Lead-Free No Clean Solder Paste

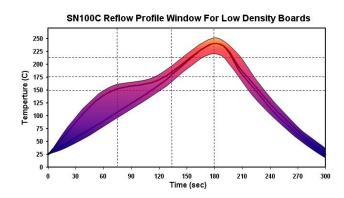
Features:

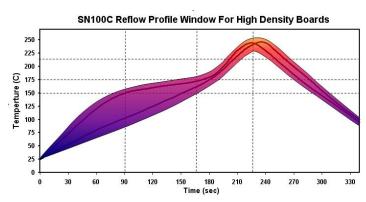
- Long Pause-to-Print Capabilities
- Enhances Fine Print Definition
- Reduces Voiding

- Eliminates Head-in-Pillow Defects
- Consistent Solder Volume Transfer
- Extremely Low Residues

Description:

NC259 is a low-cost, lead-free halogen-free solder paste that offers the performance of tin-lead and high-silver lead-free solder pastes. Now manufacturers can attain the SMT soldering results they require and pay significantly less per gram than with traditional lead-free solder pastes. NC259 provides excellent print definition and sustainable solder volume transfer as the demand for smaller pads grows. Proven to mitigate head-in-pillow defects, NC259 reduces rework and rejected board costs to the manufacturer. NC259 is formulated to provide one of the longest pause-to-print windows in the industry resulting in less solder waste, fewer restart costs and improved overall quality of prints. The long stencil life and shelf-life results in far less waste than traditional solder pastes. The extremely broad process window of NC259 allows assemblers with high density, high mix boards to run without timely set up. NC259 also offers extremely low post process residues, which remain crystal clear after soldering.


Printing:


- Apply sufficient paste to the stencil to allow a smooth, even roll during the print cycle (a bead diameter of 12 to 16 mm (½ to 5/8 inch) is normally sufficient to begin).
- Apply small amounts of fresh solder paste to the stencil at controlled intervals to maintain paste chemistry and workable properties.
- NC259 provides the necessary tack time and force for today's high speed placement equipment, which will enhance product performance and reliability.
- Cleaning of your stencil will vary by application; however, it can be accomplished using AIM DJAW-10 stencil cleaner.

RECOMMENDED INITIAL PRINTER SETTINGS BELOW						
ARE DEPENDENT ON PCB AND PAD DESIGN						
PARAMETER	RECOMMENDED INITIAL SETTINGS	PARAMETER	RECOMMENDED INITIAL SETTINGS			
Squeegee Pressure	0.9 - 1.5 lbs/inch of blade	PCB Separation Distance	0.75 - 2.0 mm (.030080")			
Squeegee Speed	0.5 - 6 inches/second	PCB Separation Speed	3.0 - 20.00 mm/second			
Snap-off Distance	On Contact 0.00 mm (0.00")					

Reflow Profile:

Two unique profile families are depicted below; both can be used in ramp-spike or ramp-soak-spike applications, and they each have similar reflow temperatures. The two profiles differ in where they reach their respective peak temperatures, as well as the time above liquidus (TAL). The shorter profile of the two would apply to smaller assemblies, where as the longer profile would apply to larger assemblies, such as backplanes or high-density boards. The shaded area defines the process window. Oven efficiency, board size/mass, component type and density all influence the final profile for a given assembly. These profiles are starting points, and processing boards with thermal-couples attached is recommended to optimize the process.

RATE OF RISE 2°C / SEC MAX	RAMP TO 150°C (302°F)	PROGRESS THROUGH 150°C-175°C (302°F-347°F)	TO PEAK TEMP 235°C- 255°C (455°F- 492°F)	TIME ABOVE 227°C (442°F)	COOLDOWN ≤4°C/SEC	PROFILE LENGTH AMBIENT TO COOL DOWN
Short Profiles	≤ 75 Sec	30-60 Sec	45-75 Sec	30-60 Sec	45± 15 Sec	2.75-3.5 Min
Long Profiles	≤ 90 Sec	60-90 Sec	45-75 Sec	60-90 Sec	45± 15 Sec	4.5-5.0 Min

THE RECOMMENDED REFLOW PROFILE FOR NC259 IS PROVIDED AS A GUIDELINE. OPTIMAL PROFILE MAY DIFFER DUE TO OVEN TYPE, ASSEMBLY LAYOUT, OR OTHER PROCESS VARIABLES. CONTACT AIM TECHNICAL SUPPORT IF YOU REQUIRE ADDITIONAL PROFILING ASSISTANCE.

Compatible Products:

- AIM Lead-Free Electropure Solder Bar
- NC Paste Flux, No-Clean Tacky Flux
- NC270WR VOC-Free No-Clean Spray Flux
- NC264-5 No-Clean Flux Spray/Foam

- Glowcore No-Clean Cored Wire
 - One-Step Underfill FF35
 - Epoxy 4044 Chip Bonding Epoxy
 - 200AX Stencil Cleaner

Cleaning:

- NC259 can be cleaned if necessary with saponified water or an appropriate solvent cleaner.
- Please refer to the AIM cleaner matrix for a list of compatible cleaning materials.

Handling and Storage:

- NC259 is best used within 9 months at 4° C-12° C (40° F-55° F) or 4 months at room temperature.
- Allow the solder paste to warm up completely and naturally to ambient temperature (8 hrs.) prior to breaking the seal for use.
- Mix the product lightly and thoroughly (1-2 mins. max) to ensure even distribution of any separated material.
- Do not store new and used paste in the same container, and reseal any opened containers while not in use.
- Replace the internal plug and cap of the 500 gram jars to ensure the best possible seal.

Physical Properties:

ITEM	SPECIFICATION	
Appearance	Gray, Smooth, Creamy	
Alloy	SN100C	
Melting Point	227° C	
Particle Size	T3 , T4, T5	
Viscosity	Print/dispense versions available.	
Packaging	Available in all industry standard packaging.	

Test Data Summary:

CLASSIFICATIO	N						
Product Name	IPC Classification to J-STD-004	Copper Mirror to J-STD-004 Silver Chromate to J-S					
NC259	ROL0	LOW	PASS				
POWDER TESTI	POWDER TESTING						
No.	<u>Item</u>	Results	<u>Test Method</u>				
1	Powder Size	Type 3 – 45-25 micron Type 4 – 38-20 micron	IPC TM 650 2.2.14				
2	Powder Shape	Spherical	Microscope				
FLUX MEDIUM	FLUX MEDIUM TESTING						
<u>No.</u>	<u>Item</u>	Results	<u>Test Method</u>				
1	Acid Value	145 +/- 4 mg KOH/ g flux	J-STD-004 IPC TM 650 2.3.13				
2	Halide Content	Silver Chromate Paper - Pass	J-STD-004 IPC TM 650 2.3.35				
3	Fluorides Spot Test	No fluoride	J-STD-004 IPC TM 650 2.3.35.1 J-STD-004 IPC TM 650 2.3.35.2				
4	Corrosivity Test/ Copper Mirror	Low	J-STD-004 IPC TM 650 2.3.32				
5	Corrosion Flux	Pass	J-STD-004 IPC TM 650 2.6.15				
6	Surface Insulation Resistance	Pass – See AIM Qualification Test Report	J-STD-004B IPC TM 650 2.6.3.7				
7	Oxygen Bomb	Bromine 613 mg/Kg Chlorine <125 mg/Kg	EN 14582:2007 SW 9056 SW 5050				
VISCOSITY TEST	TING						
<u>No.</u>	<u>Item</u>	Results	<u>Test Method</u>				
1	T-Bar Spindle Test Method	900 ± 10% kcps	J-STD-005 IPC TM 650 2.4.34				
SOLDER PASTE TESTING							
<u>No.</u>	<u>Item</u>	Results	<u>Test Method</u>				
1	Tack Test	37.9 g	J-STD-005 IPC TM 650 2.4.44				
2	Tack Test	94.8 g	JIS Z 3284 Annex 9				
3	Solder Ball Test	Pass	J-STD-005 IPC TM 650 2.4.43				
4	Wetting Test	Pass	J-STD-005 IPC TM 650 2.4.45				
5	Paste Shelf Life	$4^{\circ}\text{C }(39^{\circ}\text{F}) = 9 \text{ months}$	AIM TM 125-11				
6	Solder Paste Slump Test	Pass	J-STD-005 IPC TM 650 2.4.35				