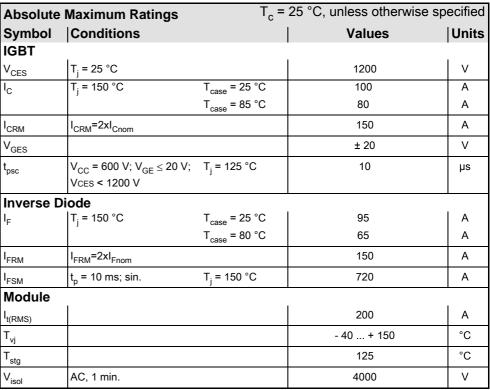


Ultra Fast IGBT Module


SKM 100GB125DN

Features

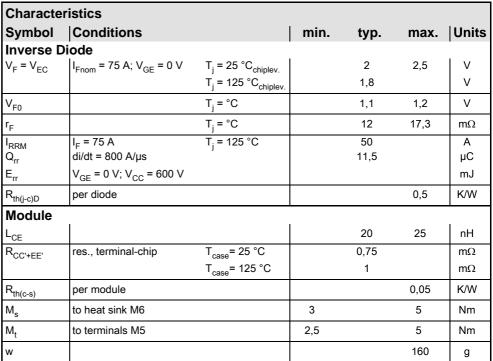

- . N channel, homogeneous Si
- · Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- Switched mode power supplies at f_{sw} > 20 kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

Characte	Characteristics T _c = 25 °C, unless otherwise specific					
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C		0,15	0,45	mA
		T _j = 125 °C				mA
V _{CE0}		T _j = 25 °C				V
		T _j = 125 °C				V
r _{CE}	V _{GE} = 15 V	T _j = 25°C				mΩ
		T _j = 125°C				mΩ
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		3,3	3,85	V
C _{ies}				5	6,6	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,72	0,9	nF
C _{res}				0,38	0,5	nF
Q_G	V _{GE} = 0 - +20V			650		nC
R_{Gint}	T _j = °C			5		Ω
t _{d(on)}				80		ns
t _r E _{on}	$R_{Gon} = 8 \Omega$	V _{CC} = 600V		40		ns
E _{on}		I _C = 75A		9		mJ
t _{d(off)}	$R_{Goff} = 8 \Omega$	T _j = 125 °C		360		ns
t _f		$V_{GE} = \pm 15V$		20		ns
E_{off}				3,5		mJ
$R_{\text{th(j-c)}}$	per IGBT				0,18	K/W

Ultra Fast IGBT Module


SKM 100GB125DN

Features

- . N channel, homogeneous Si
- · Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- Switched mode power supplies at f_{sw} > 20 kHz
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

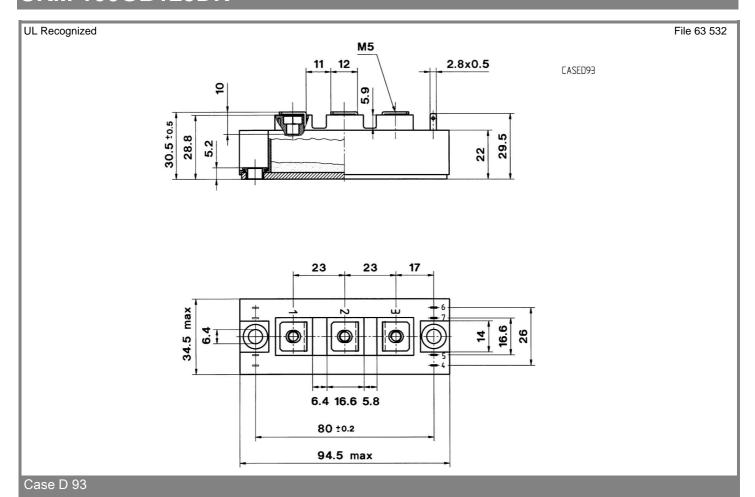
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

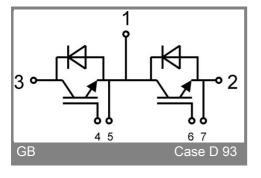
SEMITRANS[®] 2N

Ultra Fast IGBT Module

SKM 100GB125DN

Z _{th}			1
Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	95	mk/W
R _i	i = 2	65	mk/W
R _i	i = 3	17,5	mk/W
R _i	i = 4	2,5	mk/W
tau _i	i = 1	0,0327	s
tau _i	i = 2	0,008	s
tau _i	i = 3	0,0017	s
tau _i	i = 4	0,008	s
Z _{th(j-c)D}	·		
R _i tn(J-c)D	i = 1	300	mk/W
R _i	i = 2	160	mk/W
Ri	i = 3	36	mk/W
R _i	i = 4	4	mk/W
tau _i	i = 1	0,054	s
tau _i	i = 2	0,001	s
tau _i	i = 3	0,0015	s
tau _i	i = 4	0,1	s


Features


- N channel, homogeneous Si
- Low inductance case
- . Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- · Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (10 mm) and creepage distances (20 mm)

Typical Applications

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

6 21-05-2007 RAA © by SEMIKRON