Key features:

- RFID non-contact interlock switch, Category 4 and PLe (EN/ISO 13849-1) compliant.
- The sensor head with built-in safety function (redundant solid state output with internal monitoring) eliminates the need for a designated safety module.
- RFID ensures detection of slow-moving, open, sliding, and rattling doors.
- Multicode and unicode sensor heads are available. Unicode sensor head (one sensor head corresponds to one actuator) prevents tampering with the use of an unassigned spare actuator.
- Sensor head can be installed in 5 directions.
- Degree of protection IP67. Actuator IP67, IP69K (Note)

Note: IP69K is a degree of protection specified by Deutsches Institüt für Normung (DIN), DW 40050 Part 9 for hot and high-pressure water.

Interlock Switch (Sensor Head)

Actuator

Part Numbers

HS3A Non-contact RFID Safety Switches

Outputs	Type	Part Number
Safety output: 2	Multicode	HS3A-H21M4
Monitor output: 1	Unicode	HS3A-H21U4

Accessories

| | Rart Number | | Remarks |
| :--- | :--- | :--- | :--- | :--- |

See below for an example of accessories required when connecting N number of HS3A switches in series.
HS3A non-contact interlock switch (HS3Z-H21 $\square 4$): N pcs. Y-branch connector (HS9Z-H3YD): N pcs. Actuator (HS9Z-ZH31): N pcs.

M12 plug connection cable, open end (HS9Z-H3F5 $\square \square$): 1 pc.
Terminal plug (HS9Z-H3TP): 1 pc.

$$
\text { M12 plug connection cable, plug connectors at both ends (HS9Z-H3F5M } \square \square \text {): N-1 pcs. }
$$

| Specifications | |
| :--- | :--- | :--- |
| | EN60947-5-3 (IFA approval)
 EN954-1
 EN ISO13849-1 |
| Applicable Standards | EN62061
 GS-ET-14 (IFA approval)
 UL508 (UL listed) |
| CSA C22.2 No.14 (c-UL listed) | |

Dimensions (mm)

 Sensor Head

Actuator

Supplied with two mounting screws ($\mathrm{M} 5 \times 10$).

Specifications

Non-contact Interlock Switch

Plug Connection Cable

HS9Z-H3FB
 Pin Wire Legend Description 1 White IB Enabling input (channel 2) 2 Brown UB Power supply (24V DC) 3 Green OA Safety output (channel 1) 4 Yellow OB Safety output (channel 2) 5 Gray OUT Monitoring output 6 Pink IA Enabling input (channel 1) 7 Blue OV OV 8 Red RST Reset input for hardware

HS9Z-H3FS

Pin	Wire	Legend
1	Brown	UB
2	White	OA
3	Blue	OV
4	Black	OB
5	Gray	RST

Wiring Diagram

When using a single HS3A

When using a single HS3A, connect as shown in the figure below (Note). The OUT output can be connected to a control system, to a PLC for example, as a monitoring output.
The HS3A can be reset via the RST input. To reset, apply 24V DC for at least 3 seconds. When not using the RST input, connect the RST input to OV .

Note: The time required for the safety output to turn off after the actuator moves outside the operating distance of the HS3A switch.

When using two or more HS3A in series

A maximum of 20 can be connected in series.
Pay attention to the contact resistance at the connection points.
The HS3A switches can be connected in series using plug connection cables and Y-branch connectors as shown in the figure below (Note). When any of the HS3A switches detects that the safety guard is open, or when a failure has occurred on any of the switches, the system tuns off the machine. However, the external control system cannot detect which safety guard is open or where a failure has occurred.
The HS3A can be reset via the RST input. To reset, apply 24V DC for at least 3 seconds. When not using the RST input, connect the RST input to OV.

Safety Output Response Time

Table 1: Operation Distance ${ }^{1}$

Distance	Value (mm)		
	Min.	Typ.	Max.
Turn-on distance	-	15^{2}	-
Assured turn-on distance Sa0	13	-	-
Switching hysteresis	1.5	2.5	-
Assured turn-off distance Sar	-	-	58

1. When the off-center displacement of the interlock switch (sensor head) and actuator is 0 mm .
2. When surface-mounted on aluminum. When using by embedding in metal, pay attention to the operation distance affected by the metal. In non-metallic environment, the typical turn-on distance increases to 30 mm .

Table 2: Response Time

	When connecting a single switch (max.)	260 ms (actuator removed)
		150 ms (missing enabling input IA/IB)
		150 ms (non-identical enabling input state at IA/IB)
		300 ms (short-circuit or cross-circuit at OA/OB, or internal fault)
	When connecting two or more switches (max.)	360 ms (actuator removed)
		250 ms (missing signal enabling input IA/IB)
		400 ms (non-identical enabling input state at IA/IB)
		400 ms (short-circuit or cross circuit at 0A/OB or internal fault)

Note: To ensure safety, both safety outputs (OA and OB) must always be evaluated. Singlechannel use of the safety outputs as shown below leads to a reduction of safety category stipulated in EN954-1.

