

CONFIGURE, CONNECT, GO

- 8-slot mainframe with 19 mix-andmatch plug-in modules so you can create your own custom configuration
- High-performance switching: Up to 560 2-wire multiplexer channels or 1024 matrix cross-points in one mainframe
- Optional built-in $61 / 2$-digit DMM lets you make 11 measurements with over 3000 readings/sec
- Easy to integrate: Built-in Ethernet, USB 2.0, and GPIB connectivity, standard connectors and software drivers for most common programming environments

High-performance unit provides low-cost alternative to PXI and VXI switch and measurement platforms

If you use automated test equipment for design validation or manufacturing, you now have a cost-effective alternative to PXI and VXI test-system platforms. The 34980A multifunction switch/measure unit provides comparable functionality that is much easier to use than PXI and VXI and costs less. The 34980A helps you lower your cost of test and accelerate your testsystem integration and development.

The 34980A handles system switching up to 20 GHz and provides basic measurements and system control. It also offers DMM measurements, counter/ totalizer functionality, digital I/O with pattern capabilities, and analog outputs with basic waveforms- all in one low-cost, compact box. And with its standard connectors and software drivers, computer-standard I/O, and Web browser interface, the 34980A easily integrates into electronic functional test and data acquisition systems.

Flexible switching, measurements, and system control

The 34980A accommodates up to 8 plug-in modules to give you the flexibility you need. Choose from 19 different modules to define your own configuration. You can buy what you need now and add to it or reconfigure it as your requirements change.

Whether you are measuring temperature, AC or DC voltage, resistance, frequency, current, or custom measurements, the 34980A offers the functionality you need in a single box. Switch in different measurements with high-performance signal switching with no external signal conditioning required. Choose between different switch types and topologies with frequency ranges from DC to 20 GHz . The 34980A offers high-density multiplexers for scanning multiple channels, matrices for connecting multiple points at one time, and general purpose switches for simple control and high power needs.

Use the 34980A to route individual signals or monitor multiple signals over a specified period of timemonitor a single channel or multiple channels, set alarms, and identify irregularities.

The 34980A offers flexible choices for system control. You can control external devices such as microwave switches, attenuators, solenoids, and power relays. Or use the digital inputs to sense limit-switch and digital-bus status.

Optimized for test systems

The 34980A has the performance you need for medium- to high-density switching/measurement applications such as design verification, functional test and data acquisition. Your signals are switched to the right measurement device without compromising signal integrity. Switch your signals to the optional internal DMM and achieve optimal throughput on switch closure time. Or, if you prefer, you can easily connect to external instruments such as DMMs, scopes, power supplies, and more. What's more, with the built-in Ethernet interface, you can control the 34980A and collect data from remote locations.

The rugged instrument comes with a variety of system-ready features:

- Web browser interface shows settings at a glance and provides remote access and control
- Self-guiding front panel to configure, troubleshoot or view data
- Low EMI and efficient system cooling
- Heavy-duty cabling and connection options
- Rack mount options
- Relay counters help predict end-of-life
- In-rack calibration for reduced maintenance time
- DMM measurement accuracies include the switch for simple calculations

Make system connections easily

and quickly with simple, reliable connection options:

- Built-in Ethernet, USB 2.0, and GPIB connectivity
- Low-cost, standard 50- or 78-pin Dsub connectors and cables
- Detachable terminal blocks with strain relief
- Mass interconnect solutions

In addition, the 34980A comes with Agilent E2094N IO Libraries Suite 14. Quickly establish an error-free connection between your PC and instruments-regardless of vendor. The IO Libraries provide robust instrument control and work with the software development environment you choose.

Easier signal routing with four 2-wire internal analog buses. You can route your measurements directly to the internal DMM, or you can connect to external instruments through the analog bus connector on the rear of the mainframe. And since you have four 2-wire buses, you can dedicate one bus for use with the internal DMM and use the other three buses for module extensions or additional signal routing between modules, reducing your wiring needs.

You can define switch sequences to control complex signal routing and the order of switch closures. Assign a sequence, give it a name and then execute it with the name you created.

External trigger capabilities make it easy for you to time and synchronize measurements and other events. This can help you determine when to begin or end an acquisition.

Measurements you can trust

Get proven performance from Agilent instruments, with the resolution, repeatability, speed, and accuracy you've come to expect.

The 34980A offers built-in signal conditioning and modular flexibility. When you use it with the internal DMM, you can configure each channel independently for the measurements you choose. It includes a variety of features that give you confidence in your measurements:

- $6 \frac{1}{2}$ digits of resolution with $.004 \%$ of accuracy with DC voltage measurements
- Alarms per channel-high limit, low limit, or both
- Math functions-use Mx+B for custom linear conversions and converting raw inputs
- Built-in thermocouple reference for temperature measurements (34921T)
- Time-stamped readings

The integrated DMM is mounted inside the mainframe and does not consume any of the eight useravailable slots. You can access the DMM through any switch module that connects to the analog bus, or directly from the analog bus connector on the rear of the mainframe. The internal DMM gives you the flexibility to measure 11 types of inputs:

- Temperature with thermocouples, RTDs, or thermistors (with 34921A)
- DC and AC voltage
- 2 - and 4 -wire resistance
- Frequency and period
- DC and AC current

You can control the DMM directly, or configure it to work in conjunction with the switches. Each switch channel can be configured independently for measurement functions, scale factors and alarm limits. Advanced measurement features such as offset compensation, variable integration time, and delay are also selectable on a perchannel basis.

The DMM inputs are shielded and optically isolated from the 34980A's earth-referenced circuitry and computer interface, and as a result, you get up to 300 V of input isolation. This is important for reducing ground-loops and common-mode voltage errors associated with long wiring runs and floating sources.

Simple DMM calibration is

 accomplished with just the analog bus connection on the rear panel of the mainframe. You don't need to remove the mainframe from the rack or dedicate a channel for calibration.

Modules provide flexible system stimulus and control

System control-with analog outputs, open-collector digital outputs, clock generation, and isolated Form-C relays for controlling external devices. Additionally, with the microwave switch/attenuator driver, highfrequency switches and attenuators can be efficiently controlled external to the 34980A mainframe.

Analog sources-output either voltage or current. You can configure the 4 -channel isolated D / A converter as a point-to-point arbitrary waveform generator that lets you define up to 500,000 points per waveform.

Digital patterns-send or receive digital data from your device under test. With on-board memory you can output communication protocols and bit streams or monitor digital input patterns and interrupt when a userdefined pattern is detected.

Standard interfaces take the hassle out of connecting to your PC

Standard Ethernet, USB and GPIB
interfaces are included in every mainframe. Use one of the built-in interfaces that is already available in your computer, or if you prefer, GPIB is still available.

- USB offers the quickest and easiest connection scheme-it's perfect for small systems and bench connections.
- Ethernet offers high-speed connections that allow for remote access and control. Choose a local area network to filter out unwanted LAN traffic and speed up the I/O throughput. Or take advantage of the remote capabilities and distribute your tests worldwide. Monitor, troubleshoot, or debug your application remotely.
- GPIB has many years of proven reliability for instrument communication and can be used in existing GPIB based test systems.

Figure 1 The Web interface makes it easy to set up, troubleshoot and maintain your system remotely.

Remote access and control

The built-in Web browser interface provides remote access and control of the instrument via a Java-enabled browser such as Internet Explorer. Using the Web interface, you can set up, troubleshoot, and maintain your system remotely.

- View and modify instrument setup
- Open, close, or monitor switches
- Send SCPI commands
- Define and execute switch sequences
- View error queue
- Get status reports on relay counts, firmware revisions, and more

Additionally, since the Web interface is built into the instrument, you can access it on any operating system that supports the Web browser without having to install any special software. Password protection and LAN lockout are also provided to limit access.

The Web interface makes it easy to set up, troubleshoot and maintain your system remotely.

Works with your choice of software so you can save time and preserve your software and hardware investments. Program directly with SCPI, or use IVI or LabVIEW software drivers that provide compatibility with the most popular development environments and tools:

- Agilent VEE Pro, Agilent T\&M Toolkit (requires Microsoft ${ }^{\circledR}$ Visual Studio ${ }^{\circledR}$.NET)
- National Instruments LabVIEW, LabWindows/CVI, TestStand, and Switch Executive
- Microsoft Visual Studio.NET, C/C++ and Visual Basic 6

Power and flexibility to get your job done

Store up to 500,000 readings with timestamp

Mix and match 34980A modules to
 create your own custom configuration

The 34980A mainframe holds up to eight plug-in modules.
Mix and match them to create a custom system to meet your switching and system control needs. You can easily add or replace modules as your needs change.

Table 1. 34980A modules at a glance

Module	Description	Max volts	Max current	$\begin{aligned} & \hline \text { BW } \\ & \text { (MHz) } \end{aligned}$	Scan ch/sec	Thermal offset	Comments
Multiplexer modules							
34921A	40-channel armature multiplexer w/ low thermal offset	$\pm 300 \mathrm{~V}$	1 A	45 MHz	100	< 3 uV	Temperature reference 4 current channels Config as 2 - or 4 -wire
34922A	70-channel armature multiplexer	$\pm 300 \mathrm{~V}$	1 A	25 MHz	100	$<3 \mathrm{uV}$	Config as 2- or 4 -wire
34923A	40/80-channel reed multiplexer	$\pm 150 \mathrm{~V}$	0.5 A	45 MHz	500	< 50 uV	Config as 1-, 2- or 4-wire
34924 A	70-channel reed multiplexer	$\pm 150 \mathrm{~V}$	0.5 A	25 MHz	500	< 50 uV	Config as 2- or 4 -wire
34925A	40/80-channel optically isolated FET multiplexer	$\pm 80 \mathrm{~V}$	0.05 A	1 MHz	1000	$<3 \mathrm{uV}$	Config as 1-, 2- or 4-wire
Matrix modules							
34931A	Dual 4×8 armature matrix	$\pm 300 \mathrm{~V}$	1A	30 MHz	100	$<3 \mathrm{uV}$	Backplane expandable
34932 A	Dual 4×16 armature matrix	$\pm 300 \mathrm{~V}$	1 A	30 MHz	100	$<3 \mathrm{uV}$	Backplane expandable
34933 A	Dual/Quad 4x8 reed matrix	$\pm 150 \mathrm{~V}$	0.5 A	30 MHz	500	< 50 uV	Backplane expandable Config as 1 - or 2 -wire
General-purpose modules							
34937 A	28-channel Form C and 4-channel Form A	$\begin{aligned} & 300 \text { V } \\ & 250 \text { VAC } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 5 \mathrm{~A} \end{aligned}$	10 MHz	N/A	$\begin{aligned} & <3 \mathrm{uV} \\ & <3 \mathrm{uV} \end{aligned}$	
34938A	20-channel 5-amp Form A	250 VAC	5 A	1 MHz	N/A	$<3 \mathrm{uV}$	

RF and microwave modules

Module	Description	Insertion loss	Isolation	Freq range	VSWR	Input impedence	Comments

System control modules	Description	
34950A	64-bit digital I/O with memory and counter	Eight 8 -bit digital I/O channels with programmable polarity, thresholds up to 5 V, with handshaking protocols and pattern memory. Two 10 MHz frequency counter and programmable clock output to 20 MHz .
34951A	4-channel isolated D/A converter with waveform memory	Output DC voltage up to $\pm 16 \mathrm{~V}$ or DC current up to $\pm 20 \mathrm{~mA}$. Output waveforms with a 200 kHz update rate and 16 bits of resolution. Use on-board memory to create point-to-point waveforms with more than 500,000 points.
34952A	Multifunction module with 32-bit DIO, 2-ch D/A and totalizer	Four 8-bit digital I/O channels, two ± 12-V analog outputs, and a 100 kHz gated totalizer.
34959A	Breadboard module	Create your own custom designs with access to the +12 V and +5 V supplies, 16 GPIO ports and 28 relay drive lines.

34980A multiplexer switch modules

The 34980A multiplexer modules can be used to connect one of many different points to a single point. You can connect to an external instrument, or scan multiple analog signals to the internal DMM.

Choose from the following features:

- 1-wire, 2-wire, or 4-wire configurations
- High voltage-up to $300 \mathrm{~V}, 1 \mathrm{~A}$
- High density-70 2-wire or 80 1-wire channels
- Bandwidths up to 45 MHz
- Temperature measurements with built-in thermocouple reference junction (34921T)
- AC or DC current measurements without external shunts
- Connections via standard 50- or 78-pin Dsub cables or detachable terminal block

Figure 2. 34921A 40-channel armature multiplexer with low thermal offset (bank 2)

Bank 2

Table 2. Multiplexer measurement functions

	Voltage AC/DC	Current AC/DC	Freq/ Period	Ω 2-Wire	Ω 4-Wire	Thermocouple	$\begin{gathered} \text { RTD } \\ \text { 2-Wire } \end{gathered}$	RTD 4-Wire	Thermistor
34921A Armature Multiplexer	Yes								
34922A Armature Multiplexer	Yes	No	Yes						
34923A Reed Multiplexer (2-wire)	Yes	No	Yes						
34923A Reed Multiplexer (1-wire)	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes
34924A Reed Multiplexer	Yes	No	Yes						
34925A FET Multiplexer (2-wire)	Yes	No	Yes	Yes	Yes	Yes	No	Yes	No
34925A FET Multiplexer (1-wire)	Yes	No	Yes	Yes	No	Yes	No	No	No

[^0]Multiple multiplexers can connect to the built-in analog buses, allowing you to scan up to 5602 -wire channels or 640 1-wire channels in a single mainframe. The 34921A also offers 4 channels for directly measuring current. Or if you need more current channels, shunts can be added to the terminal block for easy current measurements.

The multiplexer modules feature break-before-make connections to ensure that no two signals are connected to each other during a scan. Or, if you prefer, you can control switching manually to create your own switch configuration. All the multiplexer switches have a relay counter to help predict when relays need to be replaced.

Note: The 34923A and 34924A have 100 ohm input protection resistors that limit current and protect the reed relays.

Figure 3. 34923A 40-channel reed multiplexer (bank 1 shown)

Figure 4. 34925A 40/80-channel optically isolated FET mux (shown in 1-wire mode bank 2)

Table 3. Multiplexer selection table-specifications and characteristics

[1] DC or AC RMS voltage, channel-to-channel or channel-to-earth
[2] Peak voltage, channel-to-channel or channel-to-earth
[3] Into analog bus. System errors are included in the internal DMM measurement accuracy specifications
[4] 50Ω source, 50Ω load, differential measurements verified with 4-port network analyzer (Sdd21)
[5] With input resistors bypassed. Bypassing resistors will reduce lifetime of relays. See the rated load relay life characteristics.
[6] Limited to 6 W of channel resistance power loss per module
[7] Speeds are for 4-1/2 digits, delay 0, display off, autozero off, and within bank
[8] DC or peak AC current
[9] Ambient temperature $<30^{\circ} \mathrm{C}$
[10] Includes $0.5^{\circ} \mathrm{C}$ temperature reference sensor and $0.5^{\circ} \mathrm{C}$ terminal block isothermal gradient error. Measured under worst case loading of the mainframe. See User's Guide for information on supported external reference sensors.
[11] With 100Ω input protection resistors.

34980A matrix switch modules

The 34980A matrix modules are full cross-point matrices that allow you to connect any row to any column. This is a convenient way to connect multiple test instruments to multiple points on a device under test.

Choose from the following features:

- Latching armature relays-300 V, 1 A
- High-speed reed relays-150 V, 0.5 A
- Configurable dual 4×8 or dual 4×16 modules
- Single-wire configuration (34933A)
- Analog bus expandable rows to create larger matrices
- Connections via standard 50-pin Dsub cables or detachable terminal block

Each cross-point in the matrix switch has two wires-a high and a low for the measurement. Or, if you prefer, the 34933A can be configured as a single-wire matrix, increasing the number of channels. The 34933A also has in-rush resistors on each column for added protection.

Combine multiple matrix modules through the 34980A analog buses to create a larger matrix. Two matrix rows also can be connected to the internal DMM for easy measurements.

Combine your matrix with a multiplexer switch to achieve the desired switching topology and get a lowercost solution with better specifications. All the matrix switches include a relay counter to help predict when relays need to be replaced. Use the sequencing feature to easily change between different cross-point setups.

Note: The 34933A has 100 ohm input protection resistors to limit current and protect the reed relays.

Table 4. Matrix selection table-specifications and characteristics

	34931A	34932A	34933A
Channels/configurations	dual 4×8 8x8 4×16	$\begin{aligned} & \text { dual } 4 \times 16 \\ & 8 \times 16 \\ & 4 \times 32 \end{aligned}$	$\begin{aligned} & \text { dual } 4 \times 8 \\ & 8 \times 8 \\ & 4 \times 16 \\ & \text { quad } 4 \times 8,1 \text {-wire } \end{aligned}$
Switch type	Armature latching	Armature latching	Reed non-latching
Input characteristics (per channel)			
Max volts	$\pm 300 \mathrm{~V}^{[1]}$	$\pm 300 \mathrm{~V}^{[1]}$	$\pm 150 \mathrm{~V}_{\text {peak }}{ }^{[2]}$
Max current (DC, AC RMS) Switch current Carry current	$\begin{aligned} & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~A}^{[5]} / 0.05 \mathrm{~A}^{[8]} \\ & 1.5 \mathrm{~A}^{[5]} / 0.05 \mathrm{~A}^{[8]} \end{aligned}$
Power (W, VA) ${ }^{[2,6]}$	60 W	60 W	$10 \mathrm{~W}^{[7]}$
Volt-Hertz limit	108	108	108
General Specifications			
Offset voltage ${ }^{\text {[3] }}$	$<3 \mathrm{uV}$	< 3 uV	$\begin{aligned} & <50 \mathrm{uV} \\ & <100 \mathrm{uV} \text { 1-wire } \end{aligned}$
Initial closed channel res ${ }^{[3]}$	$<1.5 \Omega$	$<1.5 \Omega$	$<1.5 \Omega^{[5]} / 200 \Omega^{[8]}$
DC Isolation (ch-ch, ch-earth)	> 10G Ω	> 10G Ω	$>10 \mathrm{G} \Omega$
AC characteristics			
Bandwidth at terminal block ${ }^{[4]}$	30 MHz	30 MHz	$\begin{aligned} & 30 \mathrm{MHz}^{[5]} / 4 \mathrm{MHz}^{[8]} \\ & 2 \mathrm{MHz} 1 \text {-wire } \end{aligned}$
Crosstalk at terminal block (ch-ch) ${ }^{[4]}$			
300 kHz	-65 dB	-65 dB	-65 dB
1 MHz	$-55 \mathrm{~dB}$	$-55 \mathrm{~dB}$	-55 dB
20 MHz	-30 dB	-30 dB	-40 dB
Capacitance at terminal block			
HI-LO	50 pF	50 pF	80 pF
LO - earth	80 pF	80 pF	75 pF
General characteristics			
Relay life, typical			
No load	100 M	100 M	1000 M
$10 \mathrm{~V}, 100 \mathrm{ma}$	10 M	10 M	10 M
Rated load	100 k	100 k	10 k
Open/close time	$4 \mathrm{~ms} / 4 \mathrm{~ms}$	$4 \mathrm{~ms} / 4 \mathrm{~ms}$	$0.5 \mathrm{~ms} / 0.5 \mathrm{~ms}$
Analog bus backplane connection	Bank 2	Bank 2	Bank 2

[1] DC or AC RMS voltage, channel-to-channel or channel-to-earth
[2] Peak voltage, channel-to-channel or channel-to-earth
[3] Into analog bus. System errors are included in the internal DMM measurement accuracy specifications
[4] 50Ω source, 50Ω load, differential measurements verified (Sdd21)
[5] With input resistors bypassed. Bypassing resistors will reduce lifetime of relays. See the rated load relay life characteristics.
[6] Limited to 6 W channel resistance power loss per module
[7] Power restrictions allow only 20 channels to be closed at one time
[8] With 100Ω inpout protection resistors.

34980A general-purpose switch modules

The 34980A general-purpose switches can be used to route signals or to control other system devices. These switches are ideal for device actuation and switching loads or power supplies.

Choose from the following features:

- Form C channels up to $1 \mathrm{~A}, 50 \mathrm{~W}$
- Form A channels up to 5 A, 150 W

Figure 6. 34937A 32-channel Form A/ Form C switch

- Armature latching relays
- Simultaneous channel switching
- Temperature sensor to detect overheating conditions
- Connections via standard 50-pin Dsub cables or detachable terminal block

The 34937 A is the most versatile general-purpose switch with 28 Form C channels that can switch up to 1 A of current. In addition, this module has four Form A channels that can switch up to 5 A of current. For power
switching applications, the 34938A has 205 -amp channels in a Form A topology. Each Form A general-purpose switch can handle up to 150 W , enough for many power line-switching applications.

The 34937A and 34938A contain latching armature relays where multiple channels can be closed at the same time. Additionally, for switching reactive loads, the optional terminal blocks have pads for snubbing circuits.

The built-in relay counter helps predict when relays need to be replaced.

Table 5. GP actuator selection table-specifications and characteristics

	34937A	34938A
Channels/configurations	$\begin{gathered} 28 \text { Form C } \\ 4 \text { Form A } \end{gathered}$	20 Form A
Switch type	Armature, latching	Armature, latching
Input characteristics (per channel)		
Max volts (DC, AC RMS) ${ }^{[1]}$	Form C -300 V Form A $-30 \mathrm{VDC} / 250 \mathrm{VAC}$	$30 \mathrm{VDC/250} \mathrm{VAC}$
Max current (DC, AC RMS)	Form C-1 A (2 A carry) Form A-5 A switch (8 A carry)	5 A switch (8 A carry)
Power (W, VA) ${ }^{[2]}$	$\begin{aligned} & \text { Form } \mathrm{C}-60 \mathrm{~W} \\ & \text { Form } \mathrm{A}-150 \mathrm{~W} \end{aligned}$	150 W
Volt-Hertz limit	10^{8}	10^{8}
General specifications		
Offset voltage	3 uV	3 uV
Initial closed channel res	Form C-125 m Ω Form $\mathrm{A}-50 \mathrm{~m} \Omega$	$<60 \mathrm{~m} \Omega$
DC Isolation (ch-ch, ch-earth)	$>10 \mathrm{G} \Omega$	$>10 \mathrm{G} \Omega$
AC characteristics		
Bandwidth at terminal block ${ }^{[3]}$	10 MHz	1 MHz
Channel Isolation at terminal block $\begin{aligned} & 100 \mathrm{kHz} \\ & 1 \mathrm{MHz} \\ & 10 \mathrm{MHz} \end{aligned}$	55 dB 35 dB 15 dB	$\begin{aligned} & 60 \mathrm{~dB} \\ & 40 \mathrm{~dB} \end{aligned}$
Capacitance at terminal block $\begin{aligned} & \mathrm{CH}-\mathrm{CH} \\ & \mathrm{CH} \text { - earth } \end{aligned}$	Form C 12 pF/ Form A 10 pF Form C 21 pF/Form A 18 pF	$\begin{gathered} 65 \mathrm{pF} \\ 105 \mathrm{pF} \end{gathered}$
General characteristics		
Relay life no load/rated	Form C-100 M/100 k Form A-50 M/30k	$50 \mathrm{M} / 30 \mathrm{k}$
Open/close time	Form C-4ms/4 ms Form A-10 ms/10 ms	$10 \mathrm{~ms} / 10 \mathrm{~ms}$
Initial/reset relay state	Form C - maintain state Form A - user configurable	user configurable
Analog bus backplane connection	No	No
[1] DC or AC RMS voltage, channel-to-channel or channel-to-earth [2] Limited to 6 W of channel resistance power loss per module [3] 50Ω source, 50Ω load, differential measurements verified (S21)		

34980A RF and microwave switch modules

The 34980A offers a variety of RF and microwave switch modulesRF multiplexers, SPDT switching from DC to 20 GHz , or a switch/ attenuator driver module that allows you to control switches or attenuators external to the 34980A mainframe.

34941A/42A—from DC to $3 \mathbf{~ G H z}$

The RF switch modules can be used to switch signals from DC to 3 GHz and above. This can be useful for switching signals between oscilloscopes, spectrum analyzers, network analyzers, and other RF test equipment.

Choose from the following features:

- 50- or 75 -ohm Quad 4-channel multiplexers
- DC to 3 GHz
- $30 \mathrm{~V}, 0.5 \mathrm{~A}, 10 \mathrm{~W}$

Figure 7. 34941A Quad 1×450 ohm 3 GHz multiplexer

The 34941A and 34942A are configured as four independent 1 x 4 RF multiplexers on a single module. Multiple banks can be connected together to create a larger multiplexer. To prevent ground loops, individual multiplexers are isolated from each other and from the mainframe's chassis. However, the multiplexer channels can be chassis grounded with a simple change. Both 50 -ohm and 75 -ohm versions are available.

34941A Typical crosstalk

34941A Typical insertion loss

34941A Typical VSRW

Figure 8. 34946A dual 1x2 SPDT terminated microwave switch

34946A/47A-from DC to 20 GHz

For applications where you need only a few high-frequency switches, the 34946 A and 34947 A offer singlepole, double-throw switches in either $4-\mathrm{GHz}$ or $20-\mathrm{GHz}$ options. These modules internally mount two or three independent Agilent N1810 series coaxial switches. These switches are well known for their excellent insertion loss, isolation and VSWR specifications. Switch read back capabilities allow you to query the position of the switch. You can choose higher density with the unterminated switches, or select the terminated switches to maintain impedance match.

Table 6. RF and microwave selection table-specifications and characteristics

	DC to $\mathbf{3} \mathbf{~ G H z}$		DC to 20 GHz ${ }^{\text {[3] }}$	
	34941A	34942A	34946A	34947A
Channels	quad 1x4	quad 1x4	2 SPDT	3 SPDT
Switch type	50Ω unterminated, latching relays	75Ω unterminated, latching relays	50Ω terminated	50Ω unterminated
RF characteristics				
Frequency range ${ }^{[2]}$	DC to 3 GHz	DC to 1.5 GHz	DC to 4 GHz OR DC to 20 GHz	DC to 4 GHz OR DC to 20 GHz
$\begin{gathered} \hline \text { Insertion loss }{ }^{[2]} \\ (<40 \mathrm{C} / 80 \% \mathrm{RH}) \\ 100 \mathrm{MHz} \\ 1 \mathrm{GHz} \\ 3 \mathrm{GHz} \end{gathered}$	0.15 dB 0.60 dB 1.40 dB	0.15 dB 0.60 dB N/A	DC to $4 \mathrm{GHz}<0.42 \mathrm{~dB}$ @ $20 \mathrm{GHz}<0.69 \mathrm{~dB}$	DC to $4 \mathrm{GHz}<0.42 \mathrm{~dB}$ @ $20 \mathrm{GHz}<0.69 \mathrm{~dB}$
VSWR			DC to $4 \mathrm{GHz}<1.15$ @ $20 \mathrm{GHz}<1.30$	DC to $4 \mathrm{GHz}<1.15$ @ $20 \mathrm{GHz}<1.30$
100 MHz	1.03	1.15		
1 GHz	1.25	1.35		
3 GHz	1.55	N/A		
Isolation (dB) ${ }^{[2]}$	Contact factory	Contact factory	DC to $4 \mathrm{GHz}>85 \mathrm{~dB}$ at $20 \mathrm{GHz}>67 \mathrm{~dB}$	DC to $4 \mathrm{GHz}>85 \mathrm{~dB}$ at $20 \mathrm{GHz}>67 \mathrm{~dB}$
100 MHz	80 dB	80 dB		
1 GHz	58 dB	60 dB		
3 GHz	40 dB	N/A		
Spurious noise below 1.3 GHz	$-140 \mathrm{dBm}$	$-140 \mathrm{dBm}$	80 dB	80 dB
Risetime	$<80 \mathrm{ps}$	< 160 ps	N/A	N/A
Signal delay	$<1 \mathrm{~ns}$	$<1 \mathrm{~ns}$	N/A	N/A
Capacitance	< 30 pF	< 30 pf	N/A	N/A
Switching characteristics				
Max volts ${ }^{[1]}$	30 V	30 V	7 VDC	7 VDC
Max current	0.5 A	0.5 A	N/A	N/A
Max power (W)	$10 \mathrm{~W}^{[5]}$	$10 \mathrm{~W}^{[5]}$	1 W @ 7 VDC, 50 W peak $^{[4]}$	1 W @ 7 VDC, 50 W peak ${ }^{[4]}$
Offset voltage	10 uV	10 uV	N/A	N/A
Initial channel resistance	1Ω	1Ω	N/A	N/A
Volt-Hertz limit	2×10^{10}	2×1010		
General characteristics				
Relay life	300,000 at $30 \mathrm{~V} / 10 \mathrm{~mA}$ load; 100,000 at 10 W load RF SAmeas	300,000 at $30 \mathrm{~V} / 10 \mathrm{~mA}$ load 100,000 at 10 W load RF SAmeas	> 5 M cycles, 1 M w/drive 28-32 VDC	> 5 M cycles, 1 M w/drive 28-32 VDC
Open/close time	$18 \mathrm{~ms} / 18 \mathrm{~ms}$	$18 \mathrm{~ms} / 18 \mathrm{~ms}$	$<15 \mathrm{~ms} / 15 \mathrm{~ms}$	$<15 \mathrm{~ms} / 15 \mathrm{~ms}$
Connector type	SMA	Mini 75Ω SMB	SMA	SMA
Analog bus backplane connection	No	No	No	No

[1] Channel-to-earth
[2] 50Ω source, 50Ω load (75Ω for 34942 A)
[3] For more detailed specifications, see the N1810TL for the 34946A and N1810UL for the 34947A
[4] 10 usec maximum duration
[5] Max power is 1 W between 30 MHz and 1 GHz for CISPR 11 compliance

34945A/34945EXT microwave switch/attenuator driver

This module allows you to control switches attenuators, and other devices external to the 34980A. The 34945A/ 34945EXT provides the power and control signals for many of the most popular microwave switches and attenuators. One 34945A/34945EXT combination can drive up to 64 switch coils-that's 32 standard SPDT switches. The 34945A/EXT can be extended by adding additional 34945EXT boards. The first $34945 E X T$ is powered by the mainframe. You can add up to seven additional 34945EXT boards with user supplied power. Multiple switch operations are performed in sequential order, or for faster, simultaneous switching, you can connect an external power supply to the 34945EXT.

The Y1150A-Y1155A distribution boards enable simple connections to the external switches. The distribution boards plug onto the 34945EXT and are used to route the power and control signals from the driver module to the switches using standard cables.

Figure 9. 34945A/34945EXT microwave switch/attenuator driver

The 34945A/34945EXT also has sensing capabilities that allows read back of the actual position of the switch or attenuator. Drive signals for LED indicators are also provided to give a visual indication of the switch position.

The following microwave switches and attenuators are supported with the Y1150A-Y1155A distribution boards:

- N181x series SPDT switches
- $8762 / 3 / 4$ series SPDT switches (screw terminals)
- 87104x/106x multiport switches
- 87406x series matrix switches
- $87204 x / 206 x$ series multiport switches
- 87606x series matrix switches
- 87222x transfer switches
- 849x series attenuators
- 8490 x series attenuators
- Screw terminal connections

34980A system control modules

34950A 64-bit digital I/0 with memory and counter

This module can be used to simulate or detect digital patterns. It has eight 8 -bit digital I/O channels with handshaking, pattern memory, two 10 MHz counters with gate functions, and a programmable clock output.

Digital input/output

The digital I / O bits are organized into two banks of 32 -bits. The I/O bits can be configured and programmed as inputs or outputs in 8 -bit channels. The digital outputs can be configured as active drive or open drain outputs with a $10 \mathrm{k} \Omega$ pull up. User supplied pull up resistors for up to 5 V outputs are also acceptable. The digital inputs have programmable thresholds up to 5 V for compatibility with most digital logic standards.

The onboard pattern memory can be used to select and output digital stimulus or bitstream patterns, or to capture external digital data. Each bank has independent memory and directional control so that one bank can output data while the other captures data. The memory can be divided up to 64 Kbytes per 8-bit channel.

Specifically, the digital I/O channels also have:

- Variable active high drive output from 1.65 V to 5 V or open drain
- Variable input thresholds from 0 V to 5 V
- Configurable handshaking protocols including synchronous, and strobe
- Programmable polarity
- Source or sink up to 24 mA with a $\mathrm{I}_{\text {max }}$ of 400 mA per module.
- Internal alarming for maskable pattern match
- 1 hardware pattern interrupt per bank
- Connections via standard 78-pin Dsub cables or detachable terminal block

Frequency counter/totalizer

The two channels can be used to count digital events, frequency, period, duty cycle, totalize, and pulse width. The counter/totalizer also includes

- Programmable gate functionality
- Programmable input thresholds levels 0 V to 3 V

Digital input/output characteristics		
Eight 8-bit channels:		
8 8 bits wide, input or output, non-isolated		
Vin	$0 \mathrm{~V}-5 \mathrm{~V}^{[1]}$	
Vout	$1.65 \mathrm{~V}-5 \mathrm{~V}^{[1,2]}$	
lout (max)	$24 \mathrm{~mA}^{[2]}$	
Frequency (max)	$10 \mathrm{MHz}^{[3]}$	
$\mathrm{L}_{\text {Load }}($ max $)$	400 mA	
$\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}$ (typ)	$6 \mathrm{~ns}{ }^{[5]}$	

Handshake lines

Vin	$0-5 \mathrm{~V}^{[4]}$
Vout	$1.65-5 \mathrm{~V}^{[2,4]}$
lout (max)	$24 \mathrm{~mA}^{[2]}$
Frequency (max)	10 MHz

Counter function characteristics

Maximum freq	$10 \mathrm{MHz}(\max) 50 \%$ duty cycle
Vin	$0 \mathrm{~V}-5 \mathrm{~V}$

Totalizer function characteristics

Maximum count	$2^{\wedge} 32-1(4,294,967,296)$
Max input freq	$10 \mathrm{MHz}(\mathrm{max})$, rising or falling edge programmable
Vin	$0 \mathrm{~V}-5 \mathrm{~V}$
Gate input	$0 \mathrm{~V}-5 \mathrm{~V}$

System clock generator characteristics

Frequency	$20 \mathrm{MHz}-10 \mathrm{~Hz}$ configurable divide-by-n 24-bits, programmable on/off
Vout	$1.65 \mathrm{~V}-5 \mathrm{~V}^{[2]}$
Accuracy:	100 ppm

[1] Configurable by 8 -bit channel
[2] Lower current drive at lower voltages
[3] From memory with handshaking
[4] Configurable by bank
[5] $5 \mathrm{~V}, 50 \mathrm{pF}$ load

Figure 10. 34950A 64-channel digital I/O

34951A 4-channel isolated D/A converter with waveform memory

This module has four independent, isolated channels that output DC voltage up to $\pm 16 \mathrm{~V}$ or DC current up to $\pm 20 \mathrm{~mA}$. The gain and offset can be adjusted on-the-fly. Each channel can be controlled manually, or use the onboard memory to download a waveform. The 500 k of memory is global and can store up to 32 waveforms. Any waveform can be dynamically allocated among one or more channels and output as a point-topoint arbitrary waveform generator at up to 200 k points/sec. You can use the standard sine, square or ramp wave shapes provided or define your own wave shape using over 500,000 points and output to a device under test. There is also a single CLK that can be divided down for each channel independently.

The calibration command connects the D / A converters to the internal DMM to be automatically calibrated. Connections to the module can be made via standard 50-pin Dsub cables or a detachable terminal block.

General specifications

Maximum update rate:	200 kHz point-to-point
Monotonic:	to 16 -bits
Isolation:	$>80 \mathrm{VDC} / \mathrm{AC}$ peak (chan-to-chassis or chan-to-chan)
Synchronization:	Software commands or external trigger
Internal/external CLK accuracy:	100 ppm
AC accuracy:	Not specified

DC voltage		Phase-locking I/0 trigger characteristics	
Amplitude:	$\pm 16 \mathrm{~V}$ up to 10 mA	Trigger input	
Resolution:	16 -bits $=500 \mathrm{uV}$	Input level:	TTL compati
Amplitude accuracy (DC):	$\pm(0.05 \%+3.0 \mathrm{mV}$ (90 days, Tcal $\pm 5^{\circ} \mathrm{C}$ or Cal:MOD?: $\pm 5^{\circ} \mathrm{C}$)		(3.3 V logic, 5 V tolerant)
		Slope:	Rising or falling, selectable
Ripple and noise:	$<2 \mathrm{mV}$ rms, 20 Hz to 250 kHz into $10 \mathrm{k} \Omega$ load	Pulse width:	$>100 \mathrm{nS}$
		Input impedance:	$>10 \mathrm{k} \Omega$, DC coupled
Settling time:	40 uS (-full scale to +full scale step, single channel, to rated accuracy)	Trigger output	
		Level:	TTL compatible
Output impedance:	$<1 \Omega$ with the load sensed		into $1 \mathrm{k} \Omega$ (3.3 V logic)
		Output impedance:	50Ω typical
DC current		Clock input	
Range:	$\pm 20 \mathrm{~mA}$	Input level:	TTL compatible (3.3 V logic, 5 V tolerant)
Resolution:	16 -bit $=630 \mathrm{nA}$	Input impedance:	$>10 \mathrm{k} \Omega$, DC
Accuracy:	$\begin{aligned} & \pm(\% \text { value }+ \text { amps }) \\ & \text { (temperature within } \pm 5^{\circ} \mathrm{C} \\ & \text { of Tcal or }{ }^{*} \text { Cal?) } 90 \text {-day: } \\ & \pm(0.09 \%+5.0 \mathrm{uA}) \end{aligned}$	Maximum rate:	10 MHz
		Clock output	
		Level:	TTL compatible
Ripple and noise:	<2 uArms, 20 Hz to 250 kHz into 250Ω		into $1 \mathrm{k} \Omega$ (3.3 V logic)
		Output impedance:	50Ω typical
Compliance voltage:	$\pm 12 \mathrm{~V}$	Maximum rate:	10 MHz
Max open circuit voltage:	$< \pm 22 \mathrm{~V}$	Accuracy:	$\pm 100 \mathrm{ppm}$

Figure 11. 34951A 4-channel isolated D/A converter

34952A multifunction module with 32-bit DIO, 2-channel D/A and totalizer

The multifunction module offers the flexibility you need for system control. The 34952A has four 8-bit digital I/O channels, a $100-\mathrm{kHz}$ gated totalizer, and two $\pm 12 \mathrm{~V}$ analog outputs-all on a single earth-referenced module. The digital inputs and totalizer input may be included in a scan list. Alarm limits for the digital and totalizer inputs are evaluated continuously, capturing and logging alarm conditions even between scans. Connections can be made via standard 50-pin Dsub cables or detachable terminal block. The 34952T terminal block has a pinout for connection to an external opto 22 board.

Four 8 -bits channels, 8 bits wide, input or output, non-isolated	
$\operatorname{Vin}(\mathrm{L})$	$<0.8 \mathrm{~V}$ (TTL)
$\mathrm{Vin}(\mathrm{H})$	$>2.0 \mathrm{~V}$ (TTL)
Vout(L)	$<0.8 \mathrm{~V}$ @ lout $=-400 \mathrm{~mA}$
Vout(H)	$>2.4 \mathrm{~V}$ @ lout $=1 \mathrm{~mA}$
$\operatorname{Vin}(\mathrm{H})$ max	$<42 \mathrm{~V}$ with external open drain pull-up
Alarm	Maskable pattern match or state change
Speed pling	4 ms (max) alarm sam-
Latency	5 ms (typical) to 34980A alarm output
Read/write speed	95/s

Totalize input characteristics

Max count	22^{26-1}
Totalize input	$100 \mathrm{kHz}(\mathrm{max})$ rising or falling edge, programmable
Signal level	$1 \mathrm{Vp-p}(\mathrm{~min}) 42 \mathrm{Vpk}(\mathrm{max})$
Threshold	0 V or TTL
Gate input	TTL-Hi, TTL-Lo, or none
Count reset	Manual or read + reset
Read speed	85 rds $/ \mathrm{s}$
Analog output characteristics	
DAC 1,2	$\pm 12 \mathrm{~V}$, non-isolated
Resolution	1 mV
IOUT	10 mA max
Settling time	1 ms to 0.01% of output
Accuracy	$\pm(\%$ of output +mV$)$
1 year	$(0.25 \%+20 \mathrm{mV})$
Temp. coefficient	$\pm(0.015 \%+1 \mathrm{mV}) /{ }^{\circ} \mathrm{C}$

Figure 12. 34952A multifunction module

34959A breadboard module

Use this module to create your own custom designs inside the 34980A mainframe. You can control your custom circuits with access to both the +12 V and +5 V supplies, 28 relay drive lines and two 8-bit GPIO ports. Your design can be isolated from the analog buses or connected by loading the backplane switches. Simply mount your custom PC board or other components into the space provided and connect via the two ribbon connectors provided. The module is provided with two 50- or 78-pin Dsub connector openings. For custom connections, use the detachable flat faceplates for easy modification. You can program your circuitry using standard read and write commands in SCPI.

General specifications

Max module power dissipation	6 W
Power available	
12 V regulation no load to full load	10%
5 V regulation no load to full load	5%
Max power from 12 V	6 W
Max power from 5 V	1 W
Relay drives $\quad 28$, sink up to 100 mA	
GPIO ports	
Chan 1 and	
Chan 2:	
Chan 3:	

Available board dimensions:
$5.4 \times 7.5 \times$ either 0.9 inches height without PC
board, or 0.7 inches high with PC board.

Figure 13. 34959A breadboard module

34980A system specifications and characteristics

DMM accuracy \pm (\% of reading + \% of range)

Includes measurement error, switching error, and transducer conversion error

Measurement including switch error ${ }^{[1]}$						
Function	Range ${ }^{[4]}$	Frequency, etc.	$\begin{aligned} & 24 \text { hour }{ }^{[2,3]} \\ & \text { Tcal } \pm 1^{\circ} \mathrm{C} \end{aligned}$	90 days Tcal $\pm 5^{\circ} \mathrm{C}$	1 year Tcal $\pm 5^{\circ} \mathrm{C}$	Temperature coefficient $>$ Tcal $\pm 5^{\circ} \mathrm{C}$
DC voltage	100.0000 mV		$0.0030+0.0035$	$0.0040+0.0040$	$0.0050+0.0040$	$0.0005+0.0005$
(with 34921A/22A/	1.000000 V		$0.0020+0.0006$	$0.0030+0.0007$	$0.0040+0.0007$	$0.0005+0.0001$
$31 \mathrm{~A} / 32 \mathrm{~A})^{[10]}$	10.00000 V		$0.0015+0.0004$	$0.0020+0.0005$	$0.0035+0.0005$	$\mathbf{0 . 0 0 0 5}+\mathbf{0 . 0 0 0 1}$
	100.0000 V		$0.0020+0.0006$	$0.0035+0.0006$	$0.0045+0.0006$	$0.0005+0.0001$
	300.0000 V		$0.0020+0.0020$	$0.0035+0.0030$	$0.0045+0.0030$	$0.0005+0.0003$
True RMS AC voltage ${ }^{[5]}$	$\begin{aligned} & 100.0000 \mathrm{mV} \\ & \text { to } 100.0000 \mathrm{~V} \end{aligned}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.03$	$1.00+0.04$	$1.00+0.04$	$0.100+0.004$
		$5 \mathrm{Hz-10} \mathrm{~Hz}$	$0.35+0.03$	$0.35+0.04$	$0.35+0.04$	$0.035+0.004$
		$10 \mathrm{~Hz}-20 \mathrm{kHz}$	$0.04+0.03$	$0.05+0.04$	$\mathbf{0 . 0 6 + 0 . 0 4}$	0.005 + 0.004
		$20 \mathrm{kHz}-50 \mathrm{kHz}$	$0.10+0.05$	$0.11+0.05$	$0.12+0.05$	$0.011+0.005$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$0.55+0.08$	$0.60+0.08$	$0.60+0.08$	$0.060+0.008$
		$100 \mathrm{kHz}-300 \mathrm{kHz}{ }^{[6]}$	$4.00+0.50$	$4.00+0.50$	$4.00+0.50$	$0.20+0.02$
	300.0000 V	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.05$	$1.00+0.08$	$1.00+0.08$	$0.100+0.008$
		$5 \mathrm{Hz-10} \mathrm{~Hz}$	$0.35+0.05$	$0.35+0.08$	$0.35+0.08$	$0.035+0.008$
		$10 \mathrm{~Hz}-20 \mathrm{kHz}$	$0.04+0.05$	$0.05+0.08$	$0.06+0.08$	$0.005+0.008$
		$20 \mathrm{kHz}-50 \mathrm{kHz}$	$0.10+0.10$	$0.11+0.12$	$0.12+0.12$	$0.011+0.012$
		$50 \mathrm{kHz}-100 \mathrm{kHz}$	$0.55+0.20$	$0.60+0.20$	$0.60+0.20$	$0.060+0.020$
		$100 \mathrm{kHz}-300 \mathrm{kHz}{ }^{[6]}$	$4.00+1.25$	$4.00+1.25$	$4.00+1.25$	$0.20+0.05$
Resistance ${ }^{[7]}$	100.0000Ω	1 mA	$0.0030+0.0035$	$0.008+0.004$	$0.010+0.004$	$0.0006+0.0005$
	$1.000000 \mathrm{k} \Omega$	1 mA	$0.0020+0.0006$	$0.008+0.001$	$0.010+0.001$	$0.0006+0.0001$
	$10.00000 \mathrm{k} \Omega$	100 uA	$0.0020+0.0005$	$0.008+0.001$	$0.010+0.001$	$\mathbf{0 . 0 0 0 6 + 0 . 0 0 0 1 ~}$
	$100.0000 \mathrm{k} \Omega$	10 uA	$0.0020+0.0005$	$0.008+0.001$	$0.010+0.001$	$0.0006+0.0001$
	$1.000000 \mathrm{M} \Omega$	5.0 uA	$0.002+0.001$	$0.008+0.001$	$0.010+0.001$	$0.0010+0.0002$
	$10.00000 \mathrm{M} \Omega$	500 nA	$0.015+0.001$	$0.020+0.001$	$0.040+0.001$	$0.0030+0.0004$
	$100.0000 \mathrm{M} \Omega$	$500 \mathrm{nA} / 10 \mathrm{M} \Omega$	$0.300+0.010$	$0.800+0.010$	$0.800+0.010$	$0.1500+0.0002$
Frequency and period ${ }^{[8]}$	100 mV to 300 V		0.10	0.10	0.10	0.005
		$5 \mathrm{Hz-10} \mathrm{~Hz}$	0.05	0.05	0.05	0.005
		$10 \mathrm{~Hz}-40 \mathrm{~Hz}$	0.03	0.03	0.03	0.001
		$40 \mathrm{~Hz}-300 \mathrm{kHz}$	0.006	0.01	0.01	0.001
DC current (34921 only)		$<0.1 \mathrm{~V}$ burden		$0.030+0.020$	$0.050+0.020$	$0.002+0.0020$
	100.0000 mA	$<0.6 \mathrm{~V}$	$0.010+0.004$	$0.030+0.005$	0.050 + 0.005	$0.002+0.0005$
	1.000000 A	$<2 \mathrm{~V}$	$0.050+0.006$	$0.080+0.010$	$0.100+0.010$	$0.005+0.0010$
True RMS AC current (34921A only)	$\begin{aligned} & 10.00000 \mathrm{~mA} \\ & \text { and }^{[5]} \\ & 1.0 \mathrm{~A} \end{aligned}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.04$	$1.00+0.04$	$1.00+0.04$	$0.100+0.006$
		$5 \mathrm{Hz-10} \mathrm{~Hz}$	$0.30+0.04$	$0.30+0.04$	$0.30+0.04$	$0.035+0.006$
		$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.10+0.04$	$0.10+0.04$	$0.10+0.04$	$0.015+0.006$
	$100.0000 \mathrm{~mA}^{\text {[9] }}$	$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	$1.00+0.5$	$1.00+0.5$	$1.00+0.5$	$0.100+0.006$
		$5 \mathrm{Hz-10} \mathrm{~Hz}$	$0.30+0.5$	$0.30+0.5$	$0.30+0.5$	$0.035+0.006$
		$10 \mathrm{~Hz}-5 \mathrm{kHz}$	$0.10+0.5$	$0.10+0.5$	$0.10+0.5$	$0.015+0.006$

[1] One hour warm-up and a fixed configuration with slow AC filter, sine wave input, and 612 digits. Temperature within $\pm 5^{\circ} \mathrm{C}$ of temperature at calibration (Tcal between $18-28^{\circ} \mathrm{C}$).
[2] 90 minute warm-up and a fixed configuration and 6 V digits. Temperature within $\pm 1^{\circ} \mathrm{C}$ of temperature at calibration (Tcal between $18-28^{\circ} \mathrm{C}$).
[3] Relative to calibration standards
[4] 20% over range on all ranges except 300VDC and $A C$ ranges and 1 ADC and AC current ranges

5] For singe wave input $>5 \%$ of range. For inputs from 1% to 5% of range and $<50 \mathrm{kHz}$ add 0.1% of range additional error. For AC filter slow.
[6] Typically 30% of reading error at 1 MHz , limited to 1×108 volt-hertz
[7] For 4-wire ohms or 2-wire ohms using scaling to remove offset. Add 4 ohms additional error to 2 -wire ohms function without scaling. $34923 / 24 / 25 / 33$ have series resistance that may limit low 2 -wire ohm measurements.
[8] Input $>100 \mathrm{mV}$. For 10 mV inputs multiply $\%$ of reading error $\times 10$. For 1 sec aperture (6 1/2 digits).
[9] Specified only for inputs $>10 \mathrm{~mA}$ For AC filter slow.
[10] Add 50 uV error for 34923/24/33.

Additional Low Frequency Error for ACV, ACI (\% of reading)

Frequency	AC Filter Slow	AC Filter Medium	AC Filter Fast
$10 \mathrm{~Hz}-20 \mathrm{~Hz}$	0	0.74	-
$20 \mathrm{~Hz}-40 \mathrm{~Hz}$	0	0.22	-
$40 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0.06	0.73
$100 \mathrm{~Hz}-200 \mathrm{~Hz}$	0	0.01	0.22
$200 \mathrm{~Hz}-1 \mathrm{kHz}$	0	0	0.18
$>1 \mathrm{kHz}$	0	0	0

Additional Error for Frequency, Period (\% of reading)

Frequency	1 second (6 $1 / 2$ digits) $)$	Aperature (Digits) 0.1 seconds (5 $1 / 2$ digits)	0.01 seconds (4 $1 / 2$ digits) $)$
$3 \mathrm{~Hz}-5 \mathrm{~Hz}$	0	0.12	0.12
$5 \mathrm{~Hz}-10 \mathrm{~Hz}$	0	0.17	0.17
$10 \mathrm{~Hz}-40 \mathrm{~Hz}$	0	0.2	0.2
$40 \mathrm{~Hz}-100 \mathrm{~Hz}$	0	0.06	0.21
$100 \mathrm{~Hz}-300 \mathrm{~Hz}$	0	0.03	0.21
$300 \mathrm{~Hz}-1 \mathrm{kHz}$	0	0.01	0.07
$>1 \mathrm{kHz}$	0	0	0.02

Temperature measurement accuracy \pm (\% of reading $+\%$ of range)

Temperature 1-year accuracy	Type	Best range ${ }^{[1]}$	Extended range ${ }^{[1]}$		Temp Coefficient	
Thermocouple	B	$1100^{\circ} \mathrm{C}$ to $1820^{\circ} \mathrm{C}$	$1.2^{\circ} \mathrm{C}$	$400^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
(34921A only,	E	$-150^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$-200^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
includes cold	J	$-150^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$-210^{\circ} \mathrm{C}$ to -150 ${ }^{\circ} \mathrm{C}$	$1.2{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
junction accuracy	K	$-100^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
on terminal block)	N	$-100^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
	R	$300^{\circ} \mathrm{C}$ to $1760^{\circ} \mathrm{C}$	$1.2{ }^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
	S	$400^{\circ} \mathrm{C}$ to $1760^{\circ} \mathrm{C}$	$1.2{ }^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	$1.8{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
	T	$-100^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$	$1.0^{\circ} \mathrm{C}$	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$1.5{ }^{\circ} \mathrm{C}$	$0.03{ }^{\circ} \mathrm{C}$
RTD	$\begin{aligned} & \hline \mathrm{R}_{\mathrm{f}} \text { from } \\ & 49 \Omega \text { to } 2.1 \mathrm{~K} \Omega \end{aligned}$	$-200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$	$0.06{ }^{\circ} \mathrm{C}$			$0.003^{\circ} \mathrm{C}$
Thermistor	$2.2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}$	$-80^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	$0.08^{\circ} \mathrm{C}$			$0.002^{\circ} \mathrm{C}$

[1] For total measurement accuracy, add temperature probe error

Typical system speeds (Measurements made on a 3.2 GHz PC running VB6 in Windows XP Pro)

Direct measurements - direct to I/O (includes switch, measure time and I/0 time)				Direct Measurement to Memory(GPIB)
Single channel [1] [2]	GPIB msec	$\begin{gathered} \text { USB } 2.0 \\ \text { msec } \end{gathered}$	LAN (w/ VXI 11) msec	Measurement into memory msec
Single channel, DCV	2.83	3.14	4.57	1.9
Single channel, ACV	5.00	5.35	5.75	4
Single channel, ohms	2.91	3.14	4.65	1.9
Single channel while changing scale (eg MEAS DCV 10 / MEAS DCV 1)	9.52	10.64	11.76	8.4
Single channel while changing function (eg. MEAS ACV / MEAS DCV)	128	120	120	120
Command execution time [3]				
34925A	Open or Close Read? Close/Read/Open Init/*WAI Close/Init/Open	$\begin{aligned} & 0.7 \\ & 2.9 \\ & 4.8 \\ & 1.9 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 3.3 \\ & 5.3 \\ & 2.1 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 4.7 \\ & 6.5 \\ & 3 \\ & 4.7 \end{aligned}$
34923A	Open or Close Read? Close/Read/Open Init/*WAI Close/Init/Open	$\begin{aligned} & 0.9 \\ & 2.9 \\ & 5.3 \\ & 1.9 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.3 \\ & 5.8 \\ & 2.1 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 4.7 \\ & 6.5 \\ & 3 \\ & 5.2 \end{aligned}$
34921A	Open or Close Read? Close/Read/Open Init/*WAI Close/Init/Open	$\begin{aligned} & 4.7 \\ & 2.9 \\ & 14 \\ & 1.9 \\ & 12.4 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 3.3 \\ & 15 \\ & 2.1 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.7 \\ & 15 \\ & 3 \\ & 14 \end{aligned}$

[1] Readings were made with minimum NPLC, delay 0 , display off, autozero off.
[2] All times include the issue of "READ?" and the retrieval of data.
[3] CLOSE or OPEN bus transfer times allowed to overlap previous command. Command parse times overlap current activity until IO latency dominant.

Single channel measurement rates-DMM reading rates [1] [2]

Function	Resolution	Rds/s
DCV	4-1/2 digits (0.02 plc)	3000
	$5-1 / 2$ digits (1 plc)	59
	6-1/2 digits (10 plc)	6
2-wire resistance	4-1/2 digits (0.02 plc)	2000
	$5-1 / 2$ digits (1 plc)	58
	$6-1 / 2$ digits (10 plc)	6
Thermocouple	(0.02 plc)	2000
	$0.1^{\circ} \mathrm{C}(1 \mathrm{plc})$	59
RTD/Thermistor	$1^{\circ} \mathrm{C}$ (0.02 plc)	1900
	$0.1^{\circ} \mathrm{C}$ (1 plc)	58
	$0.01{ }^{\circ} \mathrm{C}(10 \mathrm{plc})$	6
ACV	6-1/2 fast (200 Hz)	350
	$6-1 / 2 \mathrm{Med}(20 \mathrm{~Hz})$	350
	$6-1 / 2$ slow (3 Hz)	300
Frequency, period	4-1/2 digits (10 ms)	70
	$5-1 / 2$ digits (100 ms)	9
	$6-1 / 2$ digits (1 s gate)	1

[1] Reading speeds for 60 Hz ; autozero OFF
[2] For fixed function and range, readings to memory, scaling and alarms off, autozero OFF

Scanning measurement rates to bus or memory

	Direct measurements - direct to I/O (includes switch, measure time and I/0 time)		Measurement into memory	
Scanning channels [1]	GPIB ch/sec	USB 2.0 ch/sec	LAN (w/ VXI 11) ch/sec	Into memory ch/sec
Scanning DCV or Ohms 34925 A	920	860	980	1000
34923A/24A	588	572	605	625
34921A/22A	109	109	109	109
Scanning ACV [2] 34925A	318	315	323	318
34923A/24A	260	260	260	260
34921A/22A	88	88	88	88
Scanning temperature 34921A	109	109	109	109
Scanning digital in 34950A	660	592	815	1038

[1] Speeds are for $41 / 2$ digits, delay 0 , display off, autozero off. Scanning is within bank on the same module. Add 10 ms for between banks or modules.
[2] Add additional time for filter setting on ACV.

Data out of memory to LAN, USB, or GPIB (data transfer rate with 1000 channel blocks)

	GPIB rds/sec	USB 2.0 rds/sec	LAN (w/ VXI 11) [1] rds/sec
Readings	2560	2400	3542
readings with timestamp	1304	1230	1826
readings with all format options ON	980	926	1361

[1] LAN large block throughput rate is increased by approximately 30% using LAN sockets

Measurement characteristics with optional internal DMM

DC voltage		Frequency and period	
Measurement method	Continuously integrating multi-slope III A-D converter	Measurement method	Reciprocal counting technique
		Voltage ranges	Same as AC voltage function
A-D linearity	0.0002% of reading $+0.0001 \%$ of range on 10 V range	Gate time	1s, 100 ms , or 10 ms
Input resistance		Measurement timeout	Selectable $3 \mathrm{~Hz}, 20 \mathrm{~Hz}, 200 \mathrm{~Hz}$ LF limit
$100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}$ ranges \quad Selectable $10 \mathrm{M} \Omega$ or $>10,000 \mathrm{M} \Omega$			
$100 \mathrm{~V}, 300 \mathrm{~V}$ ranges	$10 \mathrm{M} \Omega \pm 1 \%$		
Input bias current	$<50 \mathrm{pA}$ at $25^{\circ} \mathrm{C}$	Measurement Consideration (Frequency and Period)	
Input protection 300 V all ranges		All frequency counters are susceptible to error when measuring low-voltage, low-frequency signals. Shielding inputs from external noise pickup is critical for minimizing measurement errors.	
True RMS AC voltage			
Measurement method	AC coupled True RMS—measures the $A C$ component of the input with up to 300 VDC of bias on any range	DC current	
		Shunt resistance	5Ω for $10 \mathrm{~mA}, 100 \mathrm{~mA}$;
Crest factor	Maximum of 5:1 at full scale		0.1Ω for 1 A
Additional crest factor errors (non-sinewave)		Input protection	1 A 250 V fuse on 34921A module
	Crest factor 1-2 0.05\% of reading	True RMS AC current	
	Crest factor 2-3 0.15\% of reading		
	Crest factor 3-4 0.30\% of reading		
	Crest factor 4-50.40\% of reading		
AC Filter Bandwidth:		Measurement method	Direct coupled to the fuse and shunt.
Slow	$3 \mathrm{~Hz}-300 \mathrm{kHz}$		AC coupled True RMS measurement
Medium	$20 \mathrm{~Hz}-300 \mathrm{kHz}$		(measures the ac component only)
Fast	$200 \mathrm{~Hz}-300 \mathrm{kHz}$	Shunt resistance	5Ω for $10 \mathrm{~mA} ; 0.1 \Omega$ for 100 mA , 1 A
Input impedance	$1 \mathrm{M} \Omega \pm 2 \%$ in parallel with 150 pF	Input protection	1 A 250 V fuse on 34921A module
Input protection	300 Vrms all ranges		
Resistance			
Measurement method	Selectable 4-wire or 2-wire ohms		
Current source	referenced to LO input		
Offset compensation	Selectable on $100 \Omega, 1 \mathrm{k} \Omega$, $10 \mathrm{k} \Omega$ ranges		
Maximum lead resistance	10% of range per lead for 100Ω and $1 \mathrm{k} \Omega$ ranges. $1 \mathrm{k} \Omega$ on all other ranges		
Input protection	300 V on all ranges		

Measurement characteristics with

 optional internal DMM (Continued)| Thermocouple | | | |
| :---: | :---: | :---: | :---: |
| Conversion | | ITS-90 software compensation | |
| Reference junction type | | Internal, fixed, or external | |
| Open thermocouple check | | Selectable per channel. Open $>5 \mathrm{k} \Omega$ | |
| Thermistor | | 44004, 44007, 44006 series | |
| RTD | | $\mathrm{a}=0.00385$ (DIN) and $\mathrm{a}=0.00392$ | |
| Measurement noise rejection 60 (50) $\mathrm{Hz}^{[1]}$ | | | |
| DC CMRR | | 140 dB | |
| AC CMRR | | 70 dB | |
| Integration time | | Normal mode rejection ${ }^{[2]}$ | |
| $200 \mathrm{plc} / 3.33 \mathrm{~s} \mathrm{(4} \mathrm{s)}$ | | $105 \mathrm{~dB}{ }^{[3]}$ | |
| $100 \mathrm{plc} / 1.67 \mathrm{~s}$ (2 s) | | $100 \mathrm{~dB}^{[3]}$ | |
| $20 \mathrm{plc} / 333 \mathrm{~ms}(400 \mathrm{~ms})$ | | $95 \mathrm{~dB}^{[3]}$ | |
| $10 \mathrm{plc} / 167 \mathrm{~ms}(200 \mathrm{~ms})$ | | $90 \mathrm{~dB}^{[3]}$ | |
| $2 \mathrm{plc} / 33.3 \mathrm{~ms}(40 \mathrm{~ms})$ | | 85 dB | |
| $1 \mathrm{plc} / 16.7 \mathrm{~ms}(20 \mathrm{~ms})$ | | 60 dB | |
| < 1 plc | | 0 dB | |
| DC Operating Characteristics ${ }^{\text {[4] }}$ | | | |
| Function | Digits ${ }^{[5]}$ | Readings | Additional RMS Noise Error |
| DCV ${ }^{[7]}$, DCI, and | $61 / 2$ | 0.6 (0.5) | 0\% of range |
| Reistance ($\leq 10 \mathrm{k} \Omega$) | 61/2 | 6 (5) | 0% of range |
| | $51 / 2$ | 60 (50) | 0.001\% of range |
| | $51 / 2$ | 300 | 0.001\% of range ${ }^{[6]}$ |
| | $41 / 2$ | 600 | 0.01% of range ${ }^{[6]}$ |

Autozero OFF Operation
Following instrument warm-up at calibration temerature $\pm 1^{\circ} \mathrm{C}$ and <10 minutes, add 0.0002% range additional error $+5 \mu \mathrm{~V}$. (For 300 VDC , instead of .0002\% of range, need $.00066 \%$ of range)

Settling Considerations			
Reading settling times are affected by source impedance, low dielectric absorptin characteristics, and input signal changes.			
AC Operating Characteristics ${ }^{[8]}$			
Function ACV, ACI:	Digits ${ }^{[9]}$	Readings/s	AC Filter
	$61 / 2$	$7 \mathrm{sec} /$ reading	Slow (3 Hz)
	$61 / 2$	1	Medium (20 Hz)
	$61 / 2$	$8^{[10]}$	Fast (200 Hz)
	$61 / 2$	10	Fast (200 Hz)
	$61 / 2 u x \times c 31933$ cä 32 é	$100{ }^{[11]}$	Fast (200 Hz)

[1] For $1 \mathrm{~K} \Omega$ unbalance in LO lead
[2] For power line frequency $\pm 0.08 \%$
[3] For power line frequency $\pm 1 \%$ use 75 dB or $\pm 2.5 \%$ use 60 dB
[4] Reading speeds for 60 Hz and (50 Hz) operation; autozero OFF
[5] $6 \frac{1}{2}$ digits $=22$ bits; $51 / 2$ digits $=18$ bits; $41 / 2$ digits $=15$ bits
[6] Add $20 \mu \mathrm{~V}$ for $\mathrm{DCV}, 4 \mu \mathrm{~A}$ for DCI , or $20 \mathrm{~m} \Omega$ for resistance
[7) For 300 VDC, multiply the additional noise error by 3.3.
[8] Maximum reading rates for 0.01% of AC step additional error. Additional settling delay required when input DC level varies.
[9] $6 \frac{1}{2}$ digits $=22$ bits; $51 / 2$ digits $=18$ bits; $41 / 2$ digits $=15$ bits
[10] For external trigger or remote operation using default settling delay (Delay Auto)
[11] Maximum limit with default settling delays defeated

System specifications

Scanning inputs	
Analog:	34921A, 34922A, 34923A, 34924A, and 34925A multiplexer channels
Digital:	34950A/52A digital in and totalize

Scan triggering	
Source	Interval, external, button press, software, or on monitor channel alarm
Scan count	1 to 50,000 or continuous
Scan interval	0 to 99 hours; 1 ms step size
Channel delay	0 to 60 seconds per channel; 1 ms step size
External trig delay	$<2 \mathrm{~ms}$. With monitor on $<200 \mathrm{~ms}$
External trig jitter	$<2 \mathrm{~ms}$

Alarms

Analog inputs	Hi, Lo, or $\mathrm{Hi}+$ Lo evaluated each scan
Digital inputs	$34950 \mathrm{~A} / 52 \mathrm{~A}$ digital in maskable pattern match or state change
	$34950 \mathrm{~A} / 52 \mathrm{~A}$ frequency and totalize: Hi limit only
Monitor channel	Alarm evaluated each reading
Alarm outputs	4 TTL compatible Selectable TTL logic Hi or Lo on fail
Latency	5 ms (typical)

Memory	Volatile
Type	500,000 with timestamp, readable during scan
Readings	5 instrument states with user label
States	Up to 20 events with channel number, reading, and timestamp
Alarm queue	

System features

Per-channel math Min/max/average	Individual Mx+B scaling and calculated real time
Power fail recovery	Save switch states
Relay maintenance	Counts each relay closure and stores on module User resettable
Real-time clock	Battery-backed, 20-year typical life

General specifications

Power supply	Universal 100 V to $240 \mathrm{~V} \pm 10 \%$
Power line frequency	$50-60 \mathrm{~Hz} \pm 10 \%$ automatically sensed
Power consumption	150 VA
Operating environment	Full accuracy for $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ Full accuracy to 80% R.H. at $40^{\circ} \mathrm{C}$ IEC 60664-1 pollution degree 1
Storage environment	$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}{ }^{[1]}$
Mainframe dimensions	$133 \mathrm{H} \times 426 \mathrm{~W} \times 341 \mathrm{D} \mathrm{~mm}\left(5.25^{\prime \prime} \times 16.8^{\prime \prime} \times 14^{\prime \prime}\right)$ Full rack, 3 units high
Mainframe weight:	8.8 kg (19.6 lbs)
Module dimensions	$280 \times 170 \times 27 \mathrm{~mm}$ (11" $\left.\times 6.7^{\prime \prime} \times 1^{\prime \prime}\right)$
Safety conforms to	CSA, UL/IEC/EN 61010-1
EMC conforms to	IEC/EN 61326-1, CISPR 11
Warranty	1 year

Software

Agilent connectivity software included	
Agilent IO Libraries Suite 14 or greater (E2094N)	
Minimum system requirements (IO libraries and drivers)	
PC hardware	Intel Pentium 100 MHz, 64 Mbyte RAM,
	210 Mbyte disk space
	Display $800 \times 600,256$ colors, CD-Rom drive
Operating system ${ }^{[2]}$	Windows $^{\circledR} 98$ SE/NT/2000/XP
Computer interfaces	Standard LAN 10BaseT/100BaseTx Standard USB 2.0 IEEE 488.2 GPIB
Software driver support for programming languages	
Software drivers:	IVI-C and IVI COM for Windows NT/2000/XP
	LabVIEW

[1] Storage at temperatures above $40^{\circ} \mathrm{C}$ will decrease battery life
[2] Load IO Libraries Version M for Windows NT support or version 14.0 for window 98 SE support,

Ordering instructions

Mainframe - holds up to 8 plug-in modules			
34980A	Multifunction switch/measure mainframe	Comes standard with "DMM" option	
	Description	Module connectors	Optional terminal blocks, cables, connector kits
Multiplexer modules			
34921A	40-channel armature multiplexer w/low thermal offset (order 34921T for temp reference)	2-50-pin Dsub, Male	$3492 \times$ T Terminal block with screw connectors Y1135A - 1.5 m 50 -pin M/F Dsub cable Y1136A - 3 m 50-pin M/F Dsub cable Y1139A - 50-pin female solder cup connector kit
34923A	40/80-channel reed multiplexer		
34925A	40/80-channel optically isolated FET multiplexer		
34922A	70-channel armature multiplexer	2-78-pin Dsub, Male	3492xT Terminal block with solder connections Y1137A - 1.5 m 78 -pin M/F Dsub cable Y1138A - 3 m 78 -pin M/F Dsub cable Y1140A - 78 -pin female solder cup connector kit
34924A	70-channel reed multiplexer		
Matrix modules			
34931A	Dual 4x8 armature matrix	$2-50$-pin Dsub, Male	3493xT Terminal block with screw connectors Y1135A-1.5 m 50-pin M/F Dsub cable Y1136A - 3 m 50 -pin M/F Dsub cable Y1139A - 50-pin female solder cup connector kit
34932A	Dual 4×16 armature matrix		
34933A	Dual/quad 4×8 reed matrix		
General purpose/actuator modules			
34937A	32-channel Form C/Form A general-purpose switch	2-50-pin Dsub, Male	3493xT Terminal block with screw connectors Y1135A - 1.5 m 50 -pin M/F Dsub cable Y1136A - 3 m 50-pin M/F Dsub cable Y1139A - 50-pin female solder cup connector kit
34938A	20-channel 5-amp Form A switch		
$\overline{\mathrm{RF}}$ and microwave modules			
34941A	Quad 1x4 50-ohm 3-GHz RF multiplexer	10 - SMA	Requires standard 50 ohm SMA RF cables, adapters
34942A	Quad 1x4 75-ohm 1.5 GHz RF multiplexer	10 - Mini SMB	Requires mini 75 ohm SMB RF cables, adapters
34945A	Microwave switch/attenuator driver	N/A	Requires 34945EXT and optional Y1150A-Y1155A distribution boards
34946A	Dual 1x2 SPDT terminated microwave switch Option 004: 4 GHZ switches installed Option 020: 20 GHz switches installed	SMA	Requires standard 50 ohm SMA cables and adapters
34947A	Triple 1x2 SPDT unterminated microwave switch Option 004: 4 GHZ switches installed Option 020: 20 GHz switches installed	SMA	Requires standard 50 ohm SMA cables and adapters
System measurement \& control modules			
34950A	64-bit digital I/0 with memory and counter	2-78-pin Dsub, Female	3495xT Terminal block with screw connectors Y1137A - 1.5 m 78 -pin M/F Dsub cable Y1138A - 3 m 78 -pin M/F Dsub cable Y1142A - 78-pin male solder cup connector kit
34951A	4-channel isolated D/A converter with waveform memory (DMM option required for calibration)	1-50-pin Dsub, Female	3495xT Terminal block with screw connectors Y1135A-1.5 m 50-pin M/F Dsub cable Y1136A - 3 m 50 -pin M/F Dsub cable Y1141A - 50-pin male solder cup connector kit
34952A	Multifunction module with 32-bit DIO, 2-ch D/A and totalizer		
34959A	Breadboard module	26- \& 40-pin internal ribbon cable connectors	Any terminal block can be used assuming 50 or 78 -pin Dsub is used

Accessories	
Y1130A	Rackmount kit for 34980A, forward or reverse mount (must order either E3663AC rail kit for forward rack mounting or E3664AC rail kit for reverse rack mounting)
Y1131A	Verification and diagnostic tools for 34980A mainframe and modules (select option for specific module support)
Y1132A	Module extender for 34980A
Terminal blocks used for discrete wiring. Fully loaded terminal blocks supports up to 20 AWG wire	
3492xT	Multiplexer terminal blocks
3493xT	Matrix and GP terminal blocks
3495xT	Measurement and control terminal blocks
Cables ${ }^{[1]}$ used for direct cable connection to module. some modules require 2 cables	
Y1135A	$1.5 \mathrm{~m} 50-\mathrm{pin}$ Dsub, M/F twisted pair with outer shield cable - 300 V
Y1136A	3 m 50 -pin Dsub, M/F twisted pair with outer shield cable - 300 V
Y1137A	1.5 m 78 -pin Dsub, M/F twisted pair with outer shield cable - 300 V
Y1138A	3 m 78 -pin Dsub, M/F twisted pair with outer shield cable - 300 V
Connector kits ${ }^{[1]}$ used to build custom cables	
Y1139A	Solder cup connector kit for 34921/23/25/31/32/33/37/38 - 50-pin Dsub female-125 V
Y1140A	Solder cup connector kit for 34922, 34924-78-pin Dsub female - 60 V
Y1141A	Solder cup connector kit for $34951,34952-50$-pin Dsub male - 125 V
Y1142A	Solder cup connector kit for the 34950A - 78 -pin Dsub male - 60 V
34945A accessories - distribution boards required for control of external switch	
34945EXT	External driver for 34945A, one required for each 64 coils holds 4 distribution boards
Y1150A	34945EXT distribution board for 8 N181x SPDT switches
Y1151A	34945EXT distribution board for two 87104x/106x multiport or 87406B matrix switches
Y1152A	34945EXT distribution board for one $87204 \mathrm{x} / 206 \mathrm{x}$ or 87606 B switch and two N181x switches
Y1153A	34945EXT distribution board for two 84904/5/6/7/8 or 8494/5/6 step attenuators
Y1154A	34945EXT distribution board for two 87222 transfer switches and six N181x SPDT switches
Y1155A	34945A distribution board w/ generic screw terminals for driving 16 switch coils
Thermocouples/thermistors	
34307 A	10 pack of J type thermocouples
34308 A	5 pack of 10 k thermistors

Rack kit

Terminal block

Cable

Connector kit
For additional information please visit: http://www.agilent.com/find/34980a
[1] Module specifications include terminal block. Performance may be degraded when using cables or connector kits.

Related Agilent literature

Publication title	Publication type	Publication number
Agilent VEE Pro	Data sheet	5988-6302EN
Agilent W1140A-TKT T\&M Toolkit 2.0 with Test Automation	Data sheet	5989-1441EN
Agilent E2094N IO Libraries Suite 14	Data sheet	5989-1439EN
Agilent 34980A Configuring an RF/Microwave Switch System	Application Note	5989-2272EN

[^0]: Note: See User's Guide for additional information.

