SK50GD066ET

SEMITOP[®] 3

IGBT Module

SK50GD066ET

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications

- Inverter up to 12,5 kVA
- Typ. motor power 5,5 kW

Absolut	e Maximum Ratings	T _s :	= 25 °C, unless otherwise	specified		
Symbol	-		Values	Units		
IGBT						
V _{CES}	$T_j = 25 °C$ $T_j = 175 °C$ $T_s = 25 °C$		600	V		
I _C			60	А		
		T _s = 70 °C	50	А		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; T_j = 150 °C VCES < 600 V		6	μs		
Inverse Diode						
I _F	T _j = 175 °C	T _s = 25 °C	56	А		
		T _s = 70 °C	44	А		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		60	А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	320	А		
Module						
I _{t(RMS)}				А		
T _{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT			_				
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 0,8 mA		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C				mA	
		T _j = 150 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
		T _j = 150 °C				nA	
V _{CE0}		T _j = 25 °C		0,9	1,1	V	
		T _j = 150 °C		0,8	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	15	mΩ	
		T _j = 150°C		17	21	mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			1,45	1,85	V	
		T _j = 150°C _{chiplev.}		1,65	2,05	V	
C _{ies}				3,1		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,2		nF	
C _{res}				0,093		nF	
t _{d(on)}						ns	
t, F	R _{Gon} = 12 Ω	$V_{\rm CC} = 300V$		1,54		ns	
E _{on}	R _{Goff} = 12 Ω	I _C = 50A T _i = 150 °C		1,54		mJ ns	
t _{d(off)} t _f	Goff - 12 S2	V _{GE} =±15V				ns	
E _{off}		GE		1,56		mJ	
R _{th(j-s)}	per IGBT	1		1,11		K/W	

GD-ET

SK50GD066ET

SEMITOP[®] 3

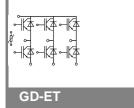
IGBT Module

SK5	0GD	066	ET

Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
	verse Diode					
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V			1,5		V
		T_j = 150 °C _{chiplev.}		1,5		V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		10	12	mΩ
		T _j = 150 °C		12	14	mΩ
I _{RRM}	I _F = 50 A	T _j = 150 °C				Α
Q _{rr}						μC
E _{rr}	V _{CC} = 300V					mJ
R _{th(j-s)D}	per diode			1,7		K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g
Temperat	erature sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

Target Data

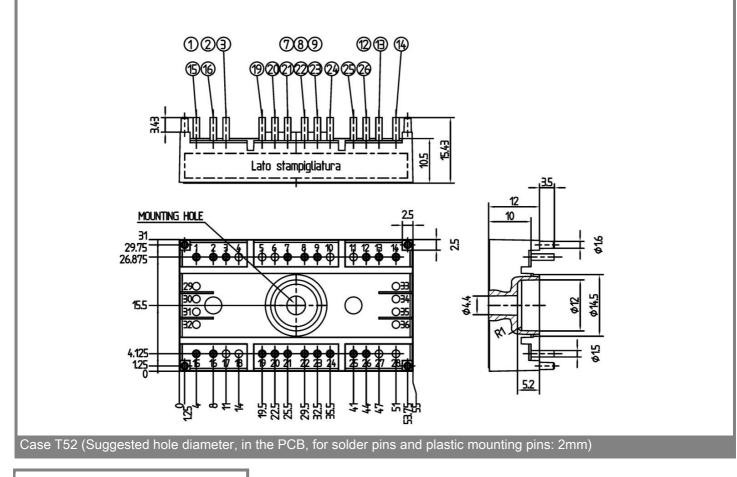
Features

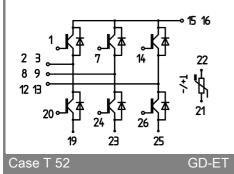

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications

- Inverter up to 12,5 kVA
- Typ. motor power 5,5 kW

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.



SK50GD066ET

UL recognized

file no. E63 532

