UL 489 DIN rail branch circuit breakers

FAZ-NA circuit breakers

ACCESSORYTECHNICAL DATA

Shunt trip release FAZ-XAA-NA

- Remote release for subsequent mounting onto FAZ-NA/RT
- Additional installation of standard auxiliary switch is possible
- Position indicator red-green

Connection Diagram

Busbar block UL 489 (pin)

- Tested according to UL 489
- Do not cut
- Extension terminal $35 \mathrm{~mm}^{2}$ Z-EK/35/UL for copper conductors
- Incoming terminal 50 mm² Z-EB/50/UL
- For covering of not used pins, use busbar tag shrouds ZV-BS-UL

Connection Diagram

Busbar Block UL 489 (Pin)

Description	UL 489	IEC/EN 60947-2
Electrical		
Rated operational voltage	$\begin{aligned} & 480 / 277 \mathrm{Vac} \\ & 96 \mathrm{Vdc} \end{aligned}$	-
Rated frequency	50/60 Hz	-
Rated voltage	480 Vac	690 Vac
Overvoltage category	-	III
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	-	9.5 kV
Rated current	80 A at $40^{\circ} \mathrm{C}$	80 A at $30^{\circ} \mathrm{C}$
Rated conditional shortcircuit current AC with 350A gG	-	15 kA
Short-circuit current	10 kA	-
Mechanical		
Busbar cross section	-	$16 \mathrm{~mm}^{2} \mathrm{Cu}$
Flame class according to UL 94	Vo	-
Pollution degree	-	2
Comparative tracking index	-	CTI 600
Minimum clearance (internal/external)	-	> 9.5/25.4 mm
Minimum creepage distance (internal/external)	-	> 12.7/50.8 mm
Resistance to climatic conditions	-	According to DIN/EN 60068

Optimum and efficient protection

Optimum product quality, tested reliability and safety stand for best protection of personnel, installations and plant. Eaton's FAZ DIN rail mountable circuit breaker is designed for use in control panel applications.

Powerful offering for machine and system builders
The FAZ is available with B, C, D, K, S, and Z characteristics in accordance with UL 1077, CSA C22.2 No. 235 and IEC 60947-2. These devices are CE marked.

Typical applications

Supplementary protection

- Control circuits
- Lighting
- Business equipment
- Appliances

Features

- Complete range of UL 1077 recognized DIN rail mounted miniature circuit breakers up to 63A current rating
- Standard ratings of 10 kAIC up to $277 / 480$ Vac
- Current limiting design provides fast short-circuit interruption that reduces the let-through energy, which can damage the circuit
- Suitable for supplementary protection
- Thermal-magnetic overcurrent protection
- Six levels of short-circuit protection, categorized by B, C, D, K, S, and Z curves
- Trip-free design-breaker can not be defeated by holding the handle in the ON position
- Captive screws cannot be lost
- Fulfill UL 1077, CSA C22.2 No. 235 and also IEC 60947-2 Standard
- Field-installable shunt trip and auxiliary switch subsequent mounting
- Module width of only 17.7 mm (per pole)
- Contact position indicator (red/green)
- Easy installation on DIN rail
- Possibility for sealing the toggle in ON or OFF position

FAZ complies with the latest national and international standards

Standards-Supplementary Protection
 UL 1077, CSA C22.2 No. 235

Apply to supplementary protectors intended for use
as overcurrent, or overvoltage or
undervoltage protection within an appliance or
other electrical equipment where branch circuit
protection is already provided, or is not required.

RoHS

These devices are RoHS compliant.	COMPLIANT

VDE

Devices with B, C, and D curves
are VDE compliant.

CCC
Devices with B, C, and D curves
are CCC compliant.

ABS
These devices are ABS compliant.

UL 1077 DIN rail supplementary protectors

FAZ circuit breakers

PRODUCT OVERVIEW

Discover these advanced features

```
Breakers install on
``` standard DIN rail

Available in one-, two-, three-, four-pole, \(1+\mathrm{N}\) ' and \(3+\mathrm{N}\) models

Color-coded indicator provides breaker status for easy troubleshooting

\section*{Six tripping curves to choose from}

Eaton FAZ supplementary protectors are available with six different tripping characteristics, including Type B, C, D, K, S, and Z. Definitions for each trip curve are contained on the ordering pages and can be used to determine the optimal characteristic for your application. For example, low-level short-circuit faults in control wiring, such as PLCs, are best protected by devices with Type B trip characteristics (3-5X continuous rating of the device (\({ }_{n}\)).
Even though not required by NEC or CEC for supplementary protectors, Eaton's FAZ devices are current limiting, which means that they interrupt fault currents within one half cycle. Current limiting devices offer superior protection by reducing peak let-through current and energy.

\section*{Catalog Numbering System}

(1) \(I_{n}=\) Rated current for instantaneous trip characteristics.

\section*{UL 1077 DIN rail supplementary protectors}

FAZ circuit breakers PRODUCT SELECTION

FAZ product selection-B curve (\(3-5 X I_{n}\) current rating)
- Designed for resistive or slightly inductive loads
- Response time of instantaneous trip: 3-5X \(I_{n}\) current rating
- UL recognized and CSA Certified as supplementary protectors
- For international and domestic use (conform to IEC 60947-2)
- UL file number 177451

Suitable for applications where protection against low-level shortcircuit faults in control wiring is desired. Instantaneous trip is \(3-5 X\) continuous rating of device (\(/ \mathrm{I}_{\mathrm{n}}\). Applications include PLC wiring, business equipment, lighting, appliances and some motors. Low magnetic trip point.

B Curve (3-5X \(I_{n}\) Current Rating) - designed for resistive or slightly inductive loads (1)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Single-pole (2) & Two-pole & Three-pole & Four-pole & Single-pole + Neutral & Three-pole + Neutral \\
\hline Amperes & Catalog & Catalog Number & Catalog Numbe & Catalog Numbe & Catalog Number & Catalog Number \\
\hline \[
3
\] & \[
\begin{aligned}
& \text { FAZ-B1/1-SP } \\
& \text { FAZ-B2/1-SP } \\
& \text { FAZ-B3/1-SP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-B1/2 } \\
& \text { FAZ-B2/2 } \\
& \text { FAZ-B3/2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-B1/3 } \\
& \text { FAZ-B2/3 } \\
& \text { FAZ-B3/3 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-B1/4 } \\
& \text { FAZ-B2/4 } \\
& \text { FAZ-B3/4 }
\end{aligned}
\] & FAZ-B1/1N
FAZ-12/1N
FAZ-B3/1N & FAZ-B1/3N
FAZ-B2/3N
FAZ-B3/3N \\
\hline \[
\begin{aligned}
& 5 \\
& 6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-B4/1-SP } \\
& \text { FAZ-B5/1-SP } \\
& \text { FAZ-B6/1-SP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-B4/2 } \\
& \text { FAZ-B5/2 }
\end{aligned}
\]
FAZ-B6/2 & \[
\begin{aligned}
& \text { FAZ-B4/3 } \\
& \text { FAZ-B5/3 } \\
& \text { FAZ-B6/3 }
\end{aligned}
\] & FAZ-B4/4 FAZ-B5/4 FAZ-B6/4 & FAZ-B4/1N FAZ-B5/1N FAZ-B6/1N & FAZ-B4/3N FAZ-B5/3N FAZ-B6/3N \\
\hline \[
\begin{aligned}
& 7 \\
& 8 \\
& 10
\end{aligned}
\] & FAZ-B7/1-SP FAZ-B8/1-SP FAZ-B10/1-SP & FAZ-B7/2 FAZ-B8/2 FAZ-B10/2 & \begin{tabular}{l}
FAZ-B7/3 \\
FAZ-B8/3 \\
FAZ-B10/3
\end{tabular} & \[
\begin{aligned}
& \text { FAZ-B7/4 } \\
& \text { FAZ-B8/4 } \\
& \text { FAZ-B10/4 } \\
& \hline
\end{aligned}
\] & FAZ-B7/1N FAZ-B8/1N FAZ-B10/1N & FAZ-B7/3N FAZ-B8/3N FAZ-B10/3N \\
\hline \[
\begin{aligned}
& 12 \\
& 13 \\
& 15
\end{aligned}
\] & FAZ-B12/1-SP FAZ-B13/1-SP FAZ-B15/1-SP & \begin{tabular}{l}
FAZ-B12/2 \\
FAZ-B13/2 \\
FAZ-B15/2
\end{tabular} & \begin{tabular}{l}
FAZ-B12/3 \\
FAZ-B13/3 \\
FAZ-B15/3
\end{tabular} & FAZ-B12/4 FAZ-B15/4 & FAZ-B12/1N FAZ-B13/1N FAZ-B15/1N & FAZ-B12/3N FAZ-B13/3N FAZ-B15/3N \\
\hline \[
\begin{aligned}
& 16 \\
& 20 \\
& 25 \\
& \hline
\end{aligned}
\] & FAZ-B16/1-SP FAZ-B20/1-SP FAZ-B25/1-SP & \begin{tabular}{l}
FAZ-B16/2 \\
FAZ-B20/2 \\
FAZ-B25/2
\end{tabular} & \begin{tabular}{l}
FAZ-B16/3 \\
FAZ-B20/3 \\
FAZ-B25/3
\end{tabular} & FAZ-B16/4 FAZ-B20/4 FAZ-B25/4 & FAZ-B16/1N FAZ-B20/1N FAZ-B25/1N & FAZ-B16/3N FAZ-B20/3N FAZ-B25/3N \\
\hline \[
\begin{aligned}
& 30 \\
& 32 \\
& 40
\end{aligned}
\] & FAZ-B30/1-SP FAZ-B32/1-SP FAZ-B40/1-SP & FAZ-B30/2 FAZ-B32/2 FAZ-B40/2 & FAZ-B30/3 FAZ-B32/3 FAZ-B40/3 & FAZ-B30/4
FAZ-B32/4 & FAZ-B30/1N FAZ-B32/1N FAZ-B40/1N & FAZ-B30/3N FAZ-B32/3N FAZ-B40/3N \\
\hline \[
\begin{aligned}
& 50 \\
& 63
\end{aligned}
\] & FAZ-B50/1-SP
FAZ-B63/1-SP & FAZ-B50/2 FAZ-B63/2 & FAZ-B50/3 FAZ-B63/3 & FAZ-B50/4 FAZ-B63/4 & FAZ-B50/1N FAZ-B63/1N & FAZ-B50/3N FAZ-B63/3N \\
\hline
\end{tabular}
(1) In North America, these switches are UL recognized and CSA Certified as supplementary protection devices. Per the intent of NEC (National Electrical Code), Article 240, and CEC (Canadian Electrical Code), Part 1 C22.1, supplementary breakers cannot be used as a substitute for the branch circuit protective device. They can be used to provide overcurrent protection within an appliance or other electrical equipment where branch circuit overcurrent protection is already provided, or is not required.
(2) Option for single packaging on single-pole B, C and D curves only; add suffix SP when ordering.

\section*{UL 1077 DIN rail supplementary protectors}

\section*{FAZ circuit breakers}

\section*{PRODUCT SELECTION}

FAZ product selection - C curve (5-10X \(I_{n}\) current rating)
- Designed for inductive loads
- Response time of instantaneous trip: 5-10X \(I_{n}\) current rating
- UL recognized and CSA Certified as supplementary protectors
- For international and domestic use (conform to IEC 60947-2)
- UL file number 177451

Suitable for applications where medium levels of inrush current are expected. Instantaneous trip is 5-10X rating of device (\(/ I_{n}\)). Applications include small transformers, lighting, pilot devices, control circuits, and coils. Medium magnetic trip point.

\(I / I_{N}\)
C Curve (5-10X \(I_{n}\) current rating)-designed for inductive loads (1)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Single-pole (2) & Two-pole & Three-pole & Four-pole & Single-pole + Neutral & Three-pole + Neutral \\
\hline Amperes & Catalog Number \\
\hline \[
\begin{aligned}
& 0.5 \\
& 1 \\
& 1.6
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C0.5/1-SP } \\
& \text { FAZ-C1/1-SP } \\
& \text { FAZ-c1.6/1-SP } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C0.5/2 } \\
& \text { FAZ-C1/2 } \\
& \text { EATC15 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C0.5/3 } \\
& \text { FAZ-C1/3 } \\
& \text { FAZ-C1.6/3 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C0.5/4 } \\
& \text { FAZ-C1/4 } \\
& \text { FAZ-C1.6/4 }
\end{aligned}
\] & FAZ-C0.5/1N FAZ-C1/1N FAZ-C1.6/1N & \[
\begin{aligned}
& \text { FAZ-C0.5/3N } \\
& \text { FAZ-C1/3N } \\
& \text { FAZ-C1.6/3N }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 2 \\
& 3 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C2/1-SP } \\
& \text { FAZ-C3/1-SP } \\
& \text { FAZ-C4/1-SP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C2/2 } \\
& \text { FAZ-C3/2 } \\
& \text { FAZ-C } 4 / 2
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C2/3 } \\
& \text { FAZ-C3/3 } \\
& \text { FAZ-C4/3 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C2/4 } \\
& \text { FAZ-C3/4 } \\
& \text { FAZ-C4/4 }
\end{aligned}
\] & FAZ-C2/1N FAZ-C3/1N FAZ-C4/1N & \[
\begin{aligned}
& \text { FAZ-C2/3N } \\
& \text { FAZ-C3/3N } \\
& \text { FAZ-C4/3N }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 5 \\
& 6 \\
& 7
\end{aligned}
\] & FAZ-C5/1-SP FAZ-C6/1-SP FAZ-C7/1-SP & \[
\begin{aligned}
& \text { FAZ-C5/2 } \\
& \text { FAZ-C6/2 }
\end{aligned}
\]
FAZ-C7/2 & \[
\begin{aligned}
& \text { FAZ-C5/3 } \\
& \text { FAZ-C6/3 } \\
& \text { FAZ-C7/3 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C5/4 } \\
& \text { FAZ-C6/4 } \\
& \text { FAZ-C7/4 }
\end{aligned}
\] & FAZ-C5/1N FAZ-C6/1N FAZ-C7/1N & FAZ-C5/3N FAZ-C6/3N FAZ-C7/3N \\
\hline \[
\begin{aligned}
& 8 \\
& 10
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C8/1-SP } \\
& \text { FAZ-C10/1-SP }
\end{aligned}
\] & FAZ-C8/2
FAZ-C10/2 & \[
\begin{aligned}
& \text { FAZ-C8/3 } \\
& \text { FAZ-C10/3 }
\end{aligned}
\] & FAZ-C8/4 FAZ-C10/4 & FAZ-C8/1N FAZ-C10/1N & FAZ-C8/3N FAZ-C10/3N \\
\hline \[
\begin{aligned}
& 13 \\
& 15 \\
& 16 \\
& 20
\end{aligned}
\] & FAZ-C13/1-SP FAZ-C15/1-SP FAZ-C16/1-SP FAZ-C20/1-SP & & & FAZ-C13/4 FAZ-C16/4 & FAZ-C13/1N FAZ-C15/1N FAZ-C16/1N FAZ-C20/1N & FAZ-C13/3N FAZ-C15/3N FAZ-C16/3N FAZ-C20/3N \\
\hline \[
\begin{aligned}
& 25 \\
& 30 \\
& 32 \\
& 40 \\
& \hline
\end{aligned}
\] & FAZ-C25/1-SP FAZ-C30/1-SP FAZ-C32/1-SP FAZ-C40/1-SP & & & & FAZ-C25/1N FAZ-C30/1N FAZ-C32/1N FAZ-C40/1N & FAZ-C25/3N FAZ-C30/3N FAZ-C32/3N FAZ-C40/3N \\
\hline \[
\begin{aligned}
& 50 \\
& 63
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C50/1-SP } \\
& \text { FAZ-C63/1-SP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C50/2 } \\
& \text { FAZ-C63/2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FAZ-C50/3 } \\
& \text { FAZ-C63/3 }
\end{aligned}
\] & FAZ-C50/4 FAZ-C63/4 & FAZ-C50/1N FAZ-C63/1N & FAZ-C50/3N FAZ-C63/3N \\
\hline
\end{tabular}
(1) In North America, these switches are UL recognized and CSA Certified as supplementary protection devices. Per the intent of NEC (National Electrical Code), Article 240, and CEC (Canadian Electrical Code), Part 1 C22.1, supplementary breakers cannot be used as a substitute for the branch circuit protective device. They can be used to provide overcurrent protection within an appliance or other electrical equipment where branch circuit overcurrent protection is already provided, or is not required.
(2) Option for single packaging on single-pole B, C and D curves only; add suffix SP when ordering.

\section*{UL 1077 DIN rail supplementary protectors}

\section*{FAZ circuit breakers}

\section*{TECHNICAL DATA}

\section*{Technical Data}
\begin{tabular}{|c|c|c|c|}
\hline Description & B Curve & c Curve & D Curve \\
\hline \multicolumn{4}{|l|}{Electrical} \\
\hline Approvals & \multicolumn{3}{|l|}{UR (UL 1077), CSA (CSA 22.2 No. 235), CE} \\
\hline Standards & \multicolumn{3}{|l|}{IEC/EN 60947-2} \\
\hline Short-circuit trip response & 3-5 \({ }_{\text {n }}\) & 5-10 \({ }_{\text {n }}\) & 10-20 \({ }^{\text {n }}\) \\
\hline \multicolumn{4}{|l|}{Supplementary Protectors-UL/CSA} \\
\hline Current range & 1-63A & 0.5-63A & 0.5-40A \\
\hline Maximum voltage ratings-UL/CSA Single-pole, single-pole + neutral & 277 Vac 48 Vdc & 277 Vac 48 Vdc & 277 Vac 48 Vdc \\
\hline Two-, three-pole, four-pole and three-pole + neutral Two poles in series & 480Y/277 Vac 96 Vdc & 480Y/277 Vac 96 Vdc & 480Y/277 Vac 96 Vdc \\
\hline Thermal tripping characteristics Single-pole Multi-pole & \[
\begin{aligned}
& 1.35 \times \mathrm{I} @ 40^{\circ} \mathrm{C} \\
& 1.45 \times \mathrm{I}_{n} @ 40^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.35 \times 1 \text { I @ } 40^{\circ} \mathrm{C} \\
& 1.45 \times I_{n} @ 40^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.35 \times 1 \text { @ } 40^{\circ} \mathrm{C} \\
& 1.45 \times 1_{n} @ 40^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\] \\
\hline ```
Short-circuit ratings (at max. voltage)
 Single-pole
 Two-, three-pole
 Single-pole
 Two poles in series
``` & \begin{tabular}{l}
10 kA (5 kA for 40-63A device) \\
10 kA ( 5 kA for 40-63A device) \\
10 kA @ 48 Vdc \\
10 kA @ 96 Vdc
\end{tabular} & \begin{tabular}{l}
10 kA ( 5 kA for 40-63A device) 10 kA ( 5 kA for 40-63A device) 10 kA @ 48 Vdc \\
10 kA @ 96 Vdc
\end{tabular} & \[
\begin{aligned}
& 5 \mathrm{kA} \\
& 5 \mathrm{kA} \\
& 10 \mathrm{kA} @ 48 \mathrm{Vdc} \\
& 10 \mathrm{kA} \text { @ } 96 \mathrm{Vdc} \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Miniature Circuit Breaker-IEC} \\
\hline Current range & 1-63A & 0.5-63A & 0.5-63A \\
\hline ```
Maximum voltage ratings-IEC 68898-1
    Single-pole
    Two-, three-pole
``` & \[
\begin{aligned}
& 230 \mathrm{Vac} \\
& 230 / 400 \mathrm{Vac}
\end{aligned}
\] & \[
\begin{aligned}
& 230 \mathrm{Vac} \\
& 230 / 400 \mathrm{Vac}
\end{aligned}
\] & \[
\begin{aligned}
& 230 \mathrm{Vac} \\
& 230 / 400 \mathrm{Vac}
\end{aligned}
\] \\
\hline ```
Maximum voltage ratings-IEC 60947-2
 Single-pole
 Two-, three-pole
 Two poles in series
``` & 240 Vac 48 Vdc 240/415 Vac 96 Vdc & 240 Vac 48 Vdc 240/415 Vac 96 Vdc & 240 Vac 48 Vdc \(240 / 415 \mathrm{Vac}\) 96 Vdc \\
\hline Thermal tripping characteristics Single-pole Multi-pole & \[
\begin{aligned}
& >1 \text { hour @ } 1.05 \times \mathrm{I}_{\mathrm{n}} \\
& <1 \text { hour @ } 1.3 \times \mathrm{I}_{n} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& >1 \text { hour @ } 1.05 \times I_{n} \\
& <1 \text { hour @ } 1.3 \times \mathrm{I}_{n} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& >1 \text { hour @ } 1.05 \times \mathrm{I}_{n} \\
& <1 \text { hour @ } 1.3 \times \mathrm{I}_{n}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Interrupt ratings (at max. voltage) \\
IEC 60947-2 \\
IEC 60898 \\
Operational switching capacity \\
Max. backup fuse [gL/gG] \\
Rated impulse withstand- \(U_{\text {imp }}\) \\
Rated insulation voltage- \(U_{i}^{\text {imp }}\)
\end{tabular} & \begin{tabular}{l}
15 kA \\
10 kA \\
7.5 kA \\
125A \\
4000 Vac \\
440 Vac
\end{tabular} & \begin{tabular}{l}
15 kA \\
10 kA \\
7.5 kA \\
125A \\
4000 Vac \\
440 Vac
\end{tabular} & \begin{tabular}{l}
\(15 \mathrm{kA}(10 \mathrm{kA}\) for 50 and 63A) \\
10 kA (50 and 63A not available) \\
7.5 kA \\
125A \\
4000 Vac \\
440 Vac
\end{tabular} \\
\hline \multicolumn{4}{|l|}{Environmental/General} \\
\hline \begin{tabular}{l}
Selectivity class \\
Lifespan (operations) \\
Shock (IEC 68-2-22) \\
Operating temperature range \\
Shipment and short-term storage \\
Housing material
\end{tabular} & \[
\begin{aligned}
& 3 \\
& >10,000(1 \text { operation }=0 \mathrm{~N} / \mathrm{OFF}) \\
& 10 \mathrm{~g}-120 \mathrm{~ms} \\
& -40 \text { to }+167^{\circ} \mathrm{F}\left(-40 \text { to }+75^{\circ} \mathrm{C}\right) \\
& -40 \text { to }+185^{\circ} \mathrm{F}\left(-40 \text { to }+85^{\circ} \mathrm{C}\right) \\
& \text { Nylon }
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& >10,000(1 \text { operation }=0 \mathrm{~N} / \mathrm{OFF}) \\
& 10 \mathrm{~g}-120 \mathrm{~ms} \\
& -40 \text { to }+167^{\circ} \mathrm{F}\left(-40 \text { to }+75^{\circ} \mathrm{C}\right) \\
& -40 \text { to }+185^{\circ} \mathrm{F}\left(-40 \text { to }+85^{\circ} \mathrm{C}\right) \\
& \text { Nylon }
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& >10,000(1 \text { operation }=0 \mathrm{~N} / \mathrm{OFF}) \\
& 10 \mathrm{~g}-120 \mathrm{~ms}\left(-40 \mathrm{to}+75^{\circ} \mathrm{C}\right) \\
& -40 \text { to }+167^{\circ} \mathrm{F}\left(-40{ }^{\circ} \mathrm{C}\right. \\
& -40 \text { to }+185^{\circ} \mathrm{F}\left(-40 \text { to }+85^{\circ} \mathrm{C}\right) \\
& \text { Nylon }
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{Mechanical} \\
\hline \begin{tabular}{l}
Standard front dimension \\
Device height \\
Terminal protection \\
Mounting width per pole
\end{tabular} & \begin{tabular}{l}
80 mm \\
Finger and back-of-hand proof to IEC 536 17.5 mm
\end{tabular} & \begin{tabular}{l}
80 mm \\
Finger and back-of-hand proof to IEC 536 17.5 mm
\end{tabular} & \begin{tabular}{l}
80 mm \\
Finger and back-of-hand proof to IEC 536 \\
17.5 mm
\end{tabular} \\
\hline \begin{tabular}{l}
Mounting \\
Degree of protection Terminals top and bottom Supply connection
\end{tabular} & \begin{tabular}{l}
IEC/EN 60715 top-hat rail 1 P20 \\
Twin-purpose terminals Line or load side
\end{tabular} & \begin{tabular}{l}
IEC/EN 60715 top-hat rail IP20 \\
Twin-purpose terminals Line or load side
\end{tabular} & \begin{tabular}{l}
IEC/EN 60715 top-hat rail IP20 \\
Twin-purpose terminals Line or load side
\end{tabular} \\
\hline \begin{tabular}{l}
Terminal capacity [mm²] Torque Imperial torque \\
Thickness of busbar material Mounting position
\end{tabular} & ```
1 x 25 (AWG 4-18)/2 x 10 (AWG 8-18)
2.4 Nm
21 lb-in (AWG 18-12), 25 lb-in
    (AWG 10-8), 36 lb-in (AWG 6-4)
0.8-2 mm
As required
``` & ```
1 x 25 (AWG 4-18)/2 x 10 (AWG 8-18)
2.4 Nm
21 lb-in (AWG 18-12), 25 Ib-in
 (AWG 10-8), 36 lb-in (AWG 6-4)
0.8-2 mm
As required
``` & ```
\(1 \times 25\) (AWG 4-18)/2 x 10 (AWG 8-18)
2.4 Nm
\(21 \mathrm{lb}-\mathrm{in}(\mathrm{AWG}\) 18-12), \(25 \mathrm{lb}-\mathrm{in}\)
    (AWG 10-8), 36 lb -in (AWG 6-4)
\(0.8-2 \mathrm{~mm}\)
As required
``` \\
\hline
\end{tabular}```

