MJ11028, MJ11030, MJ11032 (NPN) MJ11029, MJ11033 (PNP)

High-Current Complementary Silicon Power Transistors

High–Current Complementary Silicon Power Transistors are for use as output devices in complementary general purpose amplifier applications.

Features

- High DC Current Gain $h_{FE} = 1000 \text{ (Min)} @ I_C = 25 \text{ Adc}$
- $h_{FE} = 400 \text{ (Min)} @ I_C = 50 \text{ Adc}$
- Curves to 100 A (Pulsed)
- Diode Protection to Rated I_C
- Monolithic Construction with Built-In Base-Emitter Shunt Resistor
- Junction Temperature to +200°C
- Pb-Free Packages are Available*

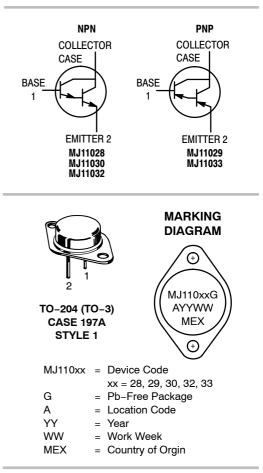
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	MJ11028/29 MJ11030 MJ11032/33	V _{CEO}	60 90 120	Vdc
Collector-Base Voltage	MJ11028/29 MJ11030 MJ11032/33	V _{CBO}	60 90 120	Vdc
Emitter-Base Voltage		V_{EBO}	5.0	Vdc
Collector Current – Continuous – Peak (Note 1)		Ι _C	50 100	Adc
Base Current – Continuous		Ι _Β	2.0	Adc
Total Power Dissipation @ $T_C = 25^{\circ}C$ Derate Above 25°C @ $T_C = 100^{\circ}C$		PD	300 1.71	W W/°C
Operating and Storage Junc Temperature Range	tion	T _J , T _{stg}	– 55 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Maximum Lead Temperature for Soldering Purposes for \leq 10 seconds	ΤL	275	°C
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.58	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Pulse Test: Pulse Width = 5 μ s, Duty Cycle \leq 10%.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

50 AMPERE COMPLEMENTARY DARLINGTON POWER TRANSISTORS 60 – 120 VOLTS 300 WATTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

MJ11028, MJ11030, MJ11032 (NPN)

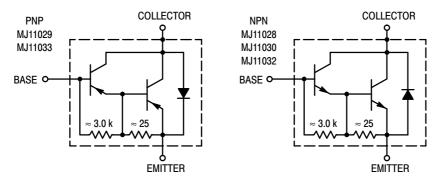
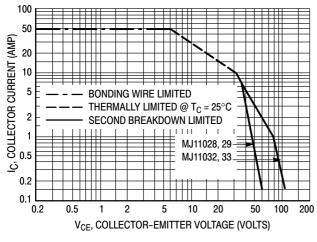


Figure 1. Darlington Circuit Schematic

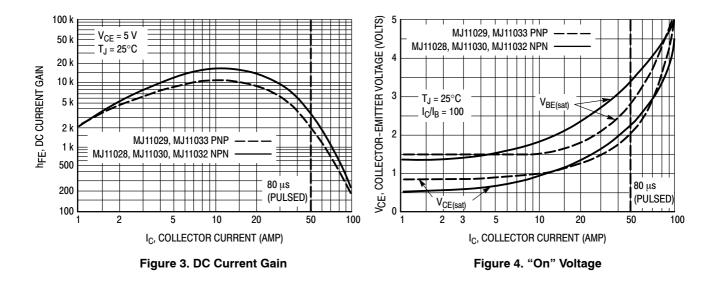
ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)


Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	•	•
Collector-Emitter Breakdown Voltage (Note 1) $(I_C = 1 \ 00 \ \text{mAdc}, I_B = 0)$	MJ11028, MJ11029 MJ11030 MJ11032, MJ11033	V _{(BR)CEO}	60 90 120	_ _ _	Vdc
	MJ11028, MJ11029 MJ11030 MJ11032, MJ11033 MJ11028, MJ11029 MJ11032, MJ11033	ICER	- - - -	2 2 2 10 10	mAdc
Emitter Cutoff Current ($V_{BE} = 5 \text{ Vdc}, I_C = 0$)		I _{EBO}	-	5	mAdc
Collector–Emitter Leakage Current $(V_{CE} = 50 \text{ Vdc}, I_B = 0)$		I _{CEO}	_	2	mAdc
ON CHARACTERISTICS (Note 1)				•	
DC Current Gain ($I_C = 25 \text{ Adc}, V_{CE} = 5 \text{ Vdc}$) ($I_C = 50 \text{ Adc}, V_{CE} = 5 \text{ Vdc}$)		h _{FE}	1 k 400	18 k –	-
Collector-Emitter Saturation Voltage ($I_C = 25$ Adc, $I_B = 250$ mAdc) ($I_C = 50$ Adc, $I_B = 500$ mAdc)		V _{CE(sat)}		2.5 3.5	Vdc
Base-Emitter Saturation Voltage $(I_C = 25 \text{ Adc}, I_B = 200 \text{ mAdc})$ $(I_C = 50 \text{ Adc}, I_B = 300 \text{ mAdc})$		V _{BE(sat)}		3.0 4.5	Vdc

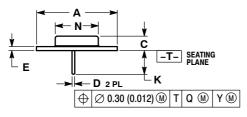
1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

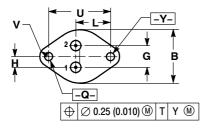
MJ11028, MJ11030, MJ11032 (NPN)

ORDERING INFORMATION


Device	Package	Shipping
MJ11028	TO-204	
MJ11028G	TO-204 (Pb-Free)	
MJ11029	TO-204	
MJ11029G	TO-204 (Pb-Free)	
MJ11030	TO-204	
MJ11030G	TO-204 (Pb-Free)	100 Units / Tray
MJ11032	TO-204	
MJ11032G	TO-204 (Pb-Free)	
MJ11033	TO-204	
MJ11033G	TO-204 (Pb-Free)	

There are two limitations on the power-handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation than the curves indicate.


The data of Figure 2 is based on $T_{J(pk)} = 200^{\circ}$ C; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.



MJ11028, MJ11030, MJ11032 (NPN)

PACKAGE DIMENSIONS

TO-204 (TO-3) CASE 197A-05 ISSUE K

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		S MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	1.530 REF		38.86 REF	
в	0.990	1.050	25.15	26.67
С	0.250	0.335	6.35	8.51
D	0.057	0.063	1.45	1.60
Е	0.060	0.070	1.53	1.77
G	0.430 BSC		10.92 BSC	
н	0.215 BSC		5.46 BSC	
к	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89	BSC
Ν	0.760	0.830	19.31	21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
V	0.131	0.188	3.33	4.77

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR