
Vishay High Power Products

HEXFRED[®] Ultrafast Soft Recovery Diode, 8 A

SHA

TO-220AC

PRODUCT SUMMARY					
V _R	600 V				
V _F at 8 A at 25 °C	1.7 V				
I _{F(AV)}	8 A				
t _{rr} (typical)	18 ns				
T _J (maximum)	150 °C				
Q _{rr} (typical)	65 nC				
dl _{(rec)M} /dt (typical)	240 A/µs				
I _{RRM}	5.0 A				

FEATURES

- Ultrafast recovery
- Ultrasoft recovery
- Very low I_{RRM}
- Very low Q_{rr}
- Specified at operating conditions
- Lead (Pb)-free
- Designed and qualified for industrial level

BENEFITS

- Reduced RFI and EMI
- · Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- · Reduced parts count

DESCRIPTION

HFA08TB60 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 8 A continuous current, the HFA08TB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current ($I_{\mbox{\scriptsize RRM}}$) and does not exhibit any tendency to "snap-off" during the tb portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA08TB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V _R		600	V		
Maximum continuous forward current	١ _F	T _C = 100 °C	8			
Single pulse forward current	I _{FSM}		60	А		
Maximum repetitive forward current	I _{FRM}		24			
Maximum neuror discipation		T _C = 25 °C	36	244		
Maximum power dissipation	PD	T _C = 100 °C	14	W		
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C		

* Pb containing terminations are not RoHS compliant, exemptions may apply

HFA08TB60PbF

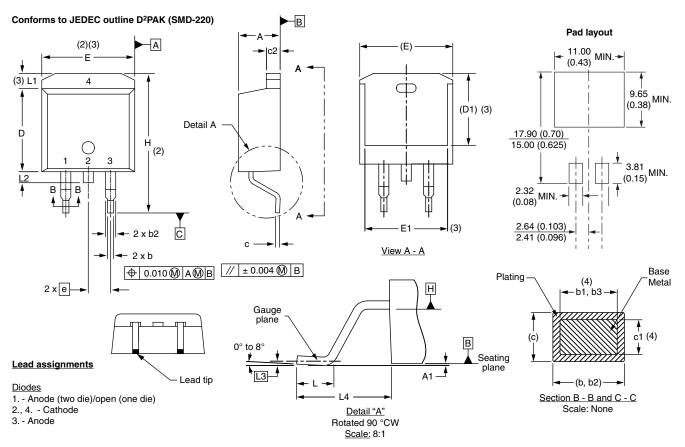
Vishay High Power Products

HEXFRED[®] Ultrafast Soft Recovery Diode, 8 A

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		600	-	-		
	I _F = 8.0 A	-	1.4	1.7	v			
Maximum forward voltage	V _{FM}	I _F = 16 A	See fig. 1	-	1.7	2.1		
		I _F = 8.0 A, T _J = 125 °C		-	1.4	1.7		
Maximum reverse		$V_{R} = V_{R}$ rated	See fig. 0	-	0.3	5.0		
leakage current	IRM	T_J = 125 °C, V_R = 0.8 x V_R rated	See fig. 2	-	100	500	μΑ	
Junction capacitance	CT	V _R = 200 V	See fig. 3	-	10	25	pF	
Series inductance	LS	Measured lead to lead 5 mm from package body		-	8.0	-	nH	

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS		
	t _{rr}	$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t = 200$	Α/μs, V _R = 30 V	-	18	-			
Reverse recovery time	t _{rr1}	T _J = 25 °C		-	37	55	ns		
	t _{rr2}	T _J = 125 °C	I _F = 8.0 A dI _F /dt = 200 A/μs V _R = 200 V	-	55	90			
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	3.5	5.0	A		
Feak lecovery cullent	I _{RRM2}	T _J = 125 °C		-	4.5	8.0			
	Q _{rr1}	T _J = 25 °C		-	65	138			
Peak rate of fall of recovery current during t _b	Q _{rr2}	T _J = 125 °C		-	124	360	ne		
	dl _{(rec)M} /dt1	T _J = 25 °C		-	240	-	A/µs		
	dl _{(rec)M} /dt2	T _J = 125 °C		-	210	-	-7,μ5		

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	ETER SYMBOL TEST CONDITIONS			TYP.	MAX.	UNITS	
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C	
Thermal resistance, junction to case	R _{thJC}		-	-	3.5		
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80	K/W	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased		0.5	-		
Weight			-	2.0	-	g	
weight			-	0.07	-	oz.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf ⋅ cm (lbf ⋅ in)	
Marking device		Case style TO-220AC	HFA08TB60				


Outline Dimensions

Vishay High Power Products

D²PAK

DIMENSIONS in millimeters and inches

VISHAY

SYMBOL	MILLIM	ETERS	INC	HES	NOTES	
	MIN.	MAX.	MIN.	MAX.	NOTES	
А	4.06	4.83	0.160	0.190		
A1	0.00	0.254	0.000	0.010		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
С	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	

SYMBOL	MILLIMETERS		INCHES		NOTES
STNDUL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	-	0.270	-	3
E	9.65	10.67	0.380	0.420	2, 3
E1	6.22	-	0.245	-	3
е	2.54 BSC 0.100 BSC				
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

 $^{(1)}\,$ Dimensioning and tolerancing per ASME Y14.5 M-1994

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
(3) The outmost extremes of the plastic body

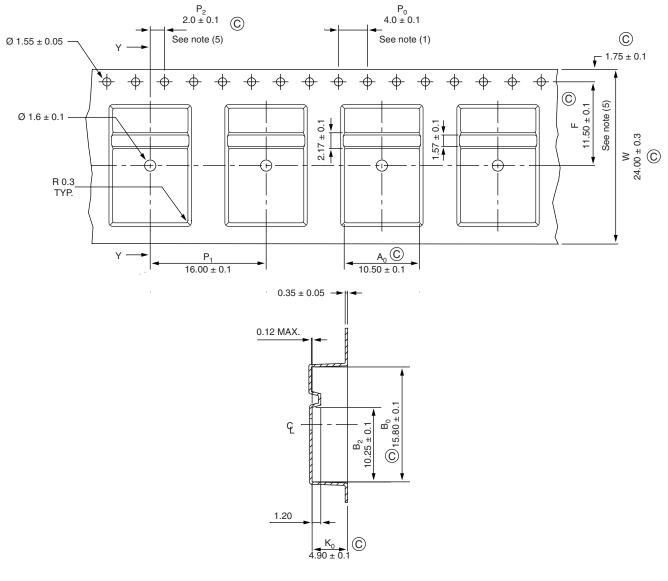
⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

 $^{\rm (5)}$ Datum A and B to be determined at datum plane H $^{\rm (5)}$

⁽⁶⁾ Controlling dimension: inch

⁽⁷⁾ Outline conforms to JEDEC outline TO-263AB



Packaging Information

Vishay High Power Products

D²PAK

Section Y - Y

Notes

- $^{(1)}$ 10 sprocket hole pitch cumulative tolerance \pm 0.02
- ⁽²⁾ Camber not to exceed 1 mm in 100 mm
- ⁽³⁾ Material: conductive black styrenic alloy
- $^{(4)}$ K₀ measured from a plane on the inside bottom of the pocket to the top surface of the carrier
- ⁽⁵⁾ Measured from centerline of sprocket hole to centerline of pocket
- (6) Vendor: (optional)
- (7) Must also meet requirements of EIA standard # EIA-481A taping of surface mount components for automatic placement
- ⁽⁸⁾ Surface resistivity of molded material must measure less or equal to $10^6 \Omega$ per square. Measured in accordance to procedure given in ASTM D-257 and ASTM D-991
- ⁽⁹⁾ Total length per reel must be 45 m
- $^{(10)}$ \bigcirc critical