MC7800, MC7800A, MC7800AE, NCV7800

1.0 A Positive Voltage Regulators

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

- Output Current in Excess of 1.0 A
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in $1.5 \%, 2 \%$ and 4% Tolerance
- Available in Surface Mount D2PAK-3, DPAK-3 and Standard 3-Lead Transistor Packages
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- Pb-Free Packages are Available

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Rating	Symbol	Value			Unit
		369C	221A	936	
Input Voltage $(5.0-18 \mathrm{~V})$ $(24 \mathrm{~V})$	V_{1}	$\begin{aligned} & 35 \\ & 40 \end{aligned}$			Vdc
Power Dissipation	P_{D}	Internally Limited			W
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	92	65	Figure 15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	5.0	5.0	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150			${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	+150			${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
*This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL_STD_883, Method 3015.
Machine Model Method 200 V .

ON Semiconductor ${ }^{\circledR}$

TO-220-3
T SUFFIX CASE 221AB

Heatsink surface connected to Pin 2.

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

DPAK-3 DT SUFFIX CASE 369C

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

XX , These two digits of the type number indicate nominal voltage.

* $\mathrm{C}_{\text {in }}$ is required if regulator is located an appreciable distance from power supply filter.
** C_{0} is not needed for stability; however, it does improve transient response. Values of less than $0.1 \mu \mathrm{~F}$ could cause instability.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 23 of this data sheet.

See general marking information in the device marking section on page 30 of this data sheet.

MC7800, MC7800A, MC7800AE, NCV7800

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\text {low }}\right.$ to $125^{\circ} \mathrm{C}$ (Note 28), unless otherwise noted)

Characteristic	Symbol	MC7824B			MC7824C			Unit
		Min	Typ	Max	Min	Typ	Max	
Output Voltage ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	V_{O}	23	24	25	23	24	25	Vdc
$\begin{aligned} & \text { Output Voltage }\left(5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}\right) \\ & 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\ & 28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \end{aligned}$	V_{O}	22.8	24	25.2	22.8 -	24 -	25.2 -	Vdc
Line Regulation, (Note 29) $\begin{aligned} & 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc} \\ & 30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc} \end{aligned}$	Regline		$\begin{gathered} 11.5 \\ 3.8 \end{gathered}$	$\begin{aligned} & 480 \\ & 240 \end{aligned}$	-	2.7 2.7	$\begin{aligned} & 60 \\ & 48 \end{aligned}$	mV
Load Regulation, (Note 29) $5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$	Regload	-	2.1	480	-	4.4	65	mV
Quiescent Current	I_{B}	-	3.6	8.0	-	3.6	6.5	mA
Quiescent Current Change $\begin{aligned} & 27 \mathrm{Vdc} \leq \mathrm{V}_{\mathrm{in}} \leq 38 \mathrm{Vdc} \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \end{aligned}$	Δ_{B}		-	0.5		-	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	mA
Ripple Rejection $28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}$	RR	-	54	-	50	54	-	dB
Dropout Voltage ($\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$	-	2.0	-	-	2.0	-	Vdc
$\begin{aligned} & \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \qquad 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$	V_{n}	-	10	-	-	10	-	$\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}$
Output Resistance $\mathrm{f}=1.0 \mathrm{kHz}$	ro	-	1.4	-	-	1.4	-	$\mathrm{m} \Omega$
Short Circuit Current Limit ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) $\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}$	Isc	-	0.2	-	-	0.2	-	A
Peak Output Current ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	$I_{\text {max }}$	-	2.2	-	-	2.2	-	A
Average Temperature Coefficient of Output Voltage	$\mathrm{TCV}_{\mathrm{O}}$	-	-2.0	-	-	-2.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

28. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC78XXC, MC78XXAC,
$=-40^{\circ} \mathrm{C}$ for NCV78XX, MC78XXB, MC78XXAB, and MC78XXAEB
29. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, MC7800AE, NCV7800

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{J}=\mathrm{T}_{\text {low }}\right.$ to $125^{\circ} \mathrm{C}$ (Note 30$)$, unless otherwise noted)

Characteristic	Symbol	MC7824AC			Unit
		Min	Typ	Max	
Output Voltage ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	V_{O}	23.5	24	24.5	Vdc
Output Voltage ($5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}$) $27.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}$	V_{O}	23.2	24	25.8	Vdc
Line Regulation (Note 31) $\begin{aligned} & 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & 30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A} \\ & 30 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 36 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 26.7 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	Regline		$\begin{gathered} 11.5 \\ 3.8 \\ 3.8 \\ 10 \end{gathered}$	$\begin{aligned} & 25 \\ & 28 \\ & 12 \\ & 25 \end{aligned}$	mV
Load Regulation (Note 31) $\begin{aligned} & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 750 \mathrm{~mA} \end{aligned}$	Regload	-	$\begin{aligned} & 2.1 \\ & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 15 \\ & 25 \\ & 15 \end{aligned}$	mV
Quiescent Current	I_{B}	-	3.6	6.0	mA
Quiescent Current Change $\begin{aligned} & 27.3 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & 27 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A} \end{aligned}$	$\Delta \mathrm{I}_{\mathrm{B}}$		-	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.5 \end{aligned}$	mA
Ripple Rejection $28 \mathrm{Vdc} \leq \mathrm{V}_{\text {in }} \leq 38 \mathrm{Vdc}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}$	RR	45	54	-	dB
Dropout Voltage ($\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	$\mathrm{V}_{1}-\mathrm{V}_{0}$	-	2.0	-	Vdc
$\begin{aligned} & \text { Output Noise Voltage }\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \\ & \qquad 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$	V_{n}	-	10	-	$\mu \mathrm{V} / \mathrm{N}_{\mathrm{O}}$
Output Resistance ($\mathrm{f}=1.0 \mathrm{kHz}$)	ro	-	1.4	-	$\mathrm{m} \Omega$
Short Circuit Current Limit ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) $\mathrm{V}_{\text {in }}=35 \mathrm{Vdc}$	Isc	-	0.2	-	A
Peak Output Current ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	$I_{\text {max }}$	-	2.2	-	A
Average Temperature Coefficient of Output Voltage	TCV ${ }_{\text {}}$	-	-2.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

30. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC78XXC, MC78XXAC,
$=-40^{\circ} \mathrm{C}$ for NCV78XX, MC78XXB, MC78XXAB, and MC78XXAEB
31. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ORDERING INFORMATION

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
MC7824ACT	24 V		TO-220	50 Units /Rail
MC7824ACTG		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { TO-220 } \\ & \text { (Pb-free) } \end{aligned}$	50 Units /Rail
MC7824BD2T			D2PAK	50 Units /Rail
MC7824BD2TG			D²PAK (Pb-free)	50 Units /Rail
MC7824BD2TR4			D2PAK	800 / Tape \& Reel
MC7824BD2TR4G		$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{D}^{2} \mathrm{PAK} \\ (\mathrm{~Pb}-\mathrm{free}) \end{gathered}$	800 / Tape \& Reel
MC7824BT			TO-220	50 Units /Rail
MC7824BTG			$\begin{aligned} & \hline \text { TO-220 } \\ & \text { (Pb-free) } \end{aligned}$	50 Units /Rail
MC7824CD2T		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	D2PAK	50 Units /Rail
MC7824CD2TG			$\begin{gathered} D^{2} \mathrm{PAK} \\ \text { (Pb-free) } \end{gathered}$	50 Units /Rail
MC7824CD2TR4			D2PAK	800 / Tape \& Reel
MC7824CD2TR4G			$\begin{gathered} \mathrm{D}^{2} \mathrm{PAK} \\ (\mathrm{~Pb}-\mathrm{free}) \end{gathered}$	800 / Tape \& Reel
MC7824CT			TO-220	50 Units /Rail
MC7824CTG			$\begin{aligned} & \hline \text { TO-220 } \\ & \text { (Pb-free) } \end{aligned}$	50 Units /Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
$*$ NCV devices: $T_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

MARKING DIAGRAMS

> TO-220-3 T SUFFIX CASE 221A

D^{2} PAK-3
D2T SUFFIX
CASE 936

*This marking diagram also applies to NCV78xx family.

```
xx = 05,06,08,09,12,15,18, or 24
y = B or C
A = Assembly Location
WL, L = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Device
```


MC7800, MC7800A, MC7800AE, NCV7800

PACKAGE DIMENSIONS

TO-220, SINGLE GAUGE T SUFFIX CASE 221AB-01
 ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.020	0.055	0.508	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

