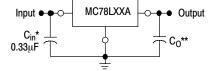

100 mA Positive Voltage Regulators

The MC78L00A Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

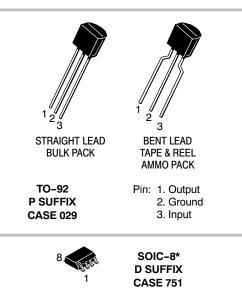

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.

Features

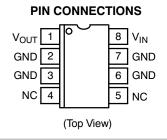
- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00A Series)
- Pb-Free Packages are Available
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes

Figure 1. Representative Schematic Diagram

Figure 2. Standard Application


A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

* C_{in} is required if regulator is located an appreciable distance from power supply filter.


** C_O is not needed for stability; however, it does improve transient response.

ON Semiconductor®

*SOIC-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOIC-8 conforms to all external dimensions of the standard SO-8 package.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 15 of this data sheet.

MAXIMUM RATINGS ($T_A = +125^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.6 V-8.0 V) (12 V-18 V) (24 V)	VI	30 35 40	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	TJ	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

*This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL-STD-883, Method 3015

Machine Model Method 200 V

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_I = 10 \text{ V}, \text{ } I_O = 40 \text{ mA}, \text{ } C_I = 0.33 \text{ } \mu\text{F}, \text{ } C_O = 0.1 \text{ } \mu\text{F}, \text{ } -40^{\circ}\text{C} < \text{T}_J < +125^{\circ}\text{C} \text{ (for MC78LXXAB}, \text{ } D_I = 0.33 \text{ } \mu\text{F}, \text{ } C_I =$ NCV78L05A), $0^{\circ}C < T_J < +125^{\circ}C$ (for MC78LXXAC), unless otherwise noted.)

		MC78L0	5AC, AB, NO	V78L05A	
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	V _O	4.8	5.0	5.2	Vdc
Line Regulation (T _J = +25°C, I _O = 40 mA)	Reg _{line}				mV
$\begin{array}{l} \textbf{7.0 Vdc} \leq V_l \leq 20 \text{ Vdc} \\ \textbf{8.0 Vdc} \leq V_l \leq 20 \text{ Vdc} \end{array}$			55 45	150 100	
Load Regulation $ (T_J = +25^\circ\text{C}, 1.0 \text{ mA} \le I_O \le 100 \text{ mA}) \\ (T_J = +25^\circ\text{C}, 1.0 \text{ mA} \le I_O \le 40 \text{ mA}) $	Reg _{load}	-	11 5.0	60 30	mV
$\begin{array}{l} Output \mbox{ Voltage} \\ (7.0 \mbox{ Vdc} \leq V_I \leq 20 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA}) \\ (V_I = 10 \mbox{ V}, \ 1.0 \mbox{ mA} \leq I_O \leq 70 \mbox{ mA}) \end{array}$	Vo	4.75 4.75		5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	Ι _{ΙΒ}	-	3.8 -	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V _I \leq 20 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}	-		1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	40	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 8.0 Vdc \leq V _I \leq 18 V, T _J = +25°C)	RR	41	49	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O	-	1.7	-	Vdc

NOTE: NCV78L05A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

		MC78L18AC				
Characteristics	Symbol	Min	Тур	Max	Unit	
Output Voltage ($T_J = +25^{\circ}C$)	V _O	17.3	18	18.7	Vdc	
$ \begin{array}{l} \mbox{Line Regulation} \\ (T_J = +25^{\circ}C, \ I_O = 40 \ mA) \\ 21.4 \ Vdc \leq V_I \leq 33 \ Vdc \\ 20.7 \ Vdc \leq V_I \leq 33 \ Vdc \\ 22 \ Vdc \leq V_I \leq 33 \ Vdc \\ 21 \ Vdc \leq V_I \leq 33 \ Vdc \\ \end{array} $	Reg _{line}	-	45 35	325 275	mV	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		30 15	170 85	mV	
$ \begin{array}{l} \hline \text{Output Voltage} \\ (21.4 \ Vdc \leq V_{I} \leq 33 \ Vdc, \ 1.0 \ mA \leq I_{O} \leq 40 \ mA) \\ (20.7 \ Vdc \leq V_{I} \leq 33 \ Vdc, \ 1.0 \ mA \leq I_{O} \leq 40 \ mA) \\ (V_{I} = 27 \ V, \ 1.0 \ mA \leq I_{O} \leq 70 \ mA) \\ (V_{I} = 27 \ V, \ 1.0 \ mA \leq I_{O} \leq 70 \ mA) \end{array} $	Vo	17.1 17.1	-	18.9 18.9	Vdc	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	Ι _{ΙΒ}		3.1 -	6.5 6.0	mA	
Input Bias Current Change (22 Vdc \leq V _I \leq 33 Vdc) (21 Vdc \leq V _I \leq 33 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA	
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	150	-	μV	
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 23 V \leq V _I \leq 33 V, T _J = +25°C)	RR	33	48	-	dB	
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc	

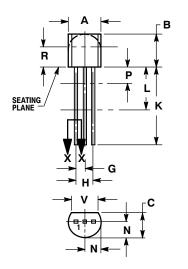
ELECTRICAL CHARACTERISTICS (V_I = 27 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0°C < T_J < +125°C, unless otherwise noted.)

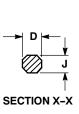
			MC78L24A	C	
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	V _O	23	24	25	Vdc
Line Regulation (T _J = +25°C, I _O = 40 mA)	Reg _{line}				mV
$27.5 \text{ Vdc} \le V_{I} \le 38 \text{ Vdc}$		-	-	-	
28 Vdc \leq V _I \leq 80 Vdc 27 Vdc \leq V _I \leq 38 Vdc			50 60	300 350	
Load Regulation (T _J = +25°C, 1.0 mA \le I _O \le 100 mA) (T _J = +25°C, 1.0 mA \le I _O \le 40 mA)	Reg _{load}		40 20	200 100	mV
$\begin{array}{l} \mbox{Output Voltage} \\ (28 \mbox{Vdc} \le V_I \le 38 \mbox{Vdc}, \ 1.0 \ mA \le I_O \le 40 \ mA) \\ (27 \mbox{Vdc} \le V_I \le 38 \ Vdc, \ 1.0 \ mA \le I_O \le 40 \ mA) \\ (28 \ Vdc \le V_I = 33 \ Vdc, \ 1.0 \ mA \le I_O \le 70 \ mA) \\ (27 \ Vdc \le V_I \le 33 \ Vdc, \ 1.0 \ mA \le I_O \le 70 \ mA) \end{array}$	Vo	22.8 22.8	-	25.2 25.2	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.1 -	6.5 6.0	mA
Input Bias Current Change (28 Vdc \leq V _I \leq 38 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	200	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 29 V \leq V _I \leq 35 V, T _J = +25°C)	RR	31	45	-	dB
Dropout Voltage (T _J = +25°C)	V _I – V _O	-	1.7	-	Vdc

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_I = 33 \text{ V}, I_O = 40 \text{ mA}, C_I = 0.33 \text{ }\mu\text{F}, C_O = 0.1 \text{ }\mu\text{F}, 0^\circ\text{C} < \text{T}_J < +125^\circ\text{C}, \text{ unless otherwise noted.})$

ORDERING INFORMATION (continued)

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L18ABP			TO-92	2000 Units/Bag
MC78L18ABPG		$T_J = -40^\circ$ to $+125^\circ$ C	TO-92 (Pb-Free)	2000 Units/Bag
MC78L18ACP			TO-92	2000 Units/Bag
MC78L18ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L18ACPRA			TO-92	2000 Tape & Reel
MC78L18ACPRAG	18 V	T 001 10500	TO-92 (Pb-Free)	2000 Tape & Reel
MC78L18ACPRM		$T_J = 0^\circ$ to +125°C	TO-92	2000 Ammo Pack
MC78L18ACPRMG			TO-92 (Pb-Free)	2000 Ammo Pack
MC78L18ACPRP			TO-92	2000 Ammo Pack
MC78L18ACPRPG			TO-92 (Pb-Free)	2000 Ammo Pack
MC78L24ABP			TO-92	2000 Units/Bag
MC78L24ABPG		$T_{\rm J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92 (Pb-Free)	2000 Units/Bag
NCV78L24ABPRPG*			TO-92 (Pb-Free)	2000 Units/Bag
MC78L24ACP			TO-92	2000 Units/Bag
MC78L24ACPG	24 V		TO-92 (Pb-Free)	2000 Units/Bag
MC78L24ACPRA			TO-92	2000 Tape & Reel
MC78L24ACPRAG		$T_J = 0^\circ$ to +125°C	TO-92 (Pb-Free)	2000 Tape & Reel
MC78L24ACPRP			TO-92	2000 Ammo Pack
MC78L24ACPRPG			TO-92 (Pb-Free)	2000 Ammo Pack


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

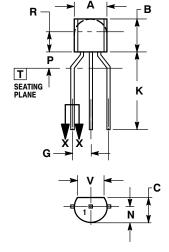

PACKAGE DIMENSIONS

TO-92 (TO-226) P SUFFIX CASE 29-11 **ISSUE AM**

STRAIGHT LEAD

BULK PACK

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.


	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
Ν	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
۷	0.135		3.43	

NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN PAND BEYOND DIMENSION K MINIMUM. MILLIMETERS

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
Ρ	1.50	4.00	
R	2.93		
۷	3.43		

BENT LEAD TAPE & REEL AMMO PACK

D

SECTION X-X

MC78L00A/D