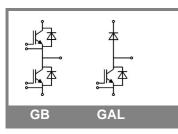


SEMITRANS<sup>®</sup> 2

## **IGBT** Modules


#### SKM 145GB123D SKM 145GAL123D

#### Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

### **Typical Applications**

- Switching (not for linear use)
- AC inverter drives



| Absolute Maximum Ratings T <sub>c</sub> = 25 °C, unless otherwise specifie |                                                       |                           |           |       |  |
|----------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|-----------|-------|--|
| Symbol                                                                     | _                                                     |                           | Values    | Units |  |
| IGBT                                                                       |                                                       |                           |           |       |  |
| V <sub>CES</sub>                                                           | T <sub>j</sub> = 25 °C                                |                           | 1200      | V     |  |
| I <sub>C</sub>                                                             | T <sub>j</sub> = 150 °C                               | T <sub>case</sub> = 25 °C | 145       | А     |  |
|                                                                            |                                                       | T <sub>case</sub> = 80 °C | 110       | А     |  |
| I <sub>CRM</sub>                                                           | I <sub>CRM</sub> =2xI <sub>Cnom</sub>                 |                           | 200       | А     |  |
| V <sub>GES</sub>                                                           |                                                       |                           | ± 20      | V     |  |
| t <sub>psc</sub>                                                           | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V;<br>VCES < 1200 V | T <sub>j</sub> = 125 °C   | 10        | μs    |  |
| Inverse                                                                    | Diode                                                 |                           |           |       |  |
| I <sub>F</sub>                                                             | T <sub>j</sub> = 150 °C                               | T <sub>case</sub> = 25 °C | 130       | А     |  |
|                                                                            |                                                       | T <sub>case</sub> = 80 °C | 90        | А     |  |
| I <sub>FRM</sub>                                                           | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                 |                           | 200       | А     |  |
| I <sub>FSM</sub>                                                           | t <sub>p</sub> = 10 ms; sin.                          | T <sub>j</sub> = 150 °C   | 900       | А     |  |
| Freewhe                                                                    | eling Diode                                           |                           |           | ·     |  |
| I <sub>F</sub>                                                             | T <sub>j</sub> = 150 °C                               | T <sub>case</sub> = 25 °C | 170       | А     |  |
|                                                                            |                                                       | T <sub>case</sub> = 80 °C | 115       | А     |  |
| I <sub>FRM</sub>                                                           | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                 |                           | 300       | А     |  |
| I <sub>FSM</sub>                                                           | t <sub>p</sub> = 10 ms; sin.                          | T <sub>j</sub> = 150 °C   | 1440      | А     |  |
| Module                                                                     |                                                       |                           |           | •     |  |
| I <sub>t(RMS)</sub>                                                        |                                                       |                           | 200       | А     |  |
| T <sub>vj</sub>                                                            |                                                       |                           | - 40+ 150 | °C    |  |
| T <sub>stg</sub>                                                           |                                                       |                           | - 40+ 125 | °C    |  |
| V <sub>isol</sub>                                                          | AC, 1 min.                                            |                           | 2500      | V     |  |

| Characteristics T <sub>c</sub> = |                                                   | 25 °C, unless otherwise specified |      |      |      |       |
|----------------------------------|---------------------------------------------------|-----------------------------------|------|------|------|-------|
| Symbol                           | Conditions                                        |                                   | min. | typ. | max. | Units |
| IGBT                             |                                                   |                                   |      |      |      |       |
| V <sub>GE(th)</sub>              | $V_{GE}$ = $V_{CE}$ , $I_C$ = 4 mA                |                                   | 4,5  | 5,5  | 6,5  | V     |
| I <sub>CES</sub>                 | $V_{GE}$ = 0 V, $V_{CE}$ = $V_{CES}$              | T <sub>j</sub> = 25 °C            |      | 0,1  | 0,3  | mA    |
| V <sub>CE0</sub>                 |                                                   | T <sub>j</sub> = 25 °C            |      | 1,4  | 1,6  | V     |
|                                  |                                                   | T <sub>j</sub> = 125 °C           |      | 1,6  | 1,8  | V     |
| r <sub>CE</sub>                  | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C             |      | 11   | 14   | mΩ    |
|                                  |                                                   | T <sub>j</sub> = 125°C            |      | 15   | 19   | mΩ    |
| V <sub>CE(sat)</sub>             | I <sub>Cnom</sub> = 100 A, V <sub>GE</sub> = 15 V | $T_j = °C_{chiplev.}$             |      | 2,5  | 3    | V     |
| C <sub>ies</sub>                 |                                                   |                                   |      | 6,5  | 8,5  | nF    |
| C <sub>oes</sub>                 | $V_{CE}$ = 25, $V_{GE}$ = 0 V                     | f = 1 MHz                         |      | 1    | 1,5  | nF    |
| C <sub>res</sub>                 |                                                   |                                   |      | 0,5  | 0,6  | nF    |
| Q <sub>G</sub>                   | V <sub>GE</sub> = -8V - +20V                      |                                   |      | 1000 |      | nC    |
| R <sub>Gint</sub>                | T <sub>j</sub> = °C                               |                                   |      | 5    |      | Ω     |
| t <sub>d(on)</sub>               |                                                   |                                   |      | 160  | 320  | ns    |
| t <sub>r</sub>                   | R <sub>Gon</sub> = 6,8 Ω                          | V <sub>CC</sub> = 600V            |      | 80   | 160  | ns    |
| E <sub>on</sub>                  | -                                                 | I <sub>C</sub> = 100A             |      | 16   |      | mJ    |
| <sup>t</sup> d(off)              | R <sub>Goff</sub> = 6,8 Ω                         | T <sub>j</sub> = 125 °C           |      | 400  | 520  | ns    |
| t <sub>f</sub>                   |                                                   | V <sub>GE</sub> = -15V            |      | 70   | 100  | ns    |
| E <sub>off</sub>                 |                                                   |                                   |      | 12   |      | mJ    |
| R <sub>th(j-c)</sub>             | per IGBT                                          |                                   |      |      | 0,15 | K/W   |



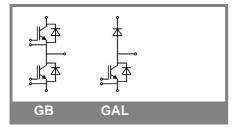
SEMITRANS<sup>®</sup> 2

### **IGBT** Modules

#### SKM 145GB123D SKM 145GAL123D

#### Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)


### **Typical Applications**

- Switching (not for linear use)
- AC inverter drives

| Characteristics        |                                                  |                                   |      |      |      |       |
|------------------------|--------------------------------------------------|-----------------------------------|------|------|------|-------|
| Symbol                 | Conditions                                       |                                   | min. | typ. | max. | Units |
| Inverse Diode          |                                                  |                                   |      |      |      |       |
| $V_F = V_{EC}$         | I <sub>Fnom</sub> = 100 A; V <sub>GE</sub> = 0 V |                                   |      | 2    | 2,5  | V     |
|                        |                                                  | $T_j = 125 \ ^\circ C_{chiplev.}$ |      | 1,8  |      | V     |
| V <sub>F0</sub>        |                                                  | $T_j = 25 \text{ °C}$             |      | 1,1  | 1,4  | V     |
|                        |                                                  | T <sub>j</sub> = 125 °C           |      |      |      | V     |
| r <sub>F</sub>         |                                                  | T <sub>j</sub> = 25 °C            |      | 9    | 11   | mΩ    |
|                        |                                                  | T <sub>j</sub> = 125 °C           |      |      |      | mΩ    |
| IRRM                   | I <sub>F</sub> = 100 A                           | T <sub>j</sub> = 25 °C            |      | 35   |      | A     |
| Q <sub>rr</sub>        | di/dt = 1000 A/µs                                |                                   |      | 5    |      | μC    |
| E <sub>rr</sub>        | V <sub>GE</sub> = 0 V; V <sub>CC</sub> = 600 V   |                                   |      |      |      | mJ    |
| R <sub>th(j-c)D</sub>  | per diode                                        |                                   |      |      | 0,36 | K/W   |
|                        | eling Diode                                      |                                   |      |      |      |       |
| $V_F = V_{EC}$         | $I_{Fnom}$ = 150 A; $V_{GE}$ = 0 V               |                                   |      | 2    | 2,5  | V     |
|                        |                                                  | $T_j = 125 \ ^\circ C_{chiplev.}$ |      | 1,8  |      | V     |
| V <sub>F0</sub>        |                                                  | T <sub>j</sub> = 25 °C            |      | 1,1  | 1,4  | V     |
|                        |                                                  | T <sub>j</sub> = 125 °C           |      |      |      | V     |
| r <sub>F</sub>         |                                                  | T <sub>j</sub> = 25 °C            |      | 9    | 11   | V     |
|                        |                                                  | T <sub>j</sub> = 125 °C           |      |      |      | V     |
| I <sub>RRM</sub>       | I <sub>F</sub> = 150 A                           | T <sub>j</sub> = 25 °C            |      | 55   |      | A     |
| Q <sub>rr</sub>        | (1 - 0)(1) = 000)(1                              |                                   |      | 8    |      | μC    |
| E <sub>rr</sub>        | V <sub>GE</sub> = 0 V; V <sub>CC</sub> = 600 V   |                                   |      |      |      | mJ    |
| R <sub>th(j-c)FD</sub> | per diode                                        |                                   |      |      | 0,3  | K/W   |
| Module                 |                                                  |                                   |      |      |      |       |
| L <sub>CE</sub>        |                                                  |                                   |      |      | 30   | nH    |
| R <sub>CC'+EE'</sub>   | res., terminal-chip                              | T <sub>case</sub> = 25 °C         |      | 0,75 |      | mΩ    |
|                        |                                                  | T <sub>case</sub> = 125 °C        |      | 1    |      | mΩ    |
| R <sub>th(c-s)</sub>   | per module                                       |                                   |      |      | 0,05 | K/W   |
| M <sub>s</sub>         | to heat sink M6                                  |                                   | 3    |      | 5    | Nm    |
| M <sub>t</sub>         | to terminals M5                                  |                                   | 2,5  |      | 5    | Nm    |
| w                      |                                                  |                                   |      |      | 160  | g     |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

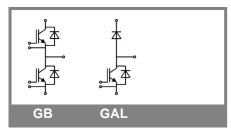
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

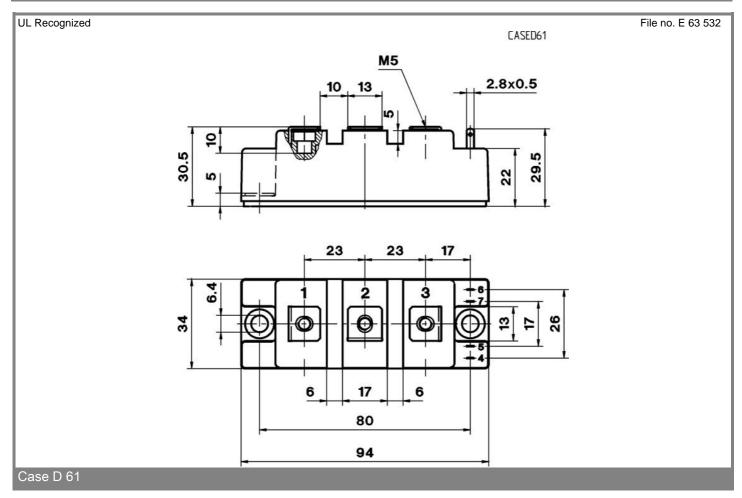


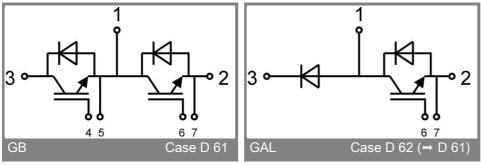


|   | Z <sub>th</sub><br>Symbol | Conditions | Values | Units |
|---|---------------------------|------------|--------|-------|
| 1 | -                         |            |        |       |
|   | Z<br><sub>Ri</sub>        | i = 1      | 100    | mk/W  |
|   | R <sub>i</sub>            | i = 2      | 38     | mk/W  |
|   | R <sub>i</sub>            | i = 3      | 10     | mk/W  |
|   | R <sub>i</sub>            | i = 4      | 2      | mk/W  |
|   | tau                       | i = 1      | 0,03   | s     |
|   | tau <sub>i</sub>          | i = 2      | 0,0287 | s     |
|   | tau <sub>i</sub>          | i = 3      | 0,0012 | s     |
|   | tau <sub>i</sub>          | i = 4      | 0,0002 | s     |
|   | Ζ                         |            | •      |       |
|   | Z<br>Ri<br>th(j-c)D       | i = 1      | 240    | mk/W  |
|   | R <sub>i</sub>            | i = 2      | 95     | mk/W  |
|   | R <sub>i</sub>            | i = 3      | 22     | mk/W  |
|   | R <sub>i</sub>            | i = 4      | 3      | mk/W  |
|   | tau <sub>i</sub>          | i = 1      | 0,054  | s     |
|   | tau <sub>i</sub>          | i = 2      | 0,0113 | s     |
|   | tau <sub>i</sub>          | i = 3      | 0,0012 | s     |
|   | tau <sub>i</sub>          | i = 4      | 0,005  | s     |

### **IGBT** Modules


#### SKM 145GB123D SKM 145GAL123D


#### Features


- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (10 mm) and creepage distances (20 mm)

#### **Typical Applications**

- Switching (not for linear use)
- AC inverter drives





