Panasonic ideas for life

RoHS Directive compatibility information http://www.mew.co.jp/ac/e/environment/

15A (1C), 10 A (2C)
SPACE SAVING POWER RELAY

FEATURES

1. Compact high-capacity control relay In the same external dimensions as an HC relay, this compact power relay enables high-capacity control: 15 A for 1 Form C, 10 A for 2 Form C. 2. Designed for high reliability High operational reliability is achieved by solder-less construction, in which all connections between lead wires and the contact springs and terminal plate are welded.
2. Various types provided in rich lineup. LED indicator type also available.
3. The terminals are compatible with \#187 series tab terminals.
4. UL, CSA approval is standard

ORDERING INFORMATION

Notes: UL/CSA approved type is standard.
Please inquire about TV approved products.

TYPES

1. Plug-in type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6V AC	HL1-H-AC6V-F	HL2-H-AC6V-F
12 V AC	HL1-H-AC12V-F	HL2-H-AC12V-F
24 V AC	HL1-H-AC24V-F	HL2-H-AC24V-F
48 V AC	HL1-H-AC48V-F	HL2-H-AC48V-F
100/110V AC	HL1-H-AC100V-F	HL2-H-AC100V-F
110/120V AC	HL1-H-AC120V-F	HL2-H-AC120V-F
200/220V AC	HL1-H-AC200V-F	HL2-H-AC200V-F
220/240V AC	HL1-H-AC240V-F	HL2-H-AC240V-F
6 V DC	HL1-H-DC6V-F	HL2-H-DC6V-F
12 V D	HL1-H-DC12V-F	HL2-H-DC12V-F
24V DC	HL1-H-DC24V-F	HL2-H-DC24V-F
48 V DC	HL1-H-DC48V-F	HL2-H-DC48V-F
100/110V DC	HL1-H-DC100V-F	HL2-H-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

2. Plug-in type (with LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6 V AC	HL1-L-AC6V-F	HL2-L-AC6V-F
12 V AC	HL1-L-AC12V-F	HL2-L-AC12V-F
$24 V$ AC	HL1-L-AC24V-F	HL2-L-AC24V-F
$48 V$ AC	HL1-L-AC48V-F	HL2-L-AC48V-F
$100 / 110 V$ AC	HL1-L-AC100V-F	HL2-L-AC100V-F
$110 / 120 V$ AC	HL1-L-AC120V-F	HL2-L-AC120V-F
$200 / 220 V$ AC	HL1-L-AC200V-F	HL2-L-AC200V-F
$220 / 240 V$ AC	HL1-L-AC240V-F	HL2-L-AC240V-F
6 DC	HL1-L-DC6V-F	HL2-L-DC6V-F
$12 V$ DC	HL1-L-DC12V-F	HL2-L-DC12V-F
$24 V$ DC	HL1-L-DC24V-F	HL2-L-DC24V-F
$48 V ~ D C ~$	HL1-L-DC48V-F	HL2-L-DC48V-F
$100 / 110 V ~ D C ~$	HL1-L-DC100V-F	HL2-L-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

3. PC board type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
$6 V$ AC	HL1-HP-AC6V-F	HL2-HP-AC6V-F
12V AC	HL1-HP-AC12V-F	HL2-HP-AC12V-F
$24 V$ AC	HL1-HP-AC24V-F	HL2-HP-AC24V-F
$48 V$ AC	HL1-HP-AC48V-F	HL2-HP-AC48V-F
$100 / 110 V$ AC	HL1-HP-AC100V-F	HL2-HP-AC100V-F
$110 / 120 V$ AC	HL1-HP-AC120V-F	HL2-HP-AC120V-F
$200 / 220 V$ AC	HL1-HP-AC200V-F	HL2-HP-AC200V-F
$220 / 240 V$ AC	HL1-HP-AC240V-F	HL2-HP-AC24OV-F
$6 V ~ D C ~$	HL1-HP-DC6V-F	HL2-HP-DC6V-F
$12 V$ DC	HL1-HP-DC12V-F	HL2-HP-DC12V-F
$24 V$ DC	HL1-HP-DC24V-F	HL2-HP-DC24V-F
$48 V$ DC	HL1-HP-DC48V-F	HL2-HP-DC48V-F
$100 / 110 V ~ D C ~$	HL1-HP-DC100V-F	HL2-HP-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

4. PC board type (with LED indication)

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6V AC	HL1-PL-AC6V-F	HL2-PL-AC6V-F
12 V AC	HL1-PL-AC12V-F	HL2-PL-AC12V-F
24 V AC	HL1-PL-AC24V-F	HL2-PL-AC24V-F
48 V AC	HL1-PL-AC48V-F	HL2-PL-AC48V-F
100/110V AC	HL1-PL-AC100V-F	HL2-PL-AC100V-F
110/120V AC	HL1-PL-AC120V-F	HL2-PL-AC120V-F
200/220V AC	HL1-PL-AC200V-F	HL2-PL-AC200V-F
220/240V AC	HL1-PL-AC240V-F	HL2-PL-AC240V-F
6 V DC	HL1-PL-DC6V-F	HL2-PL-DC6V-F
12 V DC	HL1-PL-DC12V-F	HL2-PL-DC12V-F
24V DC	HL1-PL-DC24V-F	HL2-PL-DC24V-F
48 V DC	HL1-PL-DC48V-F	HL2-PL-DC48V-F
100/110V DC	HL1-PL-DC100V-F	HL2-PL-DC100V-F

Standard packing: Carton: 20 pcs.; Case: 200 pcs.

5. TM type

Coil voltage	1 Form C	2 Form C
	Part No.	Part No.
6 V AC	HL1-HTM-AC6V-F	HL2-HTM-AC6V-F
12 V AC	HL1-HTM-AC12V-F	HL2-HTM-AC12V-F
24 V AC	HL1-HTM-AC24V-F	HL2-HTM-AC24V-F
48 V AC	HL1-HTM-AC48V-F	HL2-HTM-AC48V-F
100/110V AC	HL1-HTM-AC100V-F	HL2-HTM-AC100V-F
110/120V AC	HL1-HTM-AC120V-F	HL2-HTM-AC120V-F
200/220V AC	HL1-HTM-AC200V-F	HL2-HTM-AC200V-F
220/240V AC	HL1-HTM-AC240V-F	HL2-HTM-AC240V-F
6V DC	HL1-HTM-DC6V-F	HL2-HTM-DC6V-F
12 V DC	HL1-HTM-DC12V-F	HL2-HTM-DC12V-F
24 V DC	HL1-HTM-DC24V-F	HL2-HTM-DC24V-F
48 V DC	HL1-HTM-DC48V-F	HL2-HTM-DC48V-F
100/110V DC	HL1-HTM-DC100V-F	HL2-HTM-DC100V-F

[^0]
RATING

1. Coil data

1) AC coils

Nominal coil voltage	Nominal coil current (mA)		Nominal operating power (VA)		Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Inductance (H)		Max. allowable voltage
	50 Hz	60Hz	50 Hz	60 Hz			When drop-out	When operating	
6V AC	224	200	1.3	1.2	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$30 \% \mathrm{~V}$ or more of nominal voltage (Initial)	0.078	0.074	$110 \% \mathrm{~V}$ of nominal voltage
12 V AC	111	100	1.3	1.2			0.312	0.295	
24 V AC	56	50	1.3	1.2			1.243	1.181	
48 V AC	28	25	1.3	1.2			4.974	4.145	
100/110V AC	13.4/14.7	12/13.2	1.3	1.2			23.75	20.63	
110/120V AC	12.2/13.5	10.9/11.9	1.3	1.2			27.19	25.57	
200/220V AC	6.7/7.4	6/6.6	1.3	1.2			85.98	81.76	

Notes: 1 . The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage.
In particular, for AC operation, if the applied voltage drops to 80% V or more below the rated voltage, humming will occur and a large current will flow leading possibly to coil burnout.
2. The maximum allowable voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.
2) DC coils (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Nominal coil voltage	Nominal coil current (mA)	Nominal operating power (W)	Coil resistance (Ω)	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Max. allowable voltage (at $70^{\circ} \mathrm{C} 158^{\circ} \mathrm{F}$)
6V DC	150	0.9	40	$80 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage (Initial)	$110 \% \mathrm{~V}$ of nominal voltage
12 V DC	75	0.9	160			
24V DC	37	0.9	650			
48V DC	18.5	0.9	2,600			
100/110V DC	10	1.0	10,000			

Notes: 1. The rated excitation current is $\pm 10 \%\left(20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$.
2. The coil resistance for DC operation is the value measured when the coil temperature is $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$. Compensate $\pm 0.4 \%$ for every $\pm 1^{\circ} \mathrm{C}$ change in temperature.
3. The relay operates in a range of 80% to $110 \% \mathrm{~V}$ of the voltage rating, but ideally, in consideration of temporary voltage fluctuations, it should be operated at the rated voltage.
4. For use with $200 \mathrm{~V} D C$, connect a $10 \mathrm{~K} \Omega(5 \mathrm{~W})$ resistor, in series, to the $100 \mathrm{~V} D C$ relay.
5. The maximum allowable voltage is the maximum voltage fluctuation value for the coil power supply. This value is not a permissible value for continuous operation. (This value differs depending on the ambient temperature. Please contact us for details.)

2. Specifications

Characteristics	Item		Specifications
Contact	Initial contact resistance, max		Max. $50 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgSnO_{2} type
Rating	Nominal switching capacity		```1 Form C: 15A 125V AC, 10A 250V AC (resistive load) 2 Form C: 10A 125V AC (resistive load)```
	Min. switching capacity (Reference value)*1		100mA 5V DC
Electrical characteristics	Insulation resistance (Initial)		Min. $100 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10mA.)
		Between contact sets	$1,500 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA .)
		Between contact and coil	2,000 Vrms for 1 min . (Detection current: 10mA.)
	Temperature rise		Max. $80^{\circ} \mathrm{C}$ (By resistive method, nominal voltage)
	Operate time (at $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)^{*} 2$		DC type/AC type: Max. 25ms (Nominal voltage applied to the coil, excluding contact bounce time.)
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}{ }^{*} 2$		DC type/AC type: Max. 25ms (Nominal voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $196 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 2 mm
Expected life	Mechanical		AC type: 5×10^{7} (at 180 cpm), DC type: 10^{8} (at 180 cpm)
	Electrical	AC load	1 Form C: 15A 125V AC, 10A 250V AC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 5×10^{5} 2 Form C: 10A 250V AC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 3×10^{5}
		DC load	1 Form C: 3 A 30 V DC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 5×10^{5} 2 Form C: 3 A 30 V DC resistive load ($\cos \varphi=1$) Life switching cycle: Min. 5×10^{5}
Conditions	Conditions for operation, transport and storage*3		Ambient temperature: $-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}$ (Without LED indication); $-50^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+140^{\circ} \mathrm{F}$ (With LED indication) Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. Operating speed		20 cpm (at max. rating)
Unit weight			Approx. 35 g 1.23 oz

Notes: If integrating into electrical appliances that will be subject to compliance to the Electrical Appliance and Material Safety Law, please use in an ambient temperature between $-50^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}-58^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$ (AC type).
*1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*2 For the AC coil types, the operate/release time will differ depending on the phase.
*3 The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value.Refer to 4. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA
Switching capacity range (1 Form C)

Switching capacity range (2 Form C)

DIMENSIONS (Unit: mm inch)

1. Plug-in type

1 Form C

External dimensions

Compatible with tab terminal
\#187 series receptacle.

General tolerance: $\pm 0.3 \pm .012$

2. PC board type

1 Form C

External dimensions

Schematic (Bottom view)
Standard type

PC board pattern (Bottom view)

2 Form C

Schematic (Bottom view) Standard type

LED AC type

LED DC type

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

1 Form C

External dimensions

Schematic (Bottom view)
Standard type

Chassis (Panel) cutout
Chassis (Panel) cutout in tandem mounting

Notes: 1. If connecting to \#187 series tab terminals, use AMP Faston \#187 series or \#187 tab terminals conforming to UL or CSA inch-standard dimensions.
2. In mounting, use M3 screws and M3 washers.
3. When mounting TM types, use washers to prevent damage or distortion to the polycarbonate cover.
4. When tightening fixing screws, the optimum torque range should be 0.294 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$, (3 to $5 \mathrm{kgf} \cdot \mathrm{cm}$). Moreover, use washers to prevent loosening.

2 Form C

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view) Standard type

Chassis (Panel) cutout
Chassis (Panel) cutout
 in tandem mounting

Notes: 1. If connecting to \#187 series tab terminals, use AMP Faston \#187 series or \#187 tab terminals conforming to UL or CSA inch-standard dimensions.
2. In mounting, use M3 screws and M3 washers.
3. When mounting TM types, use washers to prevent damage or distortion to the polycarbonate cover.
4. When tightening fixing screws, the optimum torque range should be 0.294 to $0.49 \mathrm{~N} \cdot \mathrm{~m}$, (3 to $5 \mathrm{kgf} \cdot \mathrm{cm}$). Moreover, use washers to prevent loosening.

For Cautions for Use, see Relay Technical Information.

[^0]: Standard packing: Carton: 20 pcs.; Case: 200 pcs.

