2N4918 - 2N4920* Series

Preferred Device

Medium-Power Plastic PNP Silicon Transistors

These medium–power, high–performance plastic devices are designed for driver circuits, switching, and amplifier applications.

Features

- Pb-Free Package is Available**
- Low Saturation Voltage $V_{CE(sat)} = 0.6 \text{ Vdc (Max)} @ I_C = 1.0 \text{ A}$
- Excellent Power Dissipation Due to Thermopad Construction, $P_D = 30 \text{ W} \oplus T_C = 25 ^{\circ}\text{C}$
- Excellent Safe Operating Area
- Gain Specified to $I_C = 1.0 \text{ A}$
- Complement to NPN 2N4921, 2N4922, 2N4923

MAXIMUM RATINGS

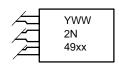
Rating	Symbol	Value	Unit
Collector – Emitter Voltage 2N4918 2N4919 2N4920	V _{CEO}	40 60 80	Vdc
Collector – Base Voltage 2N4918 2N4919 2N4920	V _{CBO}	40 60 80	Vdc
Emitter – Base Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous (Note 1)	I _C (Note 2)	1.0 3.0	Adc
Base Current	Ι _Β	1.0	Adc
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	30 0.24	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. The 1.0 A max I_C value is based upon JEDEC current gain requirements. The 3.0 A max value is based upon actual current–handling capability of the device (See Figure 5).
- 2. Indicates JEDEC Registered Data for 2N4918 Series.


THERMAL CHARACTERISTICS (Note 3)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction–to–Case	θЈС	4.16	°C/W


3. Recommend use of thermal compound for lowest thermal resistance.

3.0 A, 40–80 V, 30 W GENERAL PURPOSE POWER TRANSISTORS

MARKING DIAGRAM

xx = 18, 19, 20 Y = Year WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*Preferred devices are recommended choices for future use and best overall value.

^{**}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

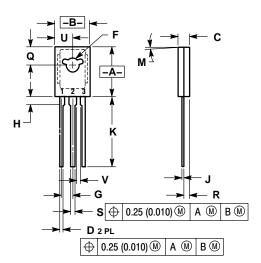
2N4918 - 2N4920* Series

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		•		•	•
Collector–Emitter Sustaining Voltage (Note 4) $(I_C = 0.1 \text{ Adc}, I_B = 0)$	2N4918 2N4919 2N4920	V _{CEO(sus)}	40 60 80	- - -	Vdc
Collector Cutoff Current $(V_{CE} = 20 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 30 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 40 \text{ Vdc}, I_B = 0)$	2N4918 2N4919 2N4920	ICEO	- - -	0.5 0.5 0.5	mAdc
Collector Cutoff Current $(V_{CE} = Rated \ V_{CEO}, \ V_{BE(off)} = 1.5 \ Vdc)$ $(V_{CE} = Rated \ V_{CEO}, \ V_{BE(off)} = 1.5 \ Vdc, \ T_{C} = 125 ^{\circ}C$		I _{CEX}	- -	0.1 0.5	mAdc
Collector Cutoff Current $(V_{CB} = Rated V_{CB}, I_E = 0)$		I _{CBO}	_	0.1	mAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (Note 4) $(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$		h _{FE}	40 30 10	_ 150 _	_
Collector–Emitter Saturation Voltage (Note 4) (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{CE(sat)}	-	0.6	Vdc
Base–Emitter Saturation Voltage (Note 4) (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{BE(sat)}	-	1.3	Vdc
Base–Emitter On Voltage (Note 4) (I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)		V _{BE(on)}	-	1.3	Vdc
SMALL-SIGNAL CHARACTERISTICS				•	•
Current-Gain - Bandwidth Product (I _C = 250 mAdc, V _{CE} = 10 Vdc, f = 1.0 MHz)		f _T	3.0	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 100 kHz)		C _{ob}	-	100	pF
Small-Signal Current Gain (I _C = 250 mAdc, V _{CE} = 10 Vdc, f =	= 1.0 kHz)	h _{fe}	25	_	_

^{4.} Pulse Test: PW \approx 300 μ s, Duty Cycle \approx 2.0%

ORDERING INFORMATION


Device	Package	Shipping [†]
2N4918	TO-225	500 Unit / Bulk
2N4919	TO-225	500 Unit / Bulk
2N4920	TO-225	500 Unit / Bulk
2N4920G	TO-225 (Pb-Free)	500 Unit / Bulk

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2N4918 - 2N4920* Series

PACKAGE DIMENSIONS

TO-225 CASE 77-09 ISSUE Z

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.425	0.435	10.80	11.04
В	0.295	0.305	7.50	7.74
С	0.095	0.105	2.42	2.66
D	0.020	0.026	0.51	0.66
F	0.115	0.130	2.93	3.30
G	0.094 BSC		2.39 BSC	
Н	0.050	0.095	1.27	2.41
J	0.015	0.025	0.39	0.63
K	0.575	0.655	14.61	16.63
M	5° TYP		5° TYP	
Q	0.148	0.158	3.76	4.01
R	0.045	0.065	1.15	1.65
S	0.025	0.035	0.64	0.88
U	0.145	0.155	3.69	3.93
٧	0.040		1.02	

- STYLE 1:
 PIN 1. EMITTER
 2. COLLECTOR
 3. BASE