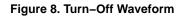




Figure 6. Junction Capacitance Variations

100

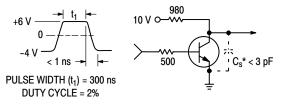
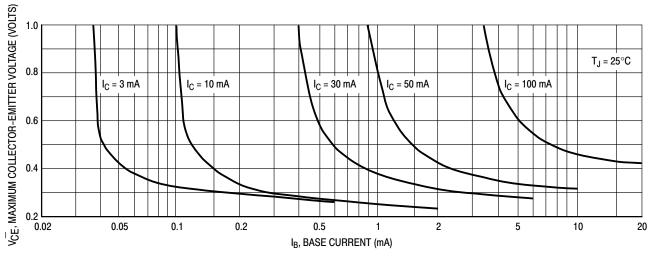



Figure 9. Storage Time Equivalent Test Circuit

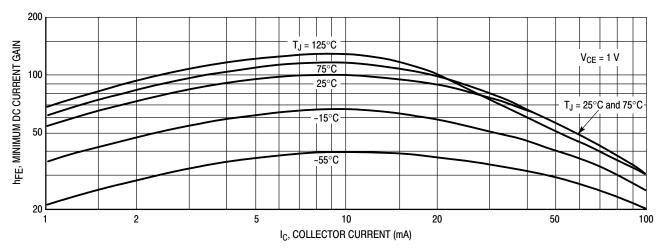


Figure 11. Minimum Current Gain Characteristics

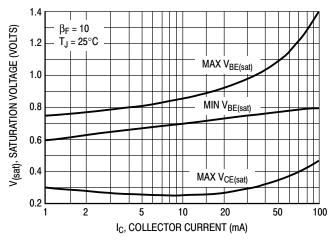
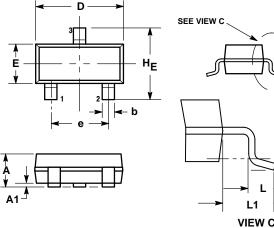



Figure 12. Saturation Voltage Limits

PACKAGE DIMENSIONS

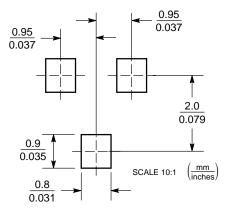
SOT-23 (TO-236) CASE 318-08 ISSUE AP

0.25 VIEW C

NOTES

3.

л


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 1 2
 - CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
С	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
Е	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
ΗE	2.10	2.40	2.64	0.083	0.094	0.104
Α	٥°		10°	0°		10°

STYLE 6: PIN 1. BASE EMITTER 2.

COLLECTOR 3.

SOLDERING FOOTPRINT

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative