

SEMITRANS[®] 3

Trench IGBT Modules

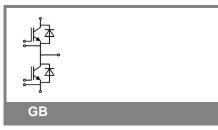
SKM 300GB066D

Preliminary Data

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq 150^{\circ}C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

Absolute Maximum Ratings T _{case} =			25°C, unless otherwise specified		
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 175 °C	T _c = 25 °C	390	А	
		T _c = 80 °C	300	A	
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V;	T _j = 150 °C	6	μs	
	VCES < 600 V				
Inverse [I .	
I _F	T _j = 175 °C	T _c = 25 °C	350	A	
		T _c = 80 °C	250	А	
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 175 °C	1760	А	
Module					
I _{t(RMS)}			500	А	
T _{vj}			- 40 + 175	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics T _{case} =			25°C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT	_					_
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 4.8 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,15	0,45	mA
V _{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	3	mΩ
		T _j = 150°C		2,7	3,8	mΩ
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V			1,45	1,9	V
		$T_j = 150^{\circ}C_{chiplev.}$		1,7	2,1	V
C _{ies}				18,5		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		1,2		nF
C _{res}				0,55		nF
Q_{G}	V _{GE} = -8V+15V			2400		nC
R _{Gint}	T _j = °C			1		Ω
t _{d(on)}				150		ns
t,	R _{Gon} = 2,4 Ω	V _{CC} = 300V		48		ns
É _{on}	D 0 4 0	I _C = 300A		7,5		mJ
t _{d(off)}	R_{Goff} = 2,4 Ω	$T_{j} = 150 \ ^{\circ}C$		540		ns
t _f		V _{GE} = -8V/+15V		53		ns
E _{off}				11,5		mJ
R _{th(j-c)}	per IGBT				0,15	K/W

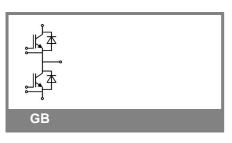
SEMITRANS[®] 3

Trench IGBT Modules

SKM	300GB066D
SILINI	20000000

Preliminary Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives
- UPS
- Electronic welders

Remarks

- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq \! 150^\circ C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

Characte	Characteristics						
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	liode						
$V_F = V_{EC}$	I_{Fnom} = 300 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,4	1,6	V	
V _{F0}		T _j = 25 °C		0,95	1	V	
r _F		T _j = 25 °C		1,5	2	mΩ	
I _{RRM}	I _F = 300 A	T _i = 150 °C		340		А	
Q _{rr}	di/dt = 7000 A/µs	,		47		μC	
E _{rr}	V_{GE} = -8 V; V_{CC} = 300 V			10,5		mJ	
R _{th(j-c)D}	per diode				0,25	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

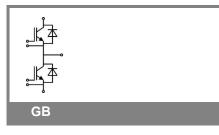
Trench IGBT Modules

Z _{th} Symbol	Conditions	Values	Units
Z Ri th(j-c)I			
R _i	i = 1	107	mk/W
R _i	i = 2	30	mk/W
R _i	i = 3	11,6	mk/W
R _i	i = 4	1,4	mk/W
tau _i	i = 1	0,054	s
tau _i	i = 2	0,0144	s
tau _i	i = 3	0,0007	s
tau _i	i = 4	0,0004	s
Z Rith(j-c)D			
R _i	i = 1	140	mk/W
R _i	i = 2	82	mk/W
R _i	i = 3	23,5	mk/W
R _i	i = 4	4,5	mk/W
tau _i	i = 1	0,054	s
tau _i	i = 2	0,01	s
tau _i	i = 3	0,0015	s
tau _i	i = 4	0,0002	s
•			

SKM 300GB066D

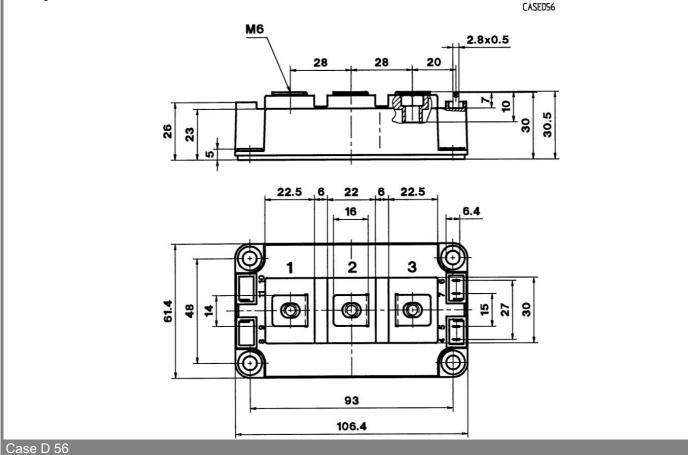
Preliminary Data

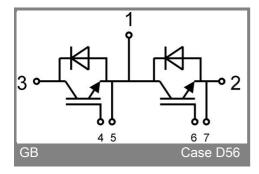
Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- AC inverter drives
- UPS
- Electronic welders


Remarks


- Case temperature limited to $T_c = 125^{\circ}C$ max, recommended $T_{op} = -40 \dots +150^{\circ}C$
- Product reliability results are valid for $T_i \leq 150^{\circ}C$
- Short circuit data: $t_p \le 6\mu$ s; $V_{GE} \le 15V$; $T_j = 150^{\circ}$ C; $V_{cc} \le 360V$, use of soft R_G necessary !
- Take care of over-voltage caused by stray inductances

UL recognized, file no. E 63 532

```
CASED56
```