- Full 3-1/2 Digit, Bright Red 0.56" (14.2mm) Display
- Broad Range Display Scaling
- Short 2.94" (74.7mm) Deep, 1/8 DIN Case
- Screw Terminal Connector for Easy Installation
- Four User-Settable Ranges: 200mA, 2mA, 20mA, 200mA
- Two Factory-Settable Ranges: 2A, 5A
- Jumper-Selectable Decimal Point
- Optional Isolated 9-32VDC Power Supply
- Optional Excitation Output of 12VDC or 24VDC

The Falcon Series digital indicators are premium quality $1 / 8$ DIN meters for industrial applications. All Falcon units feature jumper-selectable decimal point (internal and on the connector for remote decimal point) and display scaling, providing wide application flexibility. In addition, most signal input ranges are easy to change with jumpers on the main board. The Falcon has a 0.56 " bright red LED display for high visibility.

Compactly designed for applications requiring minimal rear panel depth, the Falcon fits a standard 1/8 DIN panel cutout $(91.9 \mathrm{~mm} \times 45 \mathrm{~mm})$ and requires less than $3^{\prime \prime}$ behind the panel. A screw terminal connector is a standard feature for easy wiring of the power supply and signal input connections.

Installation and Panel Cutout

[^0]DISPLAY
Type: 7 -segment, red LED
Height: 0.56 " (14.2 mm)
Decimal Point: 3-position programmable, internally or on the terminal block
Overrange indication: most significant
digit = "1"; other digits blank
Polarity: Automatic, with "-" indication, "+" indication implied
POWER REQUIREMENTS
AC Voltages: 120 or 220VAC, $\pm 10 \%$ 50/60Hz
DC Voltages: $9-32 \mathrm{VDC}, \pm 1 \%$
Power Consumption: 3VA
ACCURACY @ 25° C
$\pm 0.1 \%$ of reading ± 1 count
$2 \mathrm{~A} \pm 5$ counts ($45 \mathrm{~Hz}-1 \mathrm{KHz}$)

ENVIRONMENTAL
Operating Temperature: 0 to $55^{\circ} \mathrm{C}$
Storage Temperature: -10 to $60^{\circ} \mathrm{C}$
Relative Humidity: 0 to 85% non-condensing
Temperature Coefficient:
$\left(\pm 0.01 \%\right.$ of input ± 0.05 count) $/{ }^{\circ} \mathrm{C}$
Warm-up Time: Less than 15 minutes
Response Time: Less than 1 second
NOISE REJECTION
NMRR: $50 \mathrm{~dB}, 50 / 60 \mathrm{~Hz}$
CMRR: (with $1 \mathrm{~K} \Omega$ unbalanced @ 60 Hz): 90dB min.

ANALOG TO DIGITAL CONVERSION
Technique: Dual slope integration
Rate: 3 samples per second, nominal

MECHANICAL
Bezel: $3.78^{\prime \prime} \times 1.89^{\prime \prime} \times .44^{\prime \prime}$
$(96 \times 48 \times 11.2 \mathrm{~mm})$
Depth: 2.94 "(74.7mm)
Panel Cut-out: $3.62^{\prime \prime} \times 1.77^{\prime \prime}$
($91.9 \times 45 \mathrm{~mm}, 1 / 8 \mathrm{DIN}$)
Case Material: $94 \mathrm{~V}-1$, UL rated Noryl®
Weight: 9.0oz (255.1g)

INPUTS: DC Current			
Input Range	Display Resolution	Maximum Output	Voltage Drop
$200 \mu \mathrm{~A}$	100 nA	20 mA	
2 mA	$1 \mu \mathrm{~A}$	20 mA	
20 mA	$10 \mu \mathrm{~A}$	100 mA	200 mV
200 mA	$100 \mu \mathrm{~A}$	500 mA	
2 A	1 mA	2.2 A	
5 A	10 mA	5.2 A	

Wiring Diagram

Input Signal: Connect the signal to be monitored to the IN HI and IN LO terminals. INHI is terminal \#1, IN LO is terminal \#2.

Supply Power: Connect the supply power to terminals \#11 and \#12. Note that if AC power is supplied, terminal \#11 is for Neutral, and terminal \#12 is for Hot. If DC power is used, terminal \#11 is for -DC, and \#12 is for +DC.

Display Hold: This feature allows you to hold the displayed value indefinitely. A remote switch can be used to make the connection. To activate the display hold, short terminal blocks \#3 and \#4 (Hold Ref and +Ref). This connection must be kept isolated from other circuitry. To hold multiple units, separate poles of the switch must be used to maintain the isolation.

These instruments are designed for maximum safety to the operator when mounted in a panel according to instructions. They are not to be used unmounted or for exploratory measurements in unknown circuits.

Before switching the instrument on, make sure the supply voltage matches the power source required of the instrument as indicated on the hook-up label affixed to the instrument.

Decimal Point Selection

From terminal block: The decimal point can be set from the rear screw terminal block by connecting the appropriate decimal point (DP 1, 2, 3,) to the DP C terminal. The J105 jumper must be in the D position (see diagram under "From front panel").

From front panel: The decimal point can also be selected by removing the front bezel from the meter. Move the push-on jumper J105 across the correct letter.

Current Range Selection

All Falcon Indicators are configured initially per the customer specifications. Range changes can be accomplished as follows:

Disconnect power from the unit. Remove the unit from the panel. Remove the front bezel by inserting slotted screwdriver in the vertical slots on either side of the bezel and then turning to pry the bezel off. Unscrew the two Phillips head screws at either side of the circuit board. Finally, push on the green connector assembly in the back of the unit to slide the main circuit board out from the meter. Change jumpers according to the chart below.

Note: If a new range is selected, the calibration procedure must also be performed.

Input Range	J102	J106	JU101	JU102
$200 \mu \mathrm{~A}$	A	R	A	No
2 mA	B	R	A	No
20 mA	D	R	A	No
200 mA	E	R	A	No

If you need to change a Falcon from (or to) a 2 amp or 5 amp unit, please consult the factory or an Authorized Service Center.

Note: JU101 and JU102 are hard wire jumpers, and are removed by cutting them. Resoldering the JU jumpers is not recommended. If this is required, or if a function is to be changed (from volts to current), Simpson recommends returning the Falcon to the factory or an Authorized Service Center. After moving the jumpers to the desired location, put the Falcon back together and install in your panel, or proceed to calibration.

Application Example

A plant manager needs to monitor the current draw of two machines from one DC power source. The first machine is rated at 200 mA and the second machine is rated at 10 amps .

The first machine can be monitored with a Falcon 200 DCmA meter. The meter is installed in series between the source and the load. No additional scaling is required for this meter.

The second machine requires a portable shunt (10 amps/50mV) and a Falcon 200 DCmV meter. The second meter needs to be scaled before being installed into the panel. A 50 mV signal must be applied to the Falcon (full strength signal from the shunt). Next, remove the front bezel, and adjust potentiometer VR101 until the display indicates 10.0 amps. Replace the bezel, and remove the signal.

> The shunt is installed in series between the to terminals \#1 and \#2, located on the rear of source and the load, and the meter is connected to Falcon. Be sure to place a jumper across ne shunt in parallel. The two lead $R 114$ when using a 10 amp/50mV shunt.

—Safety Symbols

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly adhered to, could result in damage to or destruction of part or all the instrument.

[^0]: Mounting Requirements
 The Falcon series 1/8 DIN indicators require a panel cutout of 1.77" (45 mm) high by $3.62^{\prime \prime}$ (91.9 mm) wide. To install the Falcon into a panel cutout, remove the clips from the side of the meter. Slide the meter through your panel cutout, then slide the mounting clips back on the meter. Press evenly to ensure a proper fit.

 Engineering Label Placement
 If replacement of the engineering unit label is required, place the tip of a ball-point pen into the small hole at the base of the engineering label in the bezel. Slide the label up until it pops out. Grasp and remove. Slide the new label half the distance in, then use the ball-point pen to slide it down into place.

