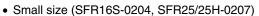


Standard Metal Film Resistors


A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps.

The resistors are coated with a colored lacquer (light-blue for type SFR16S; light-green for type SFR25 and red-brown for type SFR25H) which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents, in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2045".

FEATURES

· Low cost

- Lead (Pb)-free solder contacts
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004)

APPLICATIONS

· General purpose resistors

TECHNICAL SPECIFICATIONS					
DESCRIPTION	VALUE				
	SFR16S	SFR25	SFR25H		
	\pm 5 %; 1 Ω to 3 M Ω	± 5 %; 0.22	Ω to 10 M Ω		
Resistance Range	\pm 1 %; 4.99 Ω to 3 $\mbox{M}\Omega$	± 1 %; 1 Ω	2 to 10 MΩ		
	jumper (0 Ω)	jumper (0 Ω)			
Resistance Tolerance	± 1 %	, E24/E96 series; ± 5 %, E24	series		
Temperature Coefficient:					
$R < 4.7 \Omega$	\leq ± 250 x 10 ⁻⁶ /K	\leq ± 100 x 10 ⁻⁶ /K	\leq ± 100 x 10 ⁻⁶ /K		
$4.7 \Omega \le R \le 100 \text{ k}\Omega$	\leq ± 100 x 10 ⁻⁶ /K	\leq ± 100 x 10 ⁻⁶ /K	\leq ± 100 x 10 ⁻⁶ /K		
100 kΩ < $R \le$ 1 MΩ	\leq ± 250 x 10 ⁻⁶ /K	\leq ± 100 x 10 ⁻⁶ /K	\leq ± 100 x 10 ⁻⁶ /K		
$R > 1 \text{ M}\Omega$	\leq ± 250 x 10 ⁻⁶ /K	≤ ± 250 x 10 ⁻⁶ /K	≤ ± 250 x 10 ⁻⁶ /K		
Absolute Maximum Dissipation at T _{amb} = 70 °C	0.5 W	0.4 W	0.5 W		
Thermal Resistance, R _{th}	170 K/W	200 K/W	150 K/W		
Maximum Permissible Voltage	200 V	250 V	350 V		
Noise:					
R < 68 k Ω	max. 0.1 μV/V	max. 0.1 μV/V	max. 0.1 μV/V		
$68 \text{ k}\Omega \leq R \leq 100 \text{ k}\Omega$	max. 0.5 μV/V	max. 0.1 μV/V	max. 0.1 μV/V		
100 kΩ $\leq R \leq$ 1 MΩ	max. 1.5 μV/V	max. 0.1 μV/V	max. 0.1 μV/V		
$R > 1 \text{ M}\Omega$	max. 1.5 μV/V	max. 1.5 μV/V	max. 1.5 μV/V		
Basic Specifications		IEC 60115-1 and 60115-2			
Climatic Category (IEC 60 068)		55/155/56			
Stability, ∆R max., After:					
Load:					
R range	$\pm (2 \% R + 0.05 \Omega)$	± (2 % R + 0.05 Ω)	± (2 % R + 0.05 Ω)		
Climatic Tests:					
$R \leq 1 \text{ M}\Omega$	$\pm (1 \% R + 0.05 \Omega)$	± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)		
$R > 1 \text{ M}\Omega$	$\pm (1 \% R + 0.05 \Omega)$	± (1 % R + 0.05 Ω)	± (2 % R + 0.1 Ω)		
Soldering	± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω		
Short Time Overload	± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)		

Note:

• R value is measured with probe distance of 24 \pm 1 mm using 4-terminal method

Document Number: 28722 Revision: 20-Feb-08

Standard Metal Film Resistors

Vishay BCcomponents

12NC INFORMATION

- The resistors have a 12-digit numeric code starting with 23.
- The subsequent 6 digits for 1 % or 7 digits for 5 % indicate the resistor type and packaging.
- The remaining digits indicate the resistance value:
 - The first 3 digits for 1 % or 2 digits for 5 % indicate the resistance value.
 - The last digit indicates the resistance decade.

Last Digit of 12NC for ± 5 % Tolerance

RESISTANCE DECADE	LAST DIGIT
0.10 to 0.91 Ω	7
1 to 9.1 Ω	8
10 to 91 Ω	9
100 to 910 Ω	1
1 to 9.1 kΩ	2
10 to 91 kΩ	3
100 to 910 kΩ	4
1 to 9.1 MΩ	5
≥ 10 MΩ	6

Last Digit of 12NC for ± 1 % Tolerance

RESISTANCE DECADE	LAST DIGIT
1 to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
1 to 9.76 kΩ	2
10 to 97.6 kΩ	3
100 to 976 kΩ	4
1 to 9.76 MΩ	5
≥ 10 MΩ	6

12NC Example

The 12NC of a SFR25 resistor, value 5600 Ω ± 5 %, taped on a bandolier of 5000 units in ammopack is: 2322 181 43562.

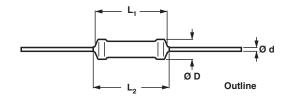
			ORDERING CO	ODE 23	
TYPE	TOL.	BANDOLIER IN AMMOPACK			BANDOLIER ON REEL
		RADIAL TAPED	STRAIGH	IT LEADS	STRAIGHT LEADS
		4000 units	1000 units	5000 units	5000 units
	± 5 %	_	22 187 73	22 187 53	06 187 23
SFR16S	± 1 %	=	=	06 187 3	06 187 1
	jumper (1)	_	_	06 187 90013	22 187 90346
	± 5 %	06 184 03	22 181 53	22 181 43	22 181 63
SFR25	± 1 %	_	_	22 188 2	06 181 8
	jumper (2)	=	22 181 90018	22 181 90019	06 181 90011
SFR25H	± 5 %	=	22 186 16	22 186 76	06 186 63
	± 1 %	_	_	22 186 3	06 186 8

Notes:

- (1) The jumper has a maximum resistance $R_{\text{max.}} = 30 \text{ m}\Omega$ at 3 A (SFR16S). (2) The jumper has a maximum resistance $R_{\text{max.}} = 10 \text{ m}\Omega$ at 5 A (SFR25).

The jumper has a maximum resistance $R_{\text{max.}} = 10 \text{ m/s}$ at 3 A (3Fn23).							
PART NUMBER AND PRODUCT DESCRIPTION							
PART NUMBER: SFR2500001001FA500							
S F R 2 5 0 0 0 1 0 0 1 F A 5 0 0							
MODEL/SIZE	SPECIAL CHARACTER	TCR/MATERIAL	VALUE	TOLERANCE	PACKAGING (3)	SPECIAL	
SFR16S0 SFR2500 SFR25H0	0 = Neutral Z = Value overflow (special)	0 = Standard Z = Jumper	3 digit value 1 digit multiplier MULTIPLIER 7 = *10 ⁻³	$F = \pm 1 \%$ $J = \pm 5 \%$ Z = Jumper	N4 A5 A1 R5	The 2 digits are used for all special parts. 00 = Standard	
PRODUCT DE	SFR25	1 %	A 5	1K	(0		
	311123	1 /0	AU				
MODEL/SIZE TOLERANCE		PACKAGING (3)	RESISTANO	CE VALUE			
SFR16S ± 1 %		N4	47K =				
	SFR25 ± 5 %		A5 A1	51R1 =	51.1 Ω		
	SFR25H		R5				

- (3) Please refer to table PACKAGING.
- The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products.


Document Number: 28722 Revision: 20-Feb-08

Standard Metal Film Resistors

PACKAGING							
CODE	PIECES	DESCRIPTION	MODEL/SIZE				
N4	4000	Bandolier in ammopack radial taped	SFR25				
A5	5000	Bandolier in ammopack straight leads	SFR16S, SFR25, SFR25H				
A1	1000	Bandolier in ammopack straight leads	SFR16S, SFR25, SFR25H				
R5	5000	Bandolier on reel straight leads	SFR16S, SFR25, SFR25H				

DIMENSIONS

DIMENSIONS - resistor types and relevant physical dimensions in millimeters							
TYPE Ø D _{max} . L _{1 max} . L _{2 max} . Ø d							
SFR16S	1.9	3.5	4.1	0.45 ± 0.05			
SFR25	2.5	6.5	7.5	0.58 ± 0.05			
SFR25H	2.5	6.5	7.5	0.58 ± 0.05			

MASS PER 100 UNITS			
ТҮРЕ	MASS (g)		
SFR16S	10.2		
SFR25	20.5		
SFR25H	20.5		

OUTLINES

The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 "Color codes for fixed resistors".

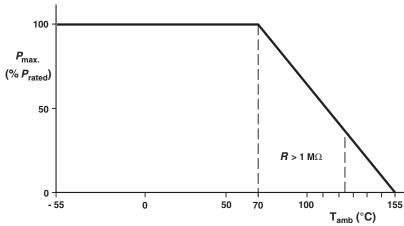
FUNCTIONAL PERFORMANCE PRODUCT CHARACTERIZATION

Standard values of nominal resistance are taken from the E96/E24 series for resistors with a tolerance of \pm 1 % or \pm 5 %. The values of the E96/E24 series are in accordance with "IEC publication 60063".

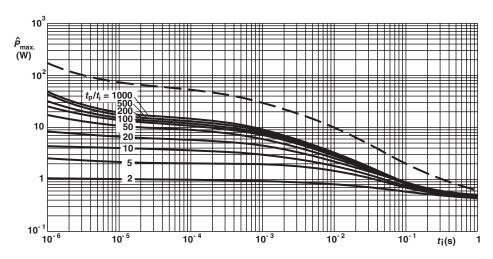
LIMITING VALUES						
TYPE	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)				
SFR16S	200	0.5				
SFR25	250	0.4				
SFR25H	350	0.5				

Note:

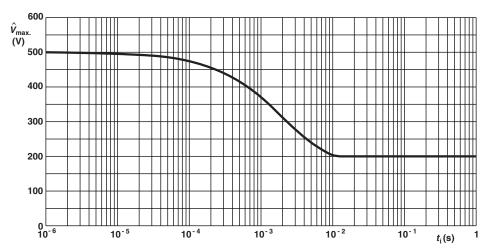
For technical questions, contact: filmresistors.leaded@vishay.com Document Number: 28722
Revision: 20-Feb-08


⁽¹⁾ The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1". The maximum permissible hot-spot temperature is 155 °C.

Standard Metal Film Resistors

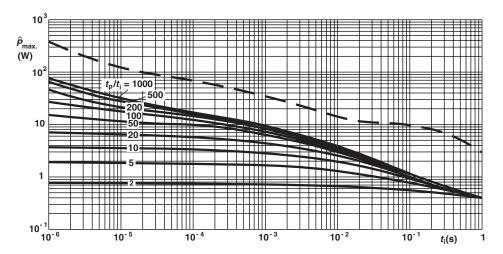

Vishay BCcomponents

The power that the resistor can dissipate depends on the operating temperature

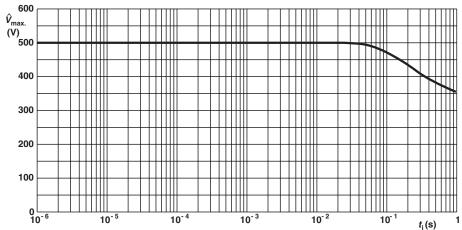


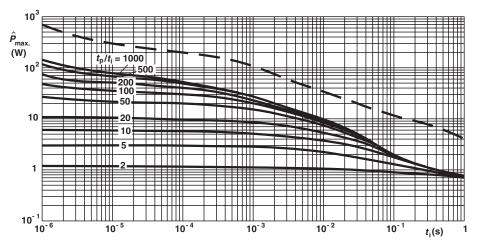
Maximum dissipation (P_{max}) in percentage of rated power as a function of the ambient temperature (T_{amb}).

Derating

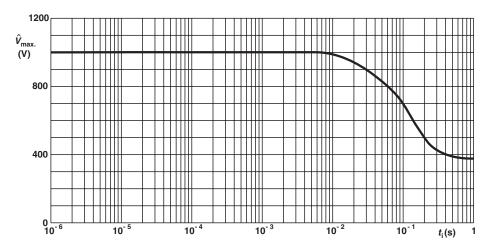

SFR16S Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)

SFR16S Pulse on a regular basis; maximum permissible peak pulse voltage $(\hat{V}_{max.})$ as a function of pulse duration (t_i)

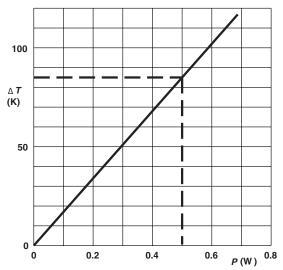

Standard Metal Film Resistors



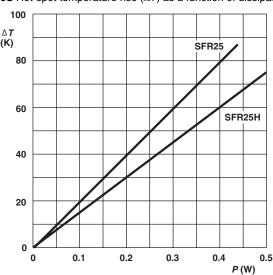
SFR25 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)


Pulse Loading Capabilities

SFR25 Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{V}_{max.}$) as a function of pulse duration (t_i)



SFR25H Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)



SFR25H Pulse on a regular basis; maximum permissible peak pulse voltage (\hat{V}_{max}) as a function of pulse duration (t_i)

Pulse Loading Capabilities

SFR16S Hot-spot temperature rise (ΔT) as a function of dissipated power

SFR25/SFR25H Hot-spot temperature rise (ΔT) as a function of dissipated power

Application Information

Standard Metal Film Resistors

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category 55/155/56 (rated temperature range - 55 °C to + 155 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and

under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

In the Test Procedures and Requirements table the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

TEST	TEST PROCEDURES AND REQUIREMENTS							
IEC	IEC				F	REQUIREMENT	s	
60115-1 CLAUSE	60068-2 TEST METHOD	TEST	PROCEDURE	RESISTANCE RANGE	SFR16S	SFR25	SFR25H	
4.16	21 (U)	robustness of terminations:						
4.16.2	21 (Ua1)	tensile all samples	Ø 0.45 mm, load 5 N; 10 s Ø 0.58 mm, load 10 N; 10 s		number of failures < 10 x 10 ⁻⁶			
4.16.3	21 (Ub)	bending half number of samples	Ø 0.45 mm, load 2.5 N; 4 x 90° Ø 0.58 mm, load 5 N; 4 x 90°		number of failures < 10 x 10 ⁻⁶			
4.16.4	21 (Uc)	torsion other half of samples	3 x 360° in opposite directions		∆ <i>R</i> max	no damage : ± (0.25 % <i>R</i> +	0.05 Ω)	
4.17	20 (Ta)	solderability	2 s; 235 °C; flux 600		goo	d tinning; no dar	nage	
4.18	20 (Tb)	resistance to soldering heat	3.5 seconds; 350 °C; solder bath method		$\Delta R \text{ max.: } \pm (0.25 \% R + 0.05 \Omega)$			
4.19	14 (Na)	rapid change of temperature	30 min at - 55 $^{\circ}$ C and 30 min at + 155 $^{\circ}$ C; 5 cycles		ΔR max.: ± (0.25 % R + 0.05 Ω)			
4.20	29 (Eb)	bump	3 x 1500 bumps in 3 directions; 40 g		∆ <i>R</i> max	no damage : ± (0.25 % <i>R</i> +	0.05 Ω)	
4.22	6 (Fc)	vibration	Frequency 10 Hz to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 h (3 x 2 h)		∆ <i>R</i> max	no damage ± (0.25 % <i>R</i> +	0.05 Ω)	
4.23		climatic sequence:			F	c _{ins} min.: 1000 M	Ω	
4.23.2	2 (Ba)	dry heat	16 h; 155 °C					
4.23.3	30 (Db)	damp heat (accelerated) 1st cycle	24 h; 55 °C; 90 % to 100 % RH					
4.23.4	1 (Aa)	cold	2 h; - 55 °C					
4.23.5	13 (M)	low air pressure	2 h; 8.5 kPa; 15 °C to 35 °C					
4.23.6	30 (Db)	damp heat (accelerated) remaining cycles	5 days; 55 °C; 95 % to 100 % RH	$R \le 1 \text{ M}\Omega$ $R > 1 \text{ M}\Omega$	ΔR max.: $\pm (1$	$\pm (1 \% R + 0)$ $\% R + 0.05 \Omega)$	$\Delta R \text{ max.}$ $\pm (2 \% R + 0.1)$	
4.24.2	3 (Ca)	damp heat (steady state)	56 days; 40 °C; 90 % to 95 % RH; dissipation 0.01 Pn			P _{ins} min.: 1000 M ax.: ± (2 % <i>R</i> + 0	Ω	

www.vishay.com

For technical questions, contact: filmresistors.leaded@vishay.com

Document Number: 28722 Revision: 20-Feb-08

Standard Metal Film Resistors

Vishay BCcomponents

TEST PROCEDURES AND REQUIREMENTS							
IEC 60115-1 CLAUSE	IEC 60068-2 TEST	TEST	PROCEDURE	RESISTANCE RANGE	SFR16S	SFR25	S SFR25H
4.25.1	METHOD	endurance	1000 h at 70 °C; Pn or V _{max.}		$\Delta R \text{ max.: } \pm (2 \% R + 0.05 \Omega)$.05 Ω)
4.8.4		temperature coefficient	between - 55 °C and + 155 °C (TCR x 10 ⁻⁶ /K)	$R < 4.7 \Omega$ $R \le 100 \text{ k}\Omega$ $R \le 1 \text{ M}\Omega$ $R > 1 \text{ M}\Omega$	$\leq \pm 250$ $\leq \pm 100$ $\leq \pm 250$ $\leq \pm 250$	$\leq \pm 100$ $\leq \pm 100$ $\leq \pm 100$ $\leq \pm 250$	$\leq \pm 100$ $\leq \pm 100$ $\leq \pm 100$ $\leq \pm 250$
4.7		voltage proof on insulation	$U_{\rm RMS}$ = 400 V (SFR16S) or $U_{\rm RMS}$ = 600 V (SFR25 and SFR25H); during 1 min; V-block method		no breakdown		
4.12		noise	"IEC publication 60195"	$R < 68 \text{ k}\Omega$ $R \le 100 \text{ k}\Omega$ $R \le 1 \text{ M}\Omega$ $R > 1 \text{ M}\Omega$	max. $0.1 \ \mu V/V$ max. $0.5 \ \mu V/V$ max. $1.5 \ \mu V/V$ max. $1.5 \ \mu V/V$	max. $0.1 \mu V/V$ max. $0.1 \mu V/V$ max. $0.1 \mu V/V$ max. $1.5 \mu V/V$	max. $0.1 \mu V/V$ max. $0.1 \mu V/V$ max. $0.1 \mu V/V$ max. $1.5 \mu V/V$
4.6.1.1		insulation resistance	U _{max.} DC = 500 V during 1 min; V-block method		R _{ins} min.: 1000 MΩ		
4.13		short time overload	Room temperature; $P = 6.25 \times Pn \text{ (SFR25)}$ or $6.25 \times 0.25 \text{ W (SFR16S)}$; 5 s ON, 45 s OFF $(V \le 2 \times V_{max.})$; 10 cycles		ΔR max.: ± (0.25 % R + 0.05 Ω)		ΔR max.: ± (1 % R + 0.05 Ω)
		intermittent overload in accordance with "JIS-C5202 5.8"	16 x 0.16 W; 1 s ON and 25 s OFF; 10 000 ± 200 cycles; V _{max.} = 600 V		ΔR max.: ± (0.75 % R + 0.05 Ω)	-	-
see 2 nd amendment to "IEC 60115-1", puls Jan. '87		pulse load			see Pulse I	Loading Capabili	ities graphs

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com