

SEMITRANS[®] 3

Trench IGBT Modules

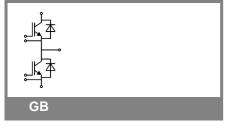
SKM 400GB066D

Preliminary Data

Features

- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq 150^{\circ}C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

	te Maximum Ratings			
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		600	V
I _C	T _j = 175 °C	T _c = 25 °C	500	А
		T _c = 80 °C	380	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		800	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; VCES < 600 V	T _j = 150 °C	6	μs
Inverse	Diode		•	
I _F	T _j = 175 °C	T _c = 25 °C	450	А
		T _c = 80 °C	320	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		800	А
Module				
I _{t(RMS)}			500	А
T _{vj}			- 40 +175	°C
T _{stg}			- 40 +125	°C
V _{isol}	AC, 1 min.		4000	V

Characteristics T _{case} =			25°C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 6,4 mA		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,25	0,75	mA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,4	2,3	mΩ
		T _j = 150°C		2,1	3	mΩ
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		T _j = 150°C _{chiplev.}		1,7	2,1	V
C _{ies}				24,7		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,54		nF
C _{res}				0,73		nF
Q_{G}	V _{GE} = -8V+15V			3000		nC
R _{Gint}	$T_j = °C$			2		Ω
t _{d(on)}				200		ns
t _r	R _{Gon} = 1,5 Ω	V _{CC} = 300V		60		ns
Ė _{on}	D 450	I _C = 400A		8		mJ
t _{d(off)}	R_{Goff} = 1,5 Ω	$T_{j} = 150 \ ^{\circ}C$		560		ns
t _f		V _{GE} = -8V/+15V		53		ns
E _{off}				16		mJ
R _{th(j-c)}	per IGBT				0,12	K/W

SEMITRANS[®] 3

Trench IGBT Modules

SKM 400GB066D

Preliminary Data

Features

- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq \! 150^\circ C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

GB	

Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Inverse Diode					
$V_F = V_{EC}$	I_{Fnom} = 400 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,4	1,6	V
V _{F0}		T _j = 25 °C		0,95	1	V
r _F		T _j = 25 °C		1,1	1,5	mΩ
I _{RRM}	I _F = 400 A	T _i = 150 °C		410		А
Q _{rr}	di/dt = 7250 A/µs			62		μC
E _{rr}	V_{GE} = -8 V; V_{CC} = 300 V			14		mJ
R _{th(j-c)D}	per diode				0,2	K/W
Module						
L_{CE}				15	20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ
		T _{case} = 125 °C		0,5		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6		2,5		5	Nm
w					325	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

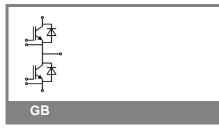
Trench IGBT Modules

-								
	Z _{th} Symbol	Conditions	Values	Units				
	Ζ.,							
	Z _{Ri}	i = 1	80	mk/W				
2	R _i	i = 2	22,5	mk/W				
L	R _i	i = 3	6,4	mk/W				
L	R _i	i = 4	1,1	mk/W				
L	tau,	i = 1	0,0447	s				
L	tau _i	i = 2	0,0223	s				
	tau _i	i = 3	0,0015	s				
	tau _i	i = 4	0,0002	s				
	Z _{Ri}	i = 1	130	mk/W				
	R _i	i = 2	55	mk/W				
	R _i	i = 3	12,5	mk/W				
	R	i = 4	2,5	mk/W				
	tau	i = 1	0,054	s				
	tau _i	i = 2	0,01	s				
	tau _i	i = 3	0,0015	s				
	tau _i	i = 4	0,1	s				

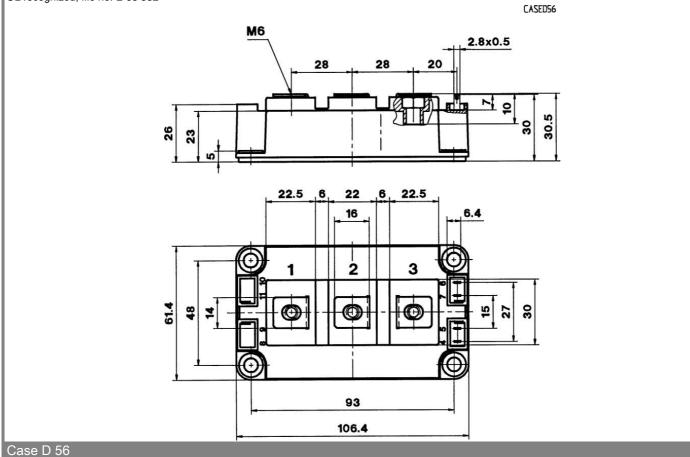
Preliminary Data

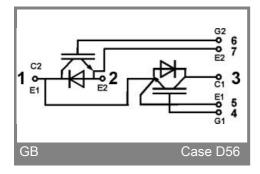
SKM 400GB066D

Features


- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for T_i ≤150°C
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

UL recognized, file no. E 63 532

