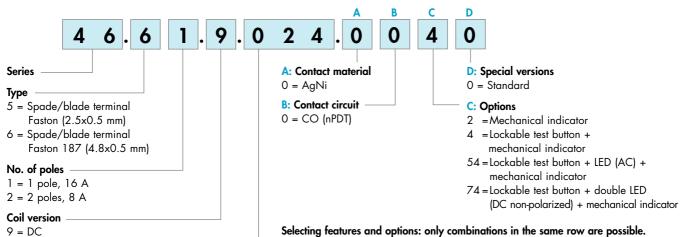
finder

Features

- 1 & 2 Pole relay range 46.52 - 2 Pole 8 A 46.61 - 1 Pole 16 A
- Socket mount or direct connection via Faston connectors
- AC coils & DC coils
- Available with: lockable test button, mechanical indicator & LED indicato
- Reinforced insulation between coil and contacts according to EN 60335-1 (VDE 0700), with safe separation and 8 mm clearance and creepage distance
- Cadmium Free contacts

	46.52	46.61			
via n, ator					
l and 1 and	 2 Pole changeover contacts Plug-in/Faston (2.5x0.5 mm) 	 1 Pole changeover contact Plug-in/Faston 187 			
stance	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	29 12.4 8 20 12.4 19.4 12.4 19.4 10.5 10				
	2 CO (DPDT)	1 CO (SPDT)			
A	8/15	16/25			
ge VAC	250/440	250/440			
, VA	2,000	4,000			
VA	350	750			
kW	0.37	0.55			
V A	6/0.5/0.15	12/0.5/0.15			
′ (V/mA)	300 (5/5)	300 (5/5)			
	AgNi	AgNi			
/60 Hz)	12 - 24 - 48 - 110	- 120 - 230 - 240			
V DC	12 - 24 - 48 - 110 - 125				


46

		4.8 17.5
Contact specification		
Contact configuration	2 CO (DPDT)	1 CO (SPDT)
Rated current/Maximum peak current	8/15	16/25
Rated voltage/Maximum switching voltage VA	250/440	250/440
Rated load AC1 V	2,000	4,000
Rated load AC15 (230 V AC) V	350	750
Single phase motor rating (230 V AC) kV	0.37	0.55
Breaking capacity DC1: 30/110/220 V	6/0.5/0.15	12/0.5/0.15
Minimum switching load mW (V/mA) 300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi
Coil specification		
Nominal voltage (U _N) V AC (50/60 Hz) 12 - 24 - 48 - 110) - 120 - 230 - 240
V DO	12 - 24 - 48	8 - 110 - 125
Rated power VA/V	/ 1.2/0.5	1.2/0.5
Operating range A0	(0.81.1)U _N	(0.81.1)U _N
D0	(0.731.1)U _N	(0.731.1)U _N
Holding voltage AC/DC	0.8U _N /0.4U _N	0.8U _N /0.4U _N
Must drop-out voltage AC/DC	0.2U _N /0.1U _N	0.2U _N /0.1U _N
Technical data		
Mechanical life AC/DC cycle	s 10 · 10 ⁶	10 · 10 ⁶
Electrical life at rated load AC1 cycle	s 100 · 10 ³	100 · 10 ³
Operate/release time m	s 10/3	15/5
Insulation between coil and contacts (1.2/50 $\mu s)k^{3}$	/ 6 (8 mm)	6 (8 mm)
Dielectric strength between open contacts VAC	C 1,000	1,000
Ambient temperature range °C	-40 +70	-40 +70
Environmental protection	RT II	RT II
Approvals (according to type)	CE @	0 c 91 °us

Ordering information

Example: 46 series Miniature industrial relay, 1 CO (SPDT), 24 V DC coil, lockable test button and mechanical indicator.

Selecting features and options: only combinations in the same row are possible. Preferred selections for best avaliability are shown in **bold**.

			,		
Туре	Coil version	Α	В	С	D
46.52/61	AC-DC	0	0	2 - 4	0
46.52/61	AC	0	0	54	/
46.52/61	DC	0	0	74	/

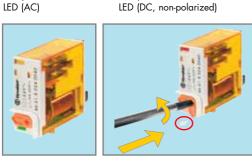
Coil voltage ______

8 = AC (50/60 Hz)

46

Descriptions: Options

A2


A1 C: Option 54 LED (AC)

8

A1 C: Option 74

A2

8

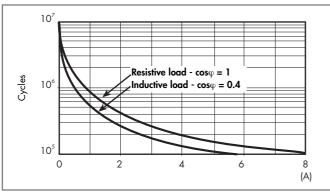
Lockable test button and mechanical flag indicator (0040, 0054, 0074)

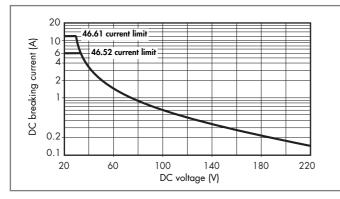
The dual-purpose Finder test button can be used in two ways:

<u>Case 1</u>) The plastic pip (located directly below the test button) remains intact. In this case, when the test button is pushed, the contacts operate. When the test button is released the contacts return to their former state.

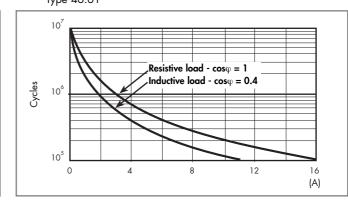
<u>Case 2</u>) The plastic pip is broken-off (using an appropriate cutting tool). In this case, (in addition to the above function), when the test button is pushed and rotated, the contacts are latched in the operating state, and remain so until the test button is rotated back to its former position. In both cases ensure that the test button actuation is swift and decisive.

Technical data


Insulation					
Insulation according insulation rated voltage		V	250	440	
to EN 61810-1 ed. 2 rated impulse withstand voltage		kV	4	4	
	pollution degree		3	2	
	overvoltage category		III	111	
Insulation between coil and	d contacts (1.2/50 μs)	kV	6 (8 mm)	,	
Dielectric strength between open contacts			1,000		
Dielectric strength between adjacent contacts			2,000		
Conducted disturbance imm	nunity				
Burst (550)ns, 5 kHz, on A1 - A2			EN 61000-4-4	level 4 (4 kV)	
Surge (1.2/50 μs) on A1 - A2 (differential mode)			EN 61000-4-5	level 3 (2 kV)	
Other data			1 changeover contact	2 changeover contacts	
Bounce time: NO/NC		ms	2/6	1/4	
Power lost to the environme	ent without contact current	W	0.6	0.6	
	with rated current	W	1.6	2	


Contact specification

F 46 - Electrical life (AC) v contact current

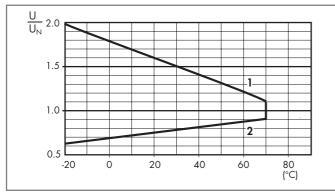


H 46 - Maximum DC1 breaking capacity

F 46 - Electrical life (AC) v contact current Type 46.61

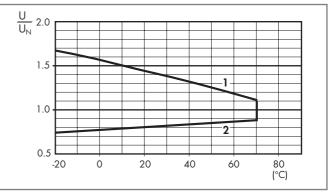
- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^3$ can be expected.
- In the case of DC13 loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a DC1 load. Note: the release time for the load will be increased.

Coil specifications


DC coil data

Nominal	Coil	Operatir	ng range	Resistance	Rated coil
voltage	code				consumption
U _N		U _{min}	U _{max}	R	I at U _N
V		V	V	Ω	mA
12	9 .012	8.8	13.2	300	40
24	9 .024	17.5	26.4	1,200	20
48	9 .048	35	52.8	4,800	10
110	9 .110	80	121	23,500	4.7
125	9 .125	91.2	137.5	32,000	3.9

AC coil data

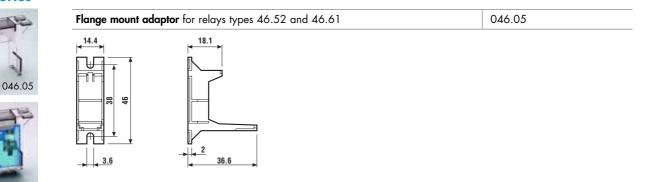

Nominal voltage	Coil code	Operatir	ng range	Resistance	Rated coil consumption
U _N	code	U _{min}	U _{max}	R	I at U _N
V		V	V	Ω	mA
12	8 .012	9.6	13.2	80	90
24	8 .024	19.2	26.4	320	45
48	8 .048	38.4	52.8	1,350	21
110	8 .110	88	121	6,900	9.4
120	8 .120	96	132	9,000	8.4
230	8 .230	184	253	28,000	5
240	8 .240	192	264	31,500	4.1

R 46 - DC coil operating range v ambient temperature

^{1 -} Max. permitted coil voltage.

R 46 - AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.


2 - Min. pick-up voltage with coil at ambient temperature.

^{2 -} Min. pick-up voltage with coil at ambient temperature.

Accessories

-)

046.05 with relay 46

046.07 with relay

35 mm rail adaptor for relays types 46.52 and 46.61	046.07

Sheet of marker tags for relays types 46.52 and 46.61, plastic, 72 tags, 6x12 mm	060.72