Permissible mounting position

The contactors are designed for opera-
tion on a vertical mounting surface.

Upright mounting position

Positively driven contacts

The 3RH11 contactor relays fulfill the conditions for positively driven opera tions as required by the safety rules for control units on power-operated presses in the metal-working industry (ZH1/457) or correspond to the accident prevention regulations of the Schweizer Unfallversicherungsanstalt
(Swiss Institute for accident insurance).
There is a positively driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

Positive driving, both in the basic unit and in the auxiliary switch block, as well as between the basic unit and the mounted auxiliary switch block ZH 1/457, SUVA
Note: There is no positive driving in the case of 3RH19 11-.NF.. electronically compatible auxiliary switch blocks.

Contact reliability

Contact reliability at $17 \mathrm{~V}, 1 \mathrm{~mA}$ acc. to DIN 19240

Frequency of contact faults < 10-8, i.e. < 1 fault per 100 million operating cycles

Contact endurance at utilization categories

AC-15/AC-14 and DC-13

The contact endurance is mainly

 dependent on the break-current, provided the command devices operate randomly, i.e. not synchronized with the phase angle of the supply system.If magnetic circuits other than contactor operating mechanisms or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary.
RC elements and freewheeling diodes
would be suitable as protective features.
The characteristic curves apply to

- 3RH11 contactor relays
- 3RH14 latched contactor relays
- 3RH19 11 auxiliary switch blocks.

Legend to the diagram:
$I_{\mathrm{a}}=$ Break-current
$I_{\mathrm{e}}=$ Rated operational current

Technical data

(14 and (ㄴ)-rated data
Basic units and auxiliary switch blocks

Rated control supply voltage			max. 600 V AC
Rated voltage Making/breaking capacity			$\begin{aligned} & 600 \text { V AC } \\ & \text { A 600, Q } 600 \end{aligned}$
Continuous current			10 A at 240 V AC
General data			
Mechanical Basic units			30 million operating cycles
endurance Basic units with mounted auxiliary switch block			10 million operating cycles
Basic units with mounted electronically compatible auxiliary switch block			5 million operating cycles
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$ (pollution degree 3)		V	690
Permissible ambient temperature	during operation when stored	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25 \text { to }+60 \\ & -55 \text { to }+80 \end{aligned}$
Degree of protection acc. to IEC 60947 -1 and DIN 40050			IP 20, coil system IP 40
Shock resistance Rectangular pulse Sine pulse	AC/DC operation AC/DC operation	g / ms g / ms	10/5 and 5/10 $15 / 5$ and $8 / 10$

Conductor cross-sections

Screw connection

(1 or 2 conductor
connections possible)

Auxiliary conductor and coil terminals
solid
finely stranded with end sleeve
AWG conductor connections, solid or stranded
Terminal screws
Tightening torque
Cage Clamp connection Auxiliary conductor and coil terminals:
(1 or 2 conductor
connections possible)
$\mathrm{mm}^{2} \quad 2 \times(0.5$ to 2.5$)$
$\mathrm{mm}^{2} \quad 2 \times(0.5$ to 1.5$)$
$\mathrm{mm}^{2} \quad 2 \times(0.5$ to 2.5$)$
AWG $2 \times(18$ to 14$)$

- For conductor cross-sections $\leq 1 \mathrm{~mm}^{2}$ an "insulation-stop" has to be used, see Accessories, page $6 / 13$.
- Max. outside diameter of conductor insulation: 3.6 mm .
- For notes on Cage Clamp connection, see page 0/6.

Short-circuit protection

(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)

| Fuses, utilization category gL/gG | |
| :--- | :--- | :--- | :--- |
| DIAZED Type 5SB
 NEOZED Type 5SE A 10 | |

[^0]NEOZED Type 5SE

Control circuit

Coil voltage tolerance	AC operation	$\begin{aligned} & \text { at } 50 \mathrm{~Hz} \text { : } \\ & \text { at } 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.8 \text { to } 1.1 \times U_{\mathrm{s}} \\ & 0.85 \text { to } 1.1 \times U_{\mathrm{s}} \end{aligned}$
	DC operation	$\begin{aligned} & \text { at }+50^{\circ} \mathrm{C}: \\ & \text { at }+60^{\circ} \mathrm{C}: \end{aligned}$	$\begin{aligned} & 0.8 \text { to } 1.1 \times U_{\mathrm{s}} \\ & 0.85 \text { to } 1.1 \times U_{\mathrm{s}} \end{aligned}$
Power consumption of the coils (with cold coil and $1.0 \times U_{\mathrm{s}}$)		at 50 Hz	at 60 Hz
AC operation closing p.f. closed p.f.	VA VA	$\begin{aligned} & 27 \\ & 0.8 \\ & 4.6 \\ & 0.27 \end{aligned}$	$\begin{gathered} 24 \\ 0.75 \\ 3.5 \\ 0.27 \end{gathered}$
DC operation closing = closed	W	3.2	

Permissible residual current of the electronics
AC operation
DC operation

$$
\begin{array}{ll}
\mathrm{mA} & <3 \mathrm{~mA} \times\left(\frac{230 \mathrm{~V}}{U_{\mathrm{s}}}\right) \\
\mathrm{mA} & <10 \mathrm{~mA} \times\left(\frac{24 \mathrm{~V}}{U_{\mathrm{s}}}\right)
\end{array}
$$

DC operation

Operating times ${ }^{1}$)

Break-time $=$ opening time + arcing time
AC operation

Closing	closing delay NO opening delay NC
Opening	opening delay NO closing delay NC

DC operation

Closing	closing delay NO opening delay NC
Opening	opening delay NO closing delay NC

Load side

Rated operational currents

$I_{\mathrm{e}} / \mathrm{AC}-12$

$I_{\mathrm{e}} / \mathrm{AC}-15 / \mathrm{AC}-14$
at rated operational voltage U_{e}
at rated operational voltage U_{e}
$I_{\text {/ DC-13 }}$
at rated operational voltage U_{e}

	A	10		
to 230 V	A	6		
400 V	A	3		
500 V	A	2		
690 V	A	1		
		Number of conducting paths in series		
		1	2	3
24 V	A	10	10	10
60 V	A	6	10	10
110 V	A	3	4	10
220 V	A	1	2	3.6
440 V	A	0.3	1.3	2.5
600 V	A	0.15	0.65	1.8
24 V	A	103)	10	10
60 V	A	2	3.5	4.7
110 V	A	1	1.3	3
220 V	A	0.3	0.9	1.2
440 V	A	0.14	0.2	0.5
600 V	A	0.1	0.1	0.26

Operating frequency z

in operating cycles/hour
at rated operation
for utilization category

AC-12/DC-12	$1 / \mathrm{h}$	1000
AC-15/AC-14	$1 / \mathrm{h}$	1000
DC-13	$1 / \mathrm{h}$	1000
	$1 / \mathrm{h}$	10000

Non-load operating frequency

Interdependence of the operating frequency z
on rated operational current and
rated operational voltage
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{U_{e}}{U^{\prime}}\right) 1.51 / \mathrm{h}$

1) The opening times of the NC contacts and the closing times of the NO contacts are increased when the contactor coil is protected against voltage peaks (suppression diode 6 to 10 times; diode assemblies 2 to 6 times; varistor +2 to 5 ms).
2) See Accessories, page $6 / 12$.
3) Mountable auxiliary switch blocks: 6 A .

3TH43 Contactor Relays
 with 10 Contacts

Technical data

Permissible mounting position

The contactors are designed for operation on vertical mounting surface

AC operation

DC operation

Upright mounting position

Positively driven contacts

The 3TH43 contactor relays fulfill the conditions for positively driven operations as required by the safety rules for control units on poweroperated presses in the metal-working industry (ZH 1/457) or correspond to the accident prevention regulations of the Schweizer Unfallversicherungsanstalt (Swiss Institute for accident insurance) There is a positively driven operation if it is ensured that the NC and NO contacts cannot be closed at the same time.

Complete unit
ZH 1/457, SUVA

Contact endurance at utilization categories AC-15/AC-14 and DC-13
The contact endurance is mainly dependent on the break-current, provided the command devices operate randomly, i.e. not synchronized with the phase angle of the supply system.
If magnetic circuits other than contactor operating mechanisms or solenoid valves are present, e.g. magnetic brakes, protective measures for the load circuits are necessary.
RC elements and freewheeling diodes would be suitable as protective features.

Legend to the diagram:
= Break-current
$I_{\mathrm{e}}=$ Rated operational current

3TH43 Contactor Relays
 with 10 Contacts

Technical data

Conductor cross-sections

Terminal screws		M 3.5
solid		
finely stranded with end sleeve	mm^{2}	$2 \times(0.5$ to 1$) ; 2 \times(1$ to 2.5$) ; 1 \times 4$
$\mathrm{~mm}^{2}$	$2 \times(0.75$ to 2.5$)$	

Short-circuit protection

(weld-free protection at $I_{\mathrm{k}} \geq 1 \mathrm{kA}$)
Fuses, utilization category gL/gG

NH	Type 3NA	A	16	
DIAZED	Type 5SB	A	16	
NEOZED	Type 5SE, quick response		A	20
Miniature circuit-breakers	C-characteristic	A	16	
	B-characteristic	A	16	

Control circuit
Coil voltage tolerance

AC operation	0.8 to $\left.1.1 \times U_{s}{ }^{1}\right)$
DC operation (except 24 V$)$	0.8 to $1.1 \times U_{s}$
at 24 V DC	0.8 to $1.2 \times U_{s}$

Power consumption of the coils (with cold coil and $1.0 \times U_{s}$)

[^1]
3TH43 Contactor Relays
 with 10 Contacts

Technical data

Control circuit

Operating times ${ }^{1}$)

Break-time = opening time + arcing time (the values are valid up to 20% undervoltage,
10% overvoltage and with the coil in cold state and at operating temperature)

	operation			AC	DC
Closing	ON-delay OFF-delay	$\begin{aligned} & \text { NO } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 8 \text { to } 35 \\ & 6 \text { to } 20 \end{aligned}$	$\begin{aligned} & 20 \text { to } 170 \\ & 18 \text { to } 110 \end{aligned}$
Opening	OFF-delay ON-delay	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 4 \text { to } 18 \\ & 5 \text { to } 30 \end{aligned}$	$\begin{array}{ll} 10 \text { to } 25 \\ 15 \text { to } & 30 \end{array}$
Arcing time			ms	10	10
Operating times ${ }^{1}$) at $1.0 \times U_{\text {s }}$					
	operation			AC	DC
Closing	ON-delay OFF-delay	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{r} \hline 10 \text { to } 25 \\ 7 \text { to } 20 \end{array}$	$\begin{aligned} & 30 \text { to } 70 \\ & 28 \text { to } 65 \end{aligned}$
Opening	OFF-delay ON -delay	$\begin{aligned} & \text { NO } \\ & \text { NC } \end{aligned}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 5 \text { to } 18 \\ & 7 \text { to } 20 \end{aligned}$	$\begin{aligned} & 10 \text { to } 20 \\ & 15 \text { to } 25 \end{aligned}$

Load side
Rated operational currents

$I_{\text {e }} / \mathrm{AC}-12$		A	16		
$\begin{aligned} & I_{\mathrm{e}} / A C-15 / A C-14 \\ & \text { at } U_{\mathrm{e}} \end{aligned}$	$\begin{array}{r} \text { to } 230 / 220 \mathrm{~V} \\ \text { at } 400 / 380 \mathrm{~V} \\ 500 \mathrm{~V} \\ 690 / 660 \mathrm{~V} \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{array}{r} 10 \\ 6 \\ 4 \\ 2 \end{array}$		
			Condu 1	$\begin{gathered} \text { eries } \\ 2 \end{gathered}$	3
$I_{\mathrm{e}} / \mathrm{DC}-12$	24/48 V	A	10	10	10
at $U_{\text {e }}$	110 V	A	2.1	10	10
	220 V	A	0.8	1.6	10
	440 V	A	0.6	0.8	1.3
	600 V	A	0.6	0.7	1
$I_{\mathrm{e}} / \mathrm{DC}-13$	24 V	A	10	10	10
at U_{e}	48 V	A	5	10	10
	110 V	A	0.9	2.5	10
	220 V	A	0.45	0.75	2
	440 V	A	0.25	0.5	0.9
	600 V	A	0.2	0.4	0.8

Three-phase motor ratings

at utilization category AC-2 and AC-3

$230 / 220 ~ V$	kW	2.4
$400 / 380 \mathrm{~V}$	kW	4
500 V	kW	4
$690 / 660 \mathrm{~V}$	kW	4

Operating frequency

in operating cycles/hour
at rated operation in utilization category

AC-12/DC-12	$1 / \mathrm{h}$	1000
AC-2	$1 / \mathrm{h}$	500
$\mathrm{AC}-3$	$1 / \mathrm{h}$	1000
AC-15/AC-14		
and		
$\mathrm{DC}-13$	$1 / \mathrm{h}$	3600

Interdependence of the operating frequency z '
on rated operational current
and rated operational voltage
$z^{\prime}=z \cdot \frac{I_{e}}{I^{\prime}} \cdot\left(\frac{U_{e}}{U^{\prime}}\right) 1.51 / \mathrm{h}$
Non-load operating frequency when the contactor coil is protected against voltage peaks (suppression diode 6 to 9 times; diode assemblies 2 to 6 times; varistor +2 to 5 ms).

Accessories for 3RH1. Contactor Relays

SIRIUS 3R

Internal circuit diagrams

Terminal designations acc. to EN 50011
3RH11 contactor relays

4 NO Ident. No.: 40E	$\begin{aligned} & 3 \mathrm{NO}+1 \mathrm{NC} \\ & 31 \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathbf{2} \mathbf{N O}+\mathbf{2 N C} \\ & 22 \mathrm{~N} \end{aligned}$

3RH11 40 contactor relays

with front snappable 3RH19 11-1GA.. auxiliary switch blocks

$7 \mathrm{NO}+1 \mathrm{NC}$
71E

$6 \mathrm{NO}+2 \mathrm{NC}$

62E

$4 \mathrm{NO}+4 \mathrm{NC}$
44E

3RH14 latched contactor relays

4 NO
Ident. No.: 40E

$3 \mathrm{NO}+1 \mathrm{NC}$

31 E
E2(-)|A2(-)|14|22|34|44
$2 \mathrm{NO}+2 \mathrm{NC}$
22E

Surge suppressors (plug-in direction coded)

Diode	Diode assembly	Varistor	RC element

Accessories for 3RH1. Contactor Relays

SIRIUS 3R

Terminal designations acc. to EN 50005
3RH19 11-1F... auxiliary switch blocks, front snappable and
3RH19 11-1NF.. electronically compatible auxiliary switch blocks

$\begin{aligned} & 2 \text { NO } \\ & \text { Ident. No.: } 20 \end{aligned}$	$\begin{aligned} & \mathbf{1} \mathrm{NO}+\mathbf{1} \mathrm{NC} \\ & 11 \end{aligned}$	$\begin{aligned} & 2 \text { NC } \\ & 02 \end{aligned}$	1 NO lead. +1 NC lag. 11 U	NO lead. = NO contact leading NC lag. = NC contact lagging
			with make-before-break contacts	
$4 \text { NO }$ Ident. No.: 40	$\begin{aligned} & 3 \mathrm{NO}+1 \mathrm{NC} \\ & 31 \end{aligned}$	$\begin{aligned} & \mathbf{2} \mathbf{N O}+\mathbf{2 N C} \\ & 22 \end{aligned}$	$\begin{aligned} & 2 \text { NO lead. + } 2 \text { NC lag. } \\ & 22 \cup \end{aligned}$	

3RH19 11-1AA.. and 3RH19 11-1BA.. auxiliary switch blocks, front snappable, lateral conductor entry

1 NO	1 NC
53%	5^{51}
$154{ }^{\text {旁 }}$	52

3RH19 11-1LA.. and 3RH19 11-1MA.. auxiliary switch blocks, front snappable, lateral conductor entry

Wiring

Terminal designations acc. to DIN 46199 Part 5

3RT19 16-2E...; -2F...; -2G... solid-state time-delay auxiliary switch blocks for contactor relays size SOO
$1 \mathrm{NO}+1 \mathrm{NC}$
ON-delay

$1 \mathrm{NO}+1 \mathrm{NC}$
OFF-delay

Solid-state time-delay blocks for 3RH1. contactor relays
(see also Configuration Note, page 6/4).

3RT19 16-2C...
ON-delay
L1/L+

[^2]3RT19 16-2D...
OFF-delay (with auxiliary voltage)

3TH43 Contactor Relays
 with 10 Contacts

Internal circuit diagrams
Terminal designations acc. to EN 50011

$7 \mathrm{NO}+3 \mathrm{NC}$
Ident. No.: 73E

4 NO + 4 NC, 1 NO + 1 NC make-before-break Ident. No.: 55E; U

$9 \mathrm{NO}+1 \mathrm{NC}$

91E

$6 \mathrm{NO}+4 \mathrm{NC}$
64E

6 NO + $2 \mathrm{NC}, 1$ NO + 1 NC make-before-break
73E; U

$8 \mathrm{NO}+2 \mathrm{NC}$

82E

$5 \mathrm{NO}+5 \mathrm{NC}$
55E

Circuit diagrams

3TX4 180-0A NTC thermistor module
Typical circuit diagrams
Momentary-contact operation
Maintained-contact operation

Terminal designations acc. to EN 50011
3RH11 contactor relays
4 NO
Ident. No.: 40 E

13	23	33	43	A1
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	O	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2
in				

$3 \mathrm{NO}+1 \mathrm{NC}$

13	21	33	43	A1
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	22	34	44	A2

$2 \mathrm{NO}+2 \mathrm{NC}$
22E

13	21	31	43	$A 1$
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
14	22	32	44	A2

3RH11 40 contactor relays
with front snappable 3RH19 11-1GA.. auxiliary switch blocks

8 NO
Ident. No.: 80 E

13	23	33	${ }^{43}$	A1
53	63	$\begin{aligned} & 73 \\ & 0 \end{aligned}$	83	
5	$\begin{aligned} & \bigcirc \\ & 64 \end{aligned}$	$\begin{aligned} & \bigcirc \\ & 74 \end{aligned}$	$\begin{aligned} & 8 \\ & 84 \end{aligned}$	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

7 NO + 1 NC
71E

13	23	33	43	A1
0	0	0	\bigcirc	0
53	61	73	83	
0	0	0	0	
0	0	0	0	
0	0	0		
54	62	74	84	
0	0	0	0	\bigcirc
14	24	34	44	A2

$6 \mathrm{NO}+2 \mathrm{NC}$

62E

13	23	33	43	A1
${ }^{5}$	${ }^{61}$	${ }^{71}$	83	
O 54	62	72	84	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

$5 \mathrm{NO}+3 \mathrm{NC}$
53 E

13	23	33	43	$\begin{aligned} & \text { A1 } \\ & O \end{aligned}$
53	61	71	81	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
54	62	72	82	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

$4 \mathrm{NO}+4 \mathrm{NC}$

Ident. No.: 44E

13	23	33	43	$\stackrel{A 1}{\mathrm{~A} 1}$
51	61	71	81	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	
52	62	72	82	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	A2

3RH14 latched contactor relays
4 NO
Ident. No.: 40E

$3 \mathrm{NO}+1 \mathrm{NC}$
31E

13	21	33	43	A1+	E1+	
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	O	O	O	\bigcirc		
14	22	34	44	A2-		

$2 \mathrm{NO}+2 \mathrm{NC}$
Ident. No.: 22E

Terminal designations acc. to EN 50005

Front snappable 3RH19 11-1AA.. auxiliary switch blocks
Conductor entry from above
1 NO 1 NC

Front snappable 3RH19 11-1BA.. auxiliary switch blocks Conductor entry from below

Front snappable 3RH19 11-1LA.. auxiliary switch blocks
Conductor entry from above
2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$

Front snappable 3RH19 11-1MA.. auxiliary switch blocks Conductor entry from below

2 NO

$1 \mathrm{NO}+1 \mathrm{NC}$

electronically compatible 3RH19 11-1NF.. auxiliary switch blocks, front snappable
2 NO
Ident. No.: 20

2 NC
02

Terminal designations acc. to DIN 46199 Part 5
3RT19 16-2E..., -2F... solid-state time-delay auxiliary switch blocks
1 NO + 1 NC
ON-delay

$1 \mathrm{NO}+1 \mathrm{NC}$
OFF-delay

27	35
\bigcirc	\bigcirc
0	\bigcirc
28	36

3TH43 Contactor Relays

 with 10 Contacts
Position of terminals

9

\bigcirc	A1			
13	23	33	43	53
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
63	71	83	93	03
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
64	72	84	94	04
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14	24	34	44	54
			A2	\bigcirc

$5 \mathrm{NO}+5 \mathrm{NC}$
55E

A 1				
13	23	33	43	53
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
${ }_{6}^{61}$	71	81	91	01
				\bigcirc
$\begin{gathered} 0 \\ 62 \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	72	82	92	02
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	24	34		
				2

[^0]: rminature circut-breakers with C-characterisic (shortcircut current $r_{k}<400$ A)A

[^1]: 1) With coils for USA, Canada and Japan:
 0.85 to $1.1 \times U_{\mathrm{s}}$ at 60 Hz .
[^2]: (1) Time-delay relay block
 (2) Contactor

