Rotary Actuator Vane Style
 Series CRB2
 Size: 10, 15, 20, 30, 40

Series Variations
Fluid

Rotary Actua tor Vane Style

Rotating angle: $90^{\circ}, 180^{\circ}, 270^{\circ}$
Al series can rotate up to 270°.
The use of specially designed seals and stoppers now enables our com
tate ep to 270°.
(Single vane type)
Direct mounting
The body of rotary actuator can be mounted directly.
The body of rotary actuator can be mounted directly.
*Not possible to use direct mount type with units sized 10 to 40 .

Excellent reliability and durability The use of bearings in all series to support thrust and radial loads, along with the implementation of an inter-
nal ruber bumper (except size 10), improves reliability
and durabilty and durability.
Two different connecting port locations (side and axial) are available.

The port location can be selected according to the ap-
plication plication. (Types with various units sized 10 to 40 are
body side face only.)

Low pressure operation
Special seal construction allows for a broade
operating pressure range and makes operation in low operating pressure range and makes operation in low
pressure applications possible. pressure applications possible.
Size 10: 0.2 MPa
Size 10: 0.2 MPa

Direct mounting from 3 different directions is possible (CRBU2). Series CRBU2 can be mounted in 3 directions: axial, vertical, and
lateral. In the axial direction, there are 3 mounting variations.

Block (Unit) type construction

For all series' rotary actuator's single body, various units for body outside diameter integral type can be easily retrofit

Double vane construction is now a standard feature for 90° and 100° rotation type actuators. Although the outside dimensions of the double vane construction actuators are
equivalent to those of the single vane construction type (except for size 10). Double vane construction can get twice the torque of the single vane style.

Series CRB2/CRBU2/CRB1 Model Selection

Selection Procedure

Formula
Selection Example

Operating conditions

Operating conditions are as follows:

- Model used
- Operating pressure
- Load type

Ts (N•m)
Tf (N.m)
$\mathrm{Ta}(\mathrm{N} \cdot \mathrm{m})$

- Load configuration
- Rotation time t (s)
- Rotation
- Load mass m (kg)
- Distance between central axis and center of gravity $\mathrm{H}(\mathrm{mm})$

Rotary actuator: CRB2BW30-90S, Pressure: 0.5 MPa Mounting position: Vertical, Type of load: Inertial load Ta Load configuration: $60 \mathrm{~mm} \times 40 \mathrm{~mm}$ (Rectangular plate) Rotation time (t): 0.3 s , Rotation: $90^{\circ}(\theta=\pi / 2$) Load mass (m): 0.15 kg , Distance between central axis and center of gravity (H) : 30 mm

Required torque

Confirm the type of load as shown below, and select an actuator that satisfies the required torque.

- Static load: Ts
- Resistance load: Tf Load type
- Inertial load: Ta

Effective torque \geq Ts
Effective torque \geq (3 to 5) Tf
Effective torque $\geq 10 \mathrm{Ta}$
Effective torque

Inertial load
$10 \times \mathrm{Ta}=10 \times \mathrm{I} \times \dot{\mathrm{\omega}}=10 \times 0.0002 \times \pi / 0.3^{2}$
$=0.07 \mathrm{~N} \cdot \mathrm{~m}<$ Effective torque OK
Note) I is obtained by substituting the value of inertia moment (5).
$\dot{\omega}=\frac{2 \theta}{t^{2}}(\dot{\omega}:$ Angular acceleration $)$

Rotation time

Confirm that it is within the
adjustable range of rotation time.

Model	Rotation time adjustment range for stable operation $S / 90^{\circ}$
CRB2BW/CRBU2W10 to 20	0.03 to 0.3
CRB2BW/CRBU2W30	0.04 to 0.3
CRB2BW/CRBU2W40	0.07 to 0.5
CRB1BW50 to 100	0.1 to 1

$0.3 / 90^{\circ} \mathrm{OK}$

Allowable loads

Confirm that the radial load, thrust load, and moment are within the allowable ranges.

Thrust load: $m \times 9.8 \leq$ Allowable load
$0.15 \times 9.8=1.47 \mathrm{~N}$ < Allowable load OK

Moment of inertia

Find the load's moment of
inertia "I" for the energy calculation.

$$
\begin{gathered}
\mathrm{I}=\mathrm{m} \times\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 12+\mathrm{m} \times \mathrm{H}^{2} \\
\\
\text { Moment of inertia }
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{I} & =0.15 \times\left(0.06^{2}+0.04^{2}\right) / 12+0.15 \times 0.03^{2} \\
& =0.0002 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Kinetic energy
Confirm that the load's kinetic energy is within the allowable value.
$1 / 2 \times(0.0002) \times(2 \times(\pi / 2) / 0.3)^{2}=$
0.01096 J < Allowable energy OK
$1 / 2 \times \mathrm{I} \times \omega^{2}=<$ Allowable energy
$\omega=2 \theta / \mathrm{t}(\omega$: Terminal angular velocity)
θ : Rotation angle (rad)
t : Rotation time (s)
Allowable kinetic energy/Rotation time

Effective Torque

($\mathrm{N} \cdot \mathrm{m}$)											
Size	Vane type	Operating pressure (MPa)									
		0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	Single vane	-	0.03	0.06	0.09	0.12	0.15	0.18	-	-	-
	Double vane	-	0.07	0.13	0.19	0.25	0.31	0.37	-	-	-
15	Single vane	0.06	0.10	0.17	0.24	0.32	0.39	0.46	-	-	-
	Double vane	0.13	0.20	0.34	0.48	0.65	0.79	0.93	-	-	-
20	Single vane	0.16	0.23	0.39	0.54	0.70	0.84	0.99	-	-	-
	Double vane	0.33	0.47	0.81	1.13	1.45	1.76	2.06	-	-	-
30	Single vane	0.44	0.62	1.04	1.39	1.83	2.19	2.58	3.03	3.40	3.73
	Double vane	0.90	1.26	2.10	2.80	3.70	4.40	5.20	6.09	6.83	7.49
40	Single vane	0.81	1.21	2.07	2.90	3.73	4.55	5.38	6.20	7.03	7.86
	Double vane	1.78	2.58	4.3	5.94	7.59	9.24	10.89	12.5	14.1	15.8
50	Single vane	1.20	1.86	3.14	4.46	5.69	6.92	8.14	9.5	10.7	11.9
	Double vane	2.70	4.02	6.60	9.21	11.8	14.3	16.7	19.4	21.8	24.2
63	Single vane	2.59	3.77	6.11	8.45	10.8	13.1	15.5	17.8	20.2	22.5
	Double vane	5.85	8.28	13.1	17.9	22.7	27.5	32.3	37.10	41.9	46.7
80	Single vane	4.26	6.18	10.4	14.2	18.0	21.9	25.7	30.0	33.8	37.6
	Double vane	8.70	12.6	21.1	28.8	36.5	44.2	51.8	60.4	68.0	75.6
100	Single vane	8.6	12.2	20.6	28.3	35.9	43.6	51.2	59.7	67.3	75
	Double vane	17.9	25.2	42.0	57.3	72.6	87.9	103	120	135	150

Static load: Ts
A load as represented by the clamp which requires pressing force only
$\binom{$ During examination if it is decided to consider the mass of the clamp }{ itself in the drawing below, it should be regarded as an inertial load } (itself in the drawing below, it should be regarded as an inertial load.)
(Example)

Resistance load:Tf

A load that is affected by external forces such as friction or gravity
Since the object is to move the load, and speed adjustment is necessary, allow an extra margin of 3 to 5 times in the effective torque.

* Actuator effective torque \geq (3 to 5) Tf
$\binom{$ During examination if it is decided to consider the mass }{ of the lever itself in the drawing below, it should be } $\left(\begin{array}{l}\text { of the lever itself in the drawing below, it should be } \\ \text { regarded as an inertial load. }\end{array}\right.$

- Inertial load: Ta

The load which must be rotated by the actuator Since the object is to rotate the load, and speed adjustment is necessary, allow an extra margin of 10 times or more in the effective torque.

* Actuator effective torque $\geq \mathrm{S}$ •Ta
(S is 10 times or more)

Accelerating torque calculation $\mathrm{Ta}=\mathrm{I} \cdot \dot{\omega}(\mathrm{N} \cdot \mathrm{m})$

Allowable Load

Application of the load on the axial direction is tolerated if no dynamic load is generated and the values are within what is shown in the table below. However, avoid such operation that the load is applied directly to the shaft.
(N)

Model	Load direction		
	Fsa	Fsb	Fr
CRB2BW, CRBU2W10	9.8	9.8	14.7
CRB2BW, CRBU2W15	9.8	9.8	14.7
CRB2BW, CRBU2W20	19.6	19.6	24.5
CRB2BW, CRBU2W30	24.5	24.5	29.4
CRB2BW, CRBU2W40	40	40	60
CRB1BW50	196	196	245
CRB1BW63	340	340	390
CRB1BW80	490	490	490
CRB1BW100	539	539	588

Rotary Actuator Vane Style

Series CRB2
Size: 10, 15, 20, 30, 40
How to Order

Applicable Auto Switch/Refer to page 11-1-1 for further information on auto switches.

Applicable size	$\begin{gathered} 0 \\ \\ \end{gathered}$	Electrical entry		Wiring (Output)	Load voltage			Auto switch mode	Lead wire type	Lead wire length (m * ${ }^{\text {* }}$				Applicable load	
						DC	AC			$\begin{aligned} & 0.5 \\ & \text { (Nil) } \end{aligned}$	$\begin{gathered} \hline 3 \\ \text { (L) } \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)		
For 10 and 15		Grommet	을	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V} 5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$		90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	$\begin{gathered} \text { IC } \\ \text { circuit } \end{gathered}$	$\begin{gathered} \text { Relay, } \\ \text { PLC } \end{gathered}$
							$\begin{aligned} & 5 V, 12 V, ~ \\ & 24 V, 100 \mathrm{~V} \end{aligned}$	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			$\stackrel{\infty}{\stackrel{\infty}{\infty}}$			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
							100 V	93A	Heavy-duty cord	-	\bigcirc	\bigcirc	-		
						V		T99		\bigcirc	\bigcirc	-	-		
								T99V		-	\bigcirc	-	-		
				3-wire			-	S99		\bigcirc	\bullet	-	-		
				(NPN)		V 12 V	-	S99V		-	\bullet	-	-	IC	
						12		S9P		-	\bigcirc	-	-	circuit	
				(NPN)				S9PV		-	\bigcirc	-	-		
		Grommet				-	100 V	R73		\bigcirc	\bigcirc	-	-	-	
	3	Connector	$>$					R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	$\stackrel{\square}{0}$	Grommet	ㅇ	2-wire		48 V ,	$24 \mathrm{~V}, 48 \mathrm{~V}$,	R80		-	\bigcirc	-	-	IC	
For 20,	$\underset{\square}{\text { ¢ }}$	Connector	Z	2-wire	24 V	100 V	100 V	R80C	Heavy-duty	\bigcirc	\bigcirc	\bigcirc	\bigcirc	circuit	Relay,
30 and 40	단	Grommet				V		T79		\bigcirc	\bigcirc	-	-	-	PLC
	$\left.\begin{array}{\|c} \mathbf{s} \\ \stackrel{y}{0} \\ \end{array} \right\rvert\,$	Connector	$\stackrel{\sim}{0}$			12 V	-	T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	$\begin{aligned} & \text { io } \\ & \stackrel{0}{90} \end{aligned}$	G	>	3 -wire (NPN)				S79		-	\bigcirc	-	-	IC	
	¢	Grommet		3 -wire (PNP)		5, 12 V		S7P		-	\bullet	-	-	circuit	

Flange Assembly Part No.

Model	Assembly part no.
CRB2FW10	P211070-2
CRB2FW15	P211090-2
CRB2FW20	P211060-2
CRB2FW30	P211080-2

* Lead wire length symbols: $0.5 \mathrm{~m} \cdots$ Nil (Example) R73C
$3 \mathrm{~m} \cdots \mathrm{~L}$ (Example) R73CL
$5 \mathrm{~m} \cdots$ Z (Example) R73CZ
None ... N (Example) R73CN

Single Vane Specifications

JIS Symbol

Model (Size)		CRB2BW10-7S		CRB2BW15-■S	CRB2BW20-■S	CRB2BW30-■S	CRB2BW40-■S		
Vane type		Single vane							
Rotating angle		$90^{\circ}, 180^{\circ}$	270°	$90^{\circ}, 180^{\circ} 270^{\circ}$	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid		Air (Non-lube)							
Proof pressure (MPa)		1.05				1.5			
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$							
Max. operating pressure (MPa)		0.7				1.0			
Min. operating pressure (MPa)		0.2		0.15					
Speed adjustable range ($\left.\sec / 90^{\circ}\right)^{(1)}$		0.03 to 0.3				0.04 to 0.3	0.07 to 0.5		
Allowable kinetic energy $(\mathrm{J})^{(2)}$		0.00015		0.001	0.003	0.02	0.04		
		0.00025	0.0004	0.015	0.03				
Shat load (N)	Allowable radial load			15		15	25	30	60
	Allowable thrust load	1	0	10	20	25	40		
Bearing type		Bearing							
Port location		Side ported or Axial ported							
Size	Side ported	M 5×0.8	M $\times 0.5$	M5 x 0.8 M 3×0.5	M5 x 0.8				
	Axial ported	M3 x 0.5			M5 x 0.8				
Shaft type		Double shaft (Double shaft with single flat on both shafts)					Double shatit Llonn shatat key a singe fiat		
Angle adjustable range ${ }^{(3)}$		0 to	230°	0 to 240°			0 to 230°		
Mounting		Basic style, Flange style					Basic		
Auto switch		Mountable (Side ported only)							

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 11-2-9.
Double Vane Specifications

	Model (Size)	CRB2BW10-D	CRB2BW15-7D	CRB2BW20-7D	CRB2BW30-7	CRB2BW40-7D
Vane type		Double vane				
Rotating angle		$90^{\circ}, 100^{\circ}$				
Fluid		Air (Non-lube)				
Proof pressure (MPa)		1.05			1.5	
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)		0.7			1.0	
Min. operating pressure (MPa)		0.2	0.15			
Speed adjustable range (sec/ $\left.90^{\circ}\right)^{(1)}$		0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy $(\mathrm{J})^{(2)}$		0.0003	0.0012	0.0033	0.02	0.04
Shatt load (N)	Allowable radial load	15	15	25	30	60
	Allowable thrust load	10	10	20	25	40
Bearing type		Bearing				
Port location		Side ported or Axial ported				
Port size (Side ported, Axial ported)		M3 x 0.5		M5 x 0.8		
Shaft type		Double shaft (Double shaft with single flat on both shafts)				
Angle adjustable range ${ }^{(3)}$		0 to 90°				
Mounting		Basic style, Flange style				
Auto switch		Mountable (Side ported only)				

Volume

,
Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speed $\left(0.3 \mathrm{sec} / 90^{\circ}\right)$ can Note 2) The upper numbers in this operate.
2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at
the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 11-2-9.

Vane type	Single vane															Double vane									
Model	CRB2BW10-■S			CRB2BW15-■S			CRB2BW20-■S			CRB2BW30-■S			CRB2BW40-■S			CRB2BW10-7D		CRB2BW15-DD		CRB2BW20-वD		CRB2BW30-7D		CRB2BW40-7	
Rotation	90°	180°	270°	90°	100°																				
Volume	$\begin{gathered} 1 \\ (0.6) \end{gathered}$	1.2	1.5	$\begin{gathered} 1.5 \\ (1.0) \end{gathered}$	2.9	3.7	$\begin{aligned} & 4.8 \\ & (3.6) \end{aligned}$	6.1	7.9	$\begin{aligned} & 11.3 \\ & (8.5) \end{aligned}$	15	20.2	$\begin{gathered} 25 \\ (18.7) \end{gathered}$	31.5	41	1.0	1.1	2.6	2.7	5.6	5.7	14.4	14.5	33	34

* Values inside () are volume of the supply side when A port is pressurized.

Weight

Vane type	Single vane															Double vane									
Model	CRB2BW10-■S			CRB2BW15-■S			CRB2BW20-■S			CRB2BW30-■S			CRB2BW40-■S			CRB2BW10-वD		CRB2BW15-वD		CRB2BW20-D		CRB2BW30-वD		CRB2BW40-[D	
Rotating angle	90°	180°	270°	90°	100°																				
Body of rotary actuator	26.3	26.0	25.7	50	49	48	106	105	103	203	198	193	387	376	365	42	43	57	60	121	144	223	243	400	446
Flange assembly		9			10			19			25			-			9		0		9		5		-
Auto switch unit +2 switches		30			30			50			60			46.5			0		0		0	6	0		. 5
Angle adjuster		30			47			90			150			203			30		7		0	15	50		03

Series CRB2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except for standard shaft type (W).

							(mm)
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$		
C	8	9	10	13	15		
D	14	18	20	22	30		

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40) are the same as the standard.

Copper-free

20-CRB2BW	Size	Rotating angle	Vane type	Port location
Copper-free				

Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.

Specifications

Vane type	Single/Double vane				
Size	10	15	20	30	40
Operating pressure range (MPa)	0.2 to 0.7	0.15 to 0.7		0.15 to 1.0	
Speed regulation range ($\mathrm{s} / 90^{\circ}$)	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Port location	Side ported or axial ported				
Piping	Screw-in type				
Mounting	Basic style only				
Variations	Basic type, With auto switch, With angle adjuster				

\triangle Precautions

「Be sure to read before handling. Refer to pages 11-13-3 Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.
Angle Adjuster

\triangle Caution

1. In case of a rotary actuator for a 90° or 180° application, the maximum angle will be limited by the rotation of the rotary actuator itself. Make sure to take this into consideration when ordering.
In case of a rotary actuator for a 90° or 180° application, angle adjustment at the maximum angle of 90° or 180°, respectively, is not feasible. This is due to the fact that the rotation of the rotary actuator is limited to $90^{\circ}{ }_{0}^{+4^{\circ}}$ or $180^{\circ}{ }_{0}^{+4^{\circ}}$, respectively. Therefore, for the single vane type, use a rotary actuator with a rotation angle of 270°, and for the double vane type, use a rotary actuator with a rotation of 100°. When operating a rotary actuator with a rotation of 90° or 180°, the rotation should be adjusted to within 85° and 175°, respectively, as a guide.
2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).

CRB2

Series CRB2

Option Specifications: Flange (Size: 10, 15, 20, 30)

Type				Flange assembly part no.
Basic type	With auto switch	With angle adjuster	With angle adjuster and auto switch	
CRB2FW10	CDRB2FW10	CRB2FWU10	CDRB2FWU10	P211070-2
CRB2FW15	CDRB2FW15	CRB2FWU15	CDRB2FWU15	P211090-2
CRB2FW20	CDRB2FW20	CRB2FWU20	CDRB2FWU20	P211060-2
CRB2FW30	CDRB2FW30	CRB2FWU30	CDRB2FWU30	P211080-2

Note 1) The flange (with countersunk head screws) is not mounted on the actuator at the time of shipment
Note 2) The flange can be mounted on the rotary actuator at 60-degree intervals.

Assembly Part No.: P211070-2 (for C \square RB2FW $\square 10$)

Assembly Part No.: P211060-2
(for C \square RB2FW $\square 20$)

Assembly Part No.: P211090-2
(for C \square RB2FW $\square 15$)

M3 countersunk head

Assembly Part No.: P211080-2
(for C \square RB2FW \square 30)

Effective Output

CRB2BW15

Direct Mounting of Body

Dimension " L " of the actuators is provided in the table below for JIS standard hexagon socket head cap screws. If these types of screw are used, their heads will fit in the mounting hole.

Model	\mathbf{L}	Screw
CRB2BW10	11.5^{*}	M2.5
CRB2BW15	16	M2.5
CRB2BW20	24.5	M3
CRB2BW30	34.5	M4
CRB2BW40	39.5	M4

* Only the size 10 actuators have different L
dimensions for single and double vane.
* Refer to pages 11-2-14 to 11-2-15 for Q1 and Q2 dimensions.

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of actuators when B port is pressurized.

Single vane type

180°

Double vane type

$90^{\circ}, 100^{\circ}$

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

Note) For single vane type, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators will be ${ }_{0}^{+5^{\circ}}$ for size 10 actuators only. For double vane style, the tolerance of rotation angle of 90° will be $5_{0}^{+5^{\circ}}$ for size 10 only.

Series CRB2

Construction: 10, 15, 20, 30, 40
Single vane type • Illustrations below show size 20 actuators.

- Illustrations for 90° and 180° show the condition of the actuators when B port is pressurized, and the illustration for 270° shows the position of the ports during rotation.

For 90°
(Top view from long shaft side)

(Long shaft side)

(Short shaft side)

Double vane type

CRB2BW10- \square D/Illustrations below show the intermediate rotation position when A or B port is pressurized.

For 90°
For 100°
(Top view from long shaft side) (Top view from long shaft side)

Component Parts

No.	Description	Material	Note
1	Body (A)	Aluminum alloy	White
2	Body (B)	Aluminum alloy	White
3	Vane shaft	Carbon steel	
4	Stopper	Stainless steel	
5	Stopper	Resin	
6	Stopper	Stainless steel	
7	Bearing	High carbon chrome bearing steel	
8	Back-up ring	Stainless steel	
9	Cover	Aluminum alloy	White

* For size 40, material for no. (4)(6) is die-cast aluminum.

No.	Description	Material	Note
10	Plate	Resin	White
(11)	Hexagon socket head cap screw	Stainless steel	Special screw
(12)	O-ring	NBR	
(13)	Stopper seal	NBR	Special seal
(14)	Gasket	NBR	Special seal
(15)	O-ring	NBR	
16	O-ring	NBR	
(17)	O-ring	NBR	Double vane only
18	Parallel keyway	Carbon steel	Size 40 only

Construction (With auto switch unit)
Single vane type • Following illustrations show actuators for 90° and $180^{\circ} \quad$ (Same switch units are used for both single and double vane types.) when B port is pressurized.
Double vane type • Following illustrations show the intermediate rotation position when A or B port is pressurized.

CRB2

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Holding block (A)	Aluminum alloy
(5)	Holding block (B)	Aluminum alloy
6	Holding block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10	Magnet	Magnetic body

No.	Description	Material
(11)	Arm	Stainless steel
(12)	Hexagon socket head set screw	Stainless steel
(13)	Round head Phillips screw	Stainless steel
(14)	Round head Phillips screw	Stainless steel
(15)	Round head Phillips screw	Stainless steel
(16)	Round head Phillips screw	Stainless steel
(17)	Rubber cap	NBR

[^0]
Series CRB2

Dimensions: 10, 15, 20, 30
Single vane type - Following illustrations show actuators for 90° and 180° when B port is pressurized.

CRB2BW \square - \square S

<Port location: Side ported>

CRB2BW10- \square S
<Port location: Side ported>

CRB2BW $\square-\square$ SE <Port location: Axial ported>

Note) Depths of Q1 and Q2 with the mark indicate that the holes go through both bodies (A) and (B).

Note) The pre-drilled mounting threads for CRB2BW15, 20, and 30, 3 mounting holes depicted with the \star marks are for tightening the actuator and not to be used for external mounting.

Model	A	B	C	D	E (g6)	F (h9)	G1	G2	J	K	L	M	N	P	-Q1	-Q2	*Q3	R		
					(g6)													90°	180°	270°
CRB2BW10- \square S	29	15	8	14	$4_{-0.012}^{-0.004}$	$9^{-0}{ }_{-0.036}$	3	1	5	9	0.5	5	25	24	$\begin{gathered} \hline \text { M3 } \\ \text { (6) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.4 \\ & (5.5) \\ & \hline \end{aligned}$	-	M5		M3
CRB2BW10-■SE												8.5	9.5						M3	
CRB2BW15- \square S	34	20	9	18	$5^{-0.0004}$	$12_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	$\begin{aligned} & \text { M3 } \\ & \text { (10) } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M3 } \\ & \text { (5) } \end{aligned}$	M5		M3
CRB2BW15-■SE												11	10						M3	
CRB2BW20- \square S	42	29	10	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{gathered} \mathrm{M} 4 \\ (13.5) \\ \hline \end{gathered}$	$\begin{array}{r} 4.5 \\ (11) \\ \hline \end{array}$	$\begin{aligned} & \text { M4 } \\ & (7.5) \\ & \hline \end{aligned}$	M5		
CRB2BW20-■SE												14	13							
CRB2BW30-■S	50	40	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	$\begin{aligned} & \text { M5 } \\ & \text { (18) } \\ & \hline \end{aligned}$	$\begin{array}{\|c} 5.5 \\ (16.5) \\ \hline \end{array}$	$\begin{aligned} & \text { M5 } \\ & \text { (10) } \end{aligned}$	M5		
CRB2BW30-■SE												15.5	14							

Double vane type • Following illustrations show the intermediate rotation position when A or B port is pressurized.

Model	A	B	C	D	E (g6)	F (h9)	G1	G2	J	K	L	M	N	P	Q (Depth)			R	
															-Q1	-Q2	*Q3	90°	100°
CRB2BW15- \square D	34	20	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	4	1.5	6	10	0.5	5	25	29	M3	3.4	M3	M3	
CRB2BW15--DE												11	10		(10)	(6)	(5)		
CRB2BW20- \square D	42	29	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	4.5	1.5	7	10	0.5	9	25	36	$\begin{gathered} \hline \text { M4 } \\ (13.5) \end{gathered}$	$\begin{aligned} & 4.5 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { M4 } \\ & (7.5) \end{aligned}$	M5	
CRB2BW20- \square DE												14	13						
CRB2BW30-DD	50	40	13	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	5	2	8	12	1.0	10	25	43	M5		M5	M5	
CRB2BW30--DE												15.5	14		(18)	(16.5)	(10)		

Series CRB2

Dimensions: 40

Single vane type/Double vane type

CRB2BW40- \quad S/D

<Port location: Side ported>

3-5.5 depth*(Through)
(Body A side only)

CRB2BW40-■SE/DE <Port location: Axial ported>

2-M5 x 0.8
(Connection port)
for axial port

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type \bullet Following illustrations show actuators for 90° and 180° when B port is pressurized.

CDRB2BW10/15- $\square S$

CRB2

* 1 The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99(V), and D-S9P(V)

The length is 30 when any of the following auto switches are used: D-97 and D-93A

* 2 The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97, and D-93A.

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V), and D-S9P(V)
Note) For rotary actuators with auto switch unit, connection ports are side ports only.

* The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand switch.
(mm)

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \mathrm{~h} 9) \end{gathered}$	G	K	L	M	N	P	Q	R			Y
														90 ${ }^{\circ}$	180°	270°	
CDRB2BW10-■S	29	15	29	14	4	9	3	9	0.5	10	25	24	M 3×0.5 depth 5	M5 x 0.8		M 3×0.5	18.5
CDRB2BW15-■S	34	20	29	18	5	12	4	10	0.5	15	25	29	M 3×0.5 depth 5	M5 $\times 0.8$		M 3×0.5	18.5
CDRB2BW20-■S	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M 4×0.7 depth 7	M 5×0.8			25
CDRB2BW30-■S	50	40	31	22	8	16	5	12	1	30	25	43	M5 $\times 0.8$ depth 10	M5 $\times 0.8$			25

Series CDRB2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Double vane type • Illustrations below show the intermediate rotation position when A or B port is pressurized.

CDRB2BW10-■D

- 3 -M 3×0.5 depth 6

CDRB2BW15/20/30-■D
(Dimensions are the same as the single vane type.)

CDRB2BW15- CD CDRB2BW20/30-■D

* 1 The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99(V), and D-S9P(V)

The length is 30 when any of the following auto switches are used: D-97 and D-93A

* 2 The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97, and D-93A

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V), and D-S9P(V)

* 3 The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73, D-R80, D-S79, D-T79, and D-S7P

The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73, D-R80, and D-T79

Model	A	B	C	D	E (g6)	F (h9)	G	K	L	M	N	P	Q			S		Y
														90°	100°			
CDRB2BW15-■D	34	20	29	18	5	12	4	10	0.5	15	25	29	M 3×0.5 depth 5	M3 $\times 0.5$		$24^{* 1}$	$30^{* 1}$	18.5
CDRB2BW20- \square D	42	29	30	20	6	14	4.5	10	0.5	20	25	36	M 4×0.7 depth 7	M5 x 0.8		$25.5 * 3$	$34.5 * 3$	25
CDRB2BW30- \square D	50	40	31	22	8	16	5	12	1	30	25	43	M5 $\times 0.8$ depth 10		0.8			25

Single vane type/Double vane type CDRB2BW40- - S/D

CRB2
CRBU2
CRB1
MSU
CRJ
CRA1
CRQ2
MSQ
MRQ
D-
20-

Rotary Actuator with Angle Adjuster Vane Style
 Series CRB2BWU
 Size: 10, 15, 20, 30, 40

How to Order

Applicabie Auto Switch/Refer to page 11-1-1 for further information on auto switches.

						Load vo	tage				ire	gth			
Applicable size	Type	Electrical entry	Indicator light	(Output)		DC	AC	switch model	Lead wire type	$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	None (N)	Appla	cable ad
For 10 and 15		Grommet	No	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	24 V or less	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	IC	Relay, PLC
							100 V or less	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			Yes			12 V	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
							100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	-	-		
							-	T99		\bigcirc	\bigcirc	-	-		
						-		T99V		\bigcirc	\bigcirc	-	-		
				3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		\bigcirc	\bigcirc	-	-	circuit	
								S99V		\bigcirc	\bigcirc	-	-		
				3-wire (PNP)				S9P		\bigcirc	\bigcirc	-	-		
								S9PV		\bigcirc	\bigcirc	-	-		
For 20, 30 and 40		Grommet	Yes	2-wire	24 V	12 V	100 V	R73	Heavy-duty cord	\bigcirc	\bigcirc	-	-		Relay, PLC
		Connector					-	R73C		\bigcirc	\bigcirc	-	\bigcirc		
		Grommet	No			$5 \mathrm{~V}, 12 \mathrm{~V}$	100 V or less	R80		\bigcirc	\bigcirc	-	-		
		Connector					24 V or less	R80C		\bigcirc	\bigcirc	-	\bigcirc	circuit	
		Grommet	Yes			-	-	T79		\bigcirc	\bigcirc	-	-	-	
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		\bigcirc	\bigcirc	-	-	$\underset{\text { IIC }}{\text { ICuit }}$	
				3-wire (PNP)				S7P		\bigcirc	\bigcirc	-	-		

[^1]Construction (Same switch units are used for both single and double vane type.)

With angle adjuster
CRB2BWU10/15/20/30/40- \square D

Single vane

Double vane

Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die-casted	
(2)	Stopper lever	Carbon steel	
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	
(5)	Stopper block	Carbon steel	Zinc chromated
(6)	Block retainer	Carbon steel	Zinc chromated
(7)	Cap	Resin	
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	Hexagon socket head cap screw	Stainless steel	Special screw
(10)	Hexagon socket head cap screw	Stainless steel	Special screw
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head cap screw	Stainless steel	Hexagon nut will be used for size 10 only.
	Hexagon nut	Stainless steel	
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)
Note) These items (No. (11, (13), and (14) consist of auto switch unit and angle adjuster. Refer to pages 11-4-20 to 11-4-21 for detailed specifications.			

With angle adjuster + Auto switch unit
CDRB2BWU10/15- $\square_{\text {D }}^{\text {S }}$
CDRB2BWU20/30/40- $\square_{\text {D }}^{\text {S }}$

CDRB2BWU10

CRB2
CRBU2
CRB1
MSU

\triangle Precautions

FBe sure to read before handling. Refer to pages 11-13-3] ito 4 for Safety Instructions and Common Precautions 1 I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	0° to 230° (Size: 10,40$)^{*}$
	0° to 240° (Size: $\left.15,20,30\right)$
$180^{\circ+4}$	0° to 175°
$90^{\circ+4}$	

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRB2BWU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Single vane type
CRB2BWU10/15/20/30-■S

- Following illustrations show actuator for 90° when A port is pressurized.

Double vane type • Following illustrations show the CRB2BWU10- \square D
intermediate rotation position when A or B port is pressurized.

Double vane type

CRB2BWU15/20/30- \square D
Dimensions for double vane type sizes 15,20 , and 30 are the same as those of single type.

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G	H	K	L	M	N	P	Q
CRB2BWU10- \square S	29	15	19.5	14	4	9	3	3	9	0.5	10	25	24	M 3×0.5 depth 5
$\begin{aligned} & \text { CRB2BWU15- } \square \text { S } \\ & \hline \text { CRB2BWU15- } \square \text { D } \end{aligned}$	34	20	21.2	18	5	12	4	3.2	10	0.5	15	25	29	M 3×0.5 depth 5
CRB2BWU20- \square S	42	29	25	20	6	14	4.5	4	10	0.5	20	25	36	M4 x 0.7 depth 7
CRB2BWU30- \square S	50	40	29	22	8	16	5	4.5	12	1	30	25	43	M5 x 0.8 depth 10

Model	R			
	90°	100°	180°	270°
CRB2BWU10- \square S	M5 x 0.8	-	M5 x 0.8	M3 $\times 0.5$
CRB2BWU10- \square D	*Refer to the drawing.		-	
CRB2BWU15- \square S	M5 x 0.8	-	M5 x 0.8	M3 $\times 0.5$
CRB2BWU15- \square D	M3 $\times 0.5$		-	
CRB2BWU20- \square S	M5 x 0.8	-	M5	0.8
CRB2BWU20-■D	M5 x 0.8		-	
CRB2BWU30- \square S	M5 x 0.8	-	M5	0.8
CRB2BWU30- \square D	M5 x 0.8		-	

Single vane type/Double vane type With angle adjuster
CRB2BWU40-■S/D

Series CRB2BWU

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type
CDRB2BWU10/15- \square

- Following illustrations show actuator for 90° when A port is pressurized.

* 1. The length is 24 when any of the following auto switches are used: D-90, D-90 A, D-S99(V), D-T99(V), and D-S9P(V). The length is 30 when any of the following auto switches are used: D-97 and D-93A.
* 2 . The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97, and D-93A.
The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V), and D-S9P(V).

Single vane type

Double vane type
CDRB2BWU15/20/30- \square D
Dimensions for double vane type sizes 15, 20, and 30 are the same as those of single type.

Model	A	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G	K	L	M
CDRB2BWU10- \square S	29	15	45.5	14	4	9	3	9	0.5	10
CDRB2BWU15-■S	34	20	47	18	5	12	4	10	0.5	15
CDRB2BWU15-■D										
CDRB2BWU20- \square	42	29	51	20	6	14	4.5	10	0.5	20
CDRB2BWU20-D										
CDRB2BWU30-■S	50	40	55.5	22	8	16	5	12	1	30
CDRB2BWU30-D										

Model	N	P	Y	Q	R			
					90°	100°	180°	270°
CDRB2BWU10- \square S	25	24	18.5	M3 x 0.5 depth 5	M5 $\times 0.8$	-	M5 00.8	M5 $\times 0.8$
CDRB2BWU10-7D					:Refer to the drawing.			-
CDRB2BWU15- \square S	25	29	18.5	M3 x 0.5 depth 5	M5 $\times 0.8$	-	M5 0.8	M5 $\times 0.8$
CDRB2BWU15-7					M3 \times	0.5		
CDRB2BWU20- \square S	25	36	25	M4 x 0.7 depth 7	M5 $\times 0.8$	-	M5	$\times 0.8$
CDRB2BWU20-■D					M5 x 0.8			
CDRB2BWU30-■S	25	43	25	M5 x 0.8 depth 10	M5 $\times 0.8$	-	M5	x 0.8
CDRB2BWU30-7					M5 x	0.8	-	-

Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.

- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switch.

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type CDRB2BWU40- \square S/D

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system.

Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

-XA1 to XA24
Applicable shaft type: w (Standard)

Shaft Pattern Sequencing Symbol

Axial: Top (Long shaft side)						
Symbol	Description	Applicable size				
		10	15	20	30	40
XA1	Shaft-end female thread		\bigcirc	-	\bigcirc	
XA3	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA5	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA7	Stepped round shaft with male thread	\bigcirc	\bigcirc	-	\bigcirc	
XA9	Modified length of standard chamfer	\bullet	\bullet	-	\bigcirc	
XA11	Two-sided chamfer	\bigcirc			\bigcirc	
XA14 *	Shaft through-hole + Shaft-end female thread		\bigcirc	-	\bigcirc	
XA17	Shortened shaft	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
XA21	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA23	Right-angle chamfer	\bigcirc	\bigcirc	-	\bigcirc	
XA24	Double key					\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Axial: Bottom (Short shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	40
XA2 *	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA4 *	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA6 *	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA8*	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA10 *	Modified length of standard chamfer	\bullet	\bullet	-	\bigcirc	\bigcirc
XA12 *	Two-sided chamfer	-	\bullet	\bullet	\bigcirc	\bigcirc
XA15 *	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA18 *	Shortened shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA22 *	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13 *			\bullet	\bullet	\bullet	\bullet
XA16 *	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19 *	Shortened shaft	\bullet	\bullet		\bullet	
XA20 *	Reversed shaft	\bullet	\bullet		\bullet	\bullet

Combination

XA \square Combination

A combination of up to two $\mathrm{XA} \square$ s are available.
Example: -XA1 A24
CRB?

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 11-2-34 to 11-2-35 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA1 to XA24
XC1 *	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2 *	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3 *	Change the screw position	10, 15, 20, 30, 40	\bigcirc
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7 *	Reversed shaft		-
XC30	Fluorine grease		-

* These specifications are not available for rotary actuators with auto switch unit and

These specifica
angle adjuster.
A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: -XA1A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Size	$\mathbf{X m}$	$\mathbf{Q 1}$
$\mathbf{1 5}$	4 to 18	M3
$\mathbf{2 0}$	4.5 to 20	M3, M4
$\mathbf{3 0}$	5 to 22	M3, M4, M5

Symbol: A5 The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into

 a stepped round shaft with male threads.(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

(mm)			
Size	X	L1 max	Q1
10	7.5 to 14	X-3	M3
15	10 to 18	X-4	M3, M4
20	12 to 20	X-4.5	M3, M4, M5
30	14 to 22	X-5	$\begin{aligned} & \text { M3, M4, } \\ & \text { M5, M6 } \end{aligned}$

Axial: Bottom (Short shaft side)

Symbol: A2 The short shaft can be further shortened by machining female threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .) - Applicable shaft type: W

Symbol: A6 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Symbol: A8 The short shaft can be further shortened by machining it

 Tho a stepped round shaft with male threads.(If shortening the shaft is not required, indicate " $*$ " for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	Q2
$\mathbf{1 0}$	5.5 to 8	$\mathrm{Y}-\mathbf{1}$	M 3
$\mathbf{1 5}$	7.5 to 9	$\mathrm{Y}-1.5$	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{2 0}$	9 to 10	$\mathrm{Y}-1.5$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{3 0}$	11 to 13	$\mathrm{Y}-\mathbf{2}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{4 0}$	$\mathbf{1 4}$ to 15	$\mathrm{Y}-4.5$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$,
$\mathrm{M6}, \mathrm{M} 8$			

Axial: Top (Long shaft side)

Symbol: A9

The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Size
$\mathbf{1 0}$

Symbol: A11
The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required,
indicate " $*$ " for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore size of $\varnothing 30$
- Applicable shaft type: W

Symbol: A14
Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 max. $=6 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft

- Applicable shaft type: W
m)

Size	\mathbf{X}
$\mathbf{1 0}$	3 to14
$\mathbf{1 5}$	4 to18
$\mathbf{2 0}$	4.5 to 20
$\mathbf{3 0}$	5 to 22

Axial: Bottom (Short shaft side)

Symbol: A10 The short shaft can be further shortened by changing the length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

		(mm)		
		Size	Y	L2
		10	3 to 8	$5-(8-Y)$ to $(Y-1)$
54		15	3 to 9	$6-(9-Y)$ to $(Y-1.5)$
$\stackrel{11}{9}$		20	3 to 10	$7-(10-Y)$ to $(Y-1.5)$
		30	5 to 13	$8-(13-Y)$ to $(Y-2)$
		40	7 to 15	$9-(15-Y)$ to $(Y-2)$

Symbol: A12 The short shaft can be further shortened by machining a
If altering the standard chamfer and shortening the shaft are not required,
indicate " $*$ " for both the L2 and Y dimensions.)

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more,
and 1 mm or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

			(mm)
Size	\mathbf{Y}	L2	L4 max
$\mathbf{1 0}$	3 to 8	$5-(8-Y)$ to $(Y-1)$	$Y-1$
$\mathbf{1 5}$	3 to 9	$6-(2-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{2 0}$	3 to 10	$7-(10-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{3 0}$	5 to 13	$8-(13-Y)$ to $(Y-2)$	$Y-2$
$\mathbf{4 0}$	7 to 15	$9-(15-Y)$ to $(Y-4.5)$	$Y-4.5$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- A parallel keyway is used on the long shaft for size 40.
- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 max. $=8 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
20	1.5 to 10
$\mathbf{3 0}$	2 to13
40	4.5 to15

m)

Series CRB2

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Double Shaft

Symbol: A13

Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)
Size	d1
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
40	$\varnothing 2.5$ to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	3 to14	1 to 8
$\mathbf{1 5}$	4 to18	1.5 to 9
$\mathbf{2 0}$	4.5 to 20	1.5 to10
$\mathbf{3 0}$	5 to 22	2 to13

Symbol: A23

The long shaft can be further shortened by machining right-angle double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate
*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or
more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

		(mm)	
Size	X	L1	L3 max
$\mathbf{1 0}$	5 to 14	$9-(14-X)$ to $(X-3)$	$X-3$
$\mathbf{1 5}$	8 to 18	$10-(18-X)$ to $(X-4)$	$X-4$
$\mathbf{2 0}$	10 to 20	$10-(20-X)$ to $(X-4.5)$	$X-4.5$
$\mathbf{3 0}$	10 to 22	$12(22-X)$ to $(X-5)$	$X-5$

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.
diameter is equivalent to the

- Not available for size 10 .
- Not available for size 10 . L 1 is, as a rule, twice the thread size.
- The maximum dimension L1 is, as a r
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
(Example) For M5: L1 max. = 10 mm
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

(mm)				
M Size	15	20	30	40
M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
M4 x 0.7	-	ø3.3	ø3.3	-
M5 x 0.8	-	-	ø4.2	-

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	3 to 10	1 to 12
$\mathbf{1 5}$	4 to 11.5	1.5 to 15.5
$\mathbf{2 0}$	4.5 to 13	1.5 to 17
$\mathbf{3 0}$	5 to 16	2 to 19
$\mathbf{4 0}$	6.5 to 17	-

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

		(mm)
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Series CRB2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA31 to -XA47: Shaft Pattern Sequencing II
Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II
-XA31 to XA47
Applicable shaft type: J, K, S, T, Y

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	$\mathrm{J}, \mathrm{K}, \mathrm{T}$		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	$\mathrm{J}, \mathrm{K}, \mathrm{T}$	\bullet	\bullet	\bullet	\bullet	\bullet
XA45	Middle-cut chamfer	$\mathrm{J}, \mathrm{K}, \mathrm{T}$	\bullet	\bullet	\bullet	\bullet	\bullet
XA47	Machined keyway	$\mathrm{J}, \mathrm{K}, \mathrm{T}$			\bullet	\bullet	

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32 *	Shaft-end female thread	S, Y		\bigcirc	\bullet	\bigcirc	
XA34 *	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA38 *	Stepped round shaft	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA46 *	Middle-cut chamfer	K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39 *	Shaft through-hole	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA40 *	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41 *	Shaft through-hole	J		-	-	-	\bigcirc
XA42 *	Shatt through-hole + Shatt-end female thread	S, Y		-	\bigcirc	-	\bigcirc
XA43 *	Shatt through-hole + Shatt-end female thread	K, T		\bullet	\bigcirc	\bigcirc	\bigcirc
XA44 *	Shat through-hole + Shatt-end female thread	J		-	\bigcirc	\bigcirc	\bigcirc

[^2]
Combination

XA \square Combination

Symbol	Combination					
XA31	XA31					
XA32	SY	XA32				
XA33	-	JKT	XA33			
XA34	-	-	JKT	XA34		
XA37	-	-	-	JKT	XA37	
XA38	-	-	K	-	K	XA38

A combination of up to two $X A \square$ s are available.
Example: -XA31A32

XA \square, XC \square Combination
Combination other than -XA \square, such as Made to Order (-XCD), is also available. Refer to page 11-2-34 to 11-2-35 for details of made-to-order specifications.

Symbol	Description	Applicable size	Combination
			XA31 to XA47
XC1	Change connection port location	10, 15, 20, 30, 40	-
XC2	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3	Change the screw position	$10,15,20,30,40$	-
XC4	Change rotation range		\bigcirc
XC5	Change rotation range between 0 to 200°		\bigcirc
XC6	Change rotation range between 0 to 110°		\bigcirc
XC7	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.
A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: -XA33A34C27C3C

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A37 The long shaft can be further shortened by machining it y into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C1, indicate "*" instead.)

Size	X	L1 max	D1
10	4 to 14	X-3	ø3 to ø3.9
15	5 to 18	X-4	$\varnothing 3$ to ø3.9
20	6 to 20	X-4.5	ø3 to ø5.9
30	6 to 22	X - 5	$\varnothing 3$ to $\varnothing 7.9$
40	8 to 30	X-6.5	ø3 to ø9.9

Symbol: A45 The long shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T

Size	X	W1	L1 max	L3 max
	J K T	J K T	J K T	J K
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

The maximum dimension 2 is, as a rule twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times the thread size.

- Applicable shaft types: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times the
thread size.
- Applicable shaft types: J, K, T

J axis	(mm)			
		Q2		
	$\text { Size } \overbrace{\substack{\text { shatt } \\ \text { trpe }}}$	J	K	T
$\stackrel{+}{+} \square$	10	Not available		
\pm	15	M3		
$\left.\begin{array}{ll} 5 \\ 1 \\ 1 & 1 \end{array}\right]$	20	M3, M4		
$\begin{aligned} & \text { II } \\ & \mathrm{N} \end{aligned}$	30	M3, M4, M5		
$\underline{Q 2}=M_{L--1}^{--1}$	40	M3, M4, M5		

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C2, indicate "*" instead.)

	(mm)		
Size	Y	L2 max	Q2
$\mathbf{1 0}$	2 to 14	Y - 1	$\varnothing 3$ to $\varnothing 3.9$
$\mathbf{1 5}$	3 to 18	Y -1.5	$\varnothing 3$ to $\varnothing 4.9$
$\mathbf{2 0}$	3 to 20	Y -1.5	$\varnothing 3$ to $\varnothing 5.9$
$\mathbf{3 0}$	3 to 22	Y - 2	$\varnothing 3$ to $\varnothing 7.9$
$\mathbf{4 0}$	6 to 30	Y - 4.5	$\varnothing 5$ to $\varnothing 9.9$

Symbol: A46 The short shaft can be further shortened by machining a middle-cut chamfer into it. (The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension Y.)

- Applicable shaft type: K

(mm)

Size	Y	W2	L2 max	L4 max
$\mathbf{1 0}$	4.5 to 14	0.5 to 2	Y - 1	L2 - 1
$\mathbf{1 5}$	5.5 to 18	0.5 to 2.5	Y - 1.5	L2 - 1
$\mathbf{2 0}$	6 to 20	0.5 to 3	Y - 1.5	L2 - 1
$\mathbf{3 0}$	8.5 to 22	0.5 to 4	Y -2	L2 - 2
$\mathbf{4 0}$	13.5 to 30	0.5 to 5	Y - 4.5	L2 - 2

Axial: Top (Long shaft side)

Symbol: A47 Machine a keyway into the long shaft. (The position of the keyway is the same as the standard one.) The key must be ordered separately. - Applicable shaft types: J, K, T				
(mm)				
	Size	a1	L1	N1
,		2h9 ${ }_{-0.025}^{0}$	10	6.8
	30	3h9 ${ }_{-0.025}^{0}$	14	9.2

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)

- Applicable shaft types: $\mathrm{S}, \mathrm{Y} \bullet$ A parallel keyway is used on the long shaft for
- Equal dimensions are indicated by size 40 .
the same marker.

Y axis

- Minimum machining diameter for d1 is 0.1 mm .

Symbol: A41

Applicable to single vane type only

Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Size	$\mathbf{d} 1$
$\mathbf{1 5}$	$\varnothing 2.5$
$\mathbf{2 0}$	$\varnothing 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	ø2.5 to $\varnothing 4.5$

Symbol: A43

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose
diameter is equivalent to the
\bullet Not available for size 10 .

- Applicable shaft types: K, T
- Not available for size 10 .
- Equal dimensions are indicated by the same
- The maximum dimension L1
a rule, twice the thread size. marker.
a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft

f T shaft				(mm)
Size	15	20	30	40
Thread	K T	K T	K T	K T
M3 x 0.5	ø2.5	ø2.5	ø2.5	$ø 2.5$
M4 $\times 0.7$	-	ø3.3	ø3.3	ø3.3
M5 x 0.8	-	-	$\varnothing 4.2$	$ø 4.2$

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated by the same marker.
- Not available for size 10.

Symbol: A42

Applicable to single vane type only

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is, as
a rule, twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft
of S shaft

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft types: S, Y
- Equal dimensions are indicated by the same marker.

				(mm)
Size	15	20	30	40
Thread	S Y		S Y	S Y
M3 x 0.5	ø2.5	ø2.5	$ø 2.5$	ø2.5
M4 x 0.7	-	ø3.3	ø3.3	-
M5 x 0.8	-	-	$ø 4.2$	-

Symbol: A44

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10
- Not available for size 10.
- A parallel keyway is used on the long shaft for

The maximum dimension L1
a rule, twice the thread size.

- Applicable shaft type: J
(Example) For M5: L1 max. $=10 \mathrm{~mm} \bullet$ Equal dimensions are indicated by the same
 marker.

Size Thread	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
M3 $\times 0.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$	$\varnothing 2.5$
M4 $\times 0.7$	-	$\varnothing 3.3$	$\varnothing 3.3$	$\varnothing 3.3$
M5 $\times 0.8$	-	-	$\varnothing 4.2$	$\varnothing 4.2$

Series CRB2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC1, 2, 3, 4, 5, 6, 7, 30
-XC1 to XC7, -XC30

Made to Order Symbol

Symbol	Description	Applicable shaft type	$\begin{gathered} \text { Applicable } \\ \text { size } \end{gathered}$
		$\mathbf{W}, \mathbf{J}, \mathbf{K}, \mathbf{S}, \mathbf{T}, \mathbf{Y}$	
XC1 *	Add connection port	\bullet	
XC2 *	Change threaded holes to through-hole	\bigcirc	10
XC3 *	Change the screw position	\bigcirc	15
XC4	Change of rotation range and direction	\bigcirc	
XC5	Change of rotation range and direction	\bigcirc	
XC6*	Change of rotation range and direction	\bigcirc	30
XC7	Reversed shaft	W, J	40
XC30	Fluoro grease	\bigcirc	

* For products with auto switch; angle adjustment unit cannot be selected.

Symbol: C1 Add connecting ports on Body (A)
(An additionally machined port will have an aluminum surface since it will be left unfinished.)

- Parallel keyway is used on the long shaft for size 40.
- This specification is not available for the rotary actuator with auto switch unit.

Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	-	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

Symbol: C5

Start of rotation is 45° up from the bottom of the vertical line to the left side

- Rotation tolerance for CRB2BW10 is $+5_{0}^{\circ}$.
- Port size for CRB2BW10, 15 is M3
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.
(Top view from long shaft side)

Symbol: C7

The shafts are reversed.

- Parallel keyway is used on the long shaft for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	12	10
$\mathbf{1 5}$	15.5	11.5
$\mathbf{2 0}$	17	13
$\mathbf{3 0}$	19	16
$\mathbf{4 0}$	28	17

Symbol: C4

Change rotation range to 90°
Rotation starts from the horizontal line (90° down from the top to the right side)

- Rotation tolerance for CRB2BW10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.
(Top view from long shaft side)

Symbol: C6

Applicable to single vane type only
Start of rotation is horizontal line (90° down from the top to the left side).

- Rotation tolerance for CRB2BW10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized. (Top view from long shaft side)

Symbol: C30 Change the standard grease to fluoro grease (Not for low-speed specification.)

CBB2

Rotary Actuator: Free Mount Type Vane Style Series CRBU2
 Size: 10, 15, 20, 30, 40

Rotary Actuator: Free Mount Type Vane Style

Series CRBU2
Size: 10, 15, 20, 30, 40

How to Order

Applicable Auto Switch/Refer to page 11-1-1 for further information on auto switches.

Applicable size	Type	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire type	Lead wire length (m) *				Applicable load	
					DC		AC			$\begin{gathered} \hline 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} \hline 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ \text { (Z) } \end{gathered}$	None (N)		
For 10 and 15	Reed switch	Grommet		2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	$5 \mathrm{~V}, 12 \mathrm{~V}, 24 \mathrm{~V}$	90	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
			No				$\begin{array}{r} 5 \mathrm{~V}, 12 \mathrm{~V}, \\ 24 \mathrm{~V}, 100 \mathrm{~V} \\ \hline \end{array}$	90A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
			Yes			-	-	97	Parallel cord	\bigcirc	\bigcirc	\bigcirc	-	-	
	Solid state switch						100 V	93A	Heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	-		
							-	T99		\bigcirc	\bigcirc	-	-		
						-		T99V		-	\bigcirc	-	-		
				3-wire (NPN) 3-wire (PNP)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S99		-	\bigcirc	-	-	IC circuit	
								S99V		-	\bigcirc	-	-		
								S9P		-	\bigcirc	-	-		
								S9PV		\bullet	\bigcirc	-	-		
For 20, 30, and 40	Reed switch	Grommet	Yes	2-wire	24 V	-	100 V	R73	Heavy-duty cord	\bigcirc	\bigcirc	-	-	-	Relay, PLC
		Connector						R73C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet	No			$\begin{aligned} & 48 \mathrm{~V}, \\ & 100 \mathrm{~V} \end{aligned}$	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V}, \\ 100 \mathrm{~V} \\ \hline \end{gathered}$	R80		-	\bigcirc	-	-	IC circuit	
		Connector						R80C		-	\bigcirc	\bigcirc	\bigcirc		
	Solid state switch	Grommet	Yes			-	-	T79		-	\bigcirc	-	-	-	
		Connector						T79C		\bigcirc	\bigcirc	\bigcirc	\bigcirc		
		Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79		-	\bigcirc	-	-	IC circuit	
				3-wire (PNP)				S7P		\bigcirc	\bigcirc	-	-		

* Lead wire length symbols:

Single Vane Specifications

Model (Size)	CRBU2W10-■S	CRBU2W15-■	CRBU2W20-■	CRBU2W30-■S	CRBU2W40-■S
Rotating angle	$90^{\circ}, 180^{\circ}, 270^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range ($\left.\mathrm{sec} / 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy ${ }^{(2)}$ (J)	0.00015	0.001	0.003	0.02	0.04
		0.00025	0.0004	0.015	0.033
Shaft Allowable radial load (N)	15		25	30	60
load Allowable thrust load (N)	10		20	25	40

Bearing typ

Port location	Side ported or Axial ported		
Shaft type	Double shaft (Double shaft with single flat on both shafts)		(Longs Soulte esey \langle Shinge filat)
Angle adjustable ${ }^{(3)}$	0 to 230°	0 to 240°	0 to 230°

Note 3) Adjustment range in the table is for 270°. For 90° and 180°, refer to page 11-3-5.
Double Vane Specifications

Model (Size)	CRBU2W10-D	CRBU2W15-7D	CRBU2W20-םD	CRBU2W30-7D	CRBU2W40-7D
Rotating angle	$90^{\circ}, 100^{\circ}$				
Fluid	Air (Non-lube)				
Proof pressure (MPa)	1.05			1.5	
Ambient and fluid temperature	5 to $60^{\circ} \mathrm{C}$				
Max. operating pressure (MPa)	0.7			1.0	
Min. operating pressure (MPa)	0.2	0.15			
Speed regulation range (sec/ $\left./ 90^{\circ}\right)^{(1)}$	0.03 to 0.3			0.04 to 0.3	0.07 to 0.5
Allowable kinetic energy (J)	0.0003	0.0012	0.0033	0.02	0.04
Shaft Allowable radial load (N)	15	5	25	30	60
load Allowable thrust load (N)	10	0	20	25	40
Bearing type	Bearing				
Port location	Side ported or Axial ported				
Shaft type	Double shaft (Double shaft with single flat on both shafts) (Long slatht hey (Shatinge flat)				
Angle adjustable ${ }^{(3)}$	0 to 90°				0 to 230°

,
Note 1) Make sure to operate within the speed regulation range. Exceeding the maximum speeds can cause the unit to stick or not operate.
Note 2) The upper numbers in this section in the table indicate the energy factor when the rubber bumper is used (at the end of the rotation), and the lower numbers indicate the energy factor when the rubber bumper is not used.
Note 3) Adjustment range in the table is for 100°. For 90°, refer to page 11-3-5.

Inner Volume and Connection Port

\triangle Caution

Fe sure to read before handling. Refer I I to pages 11-13-3 to 4 for Safety I I Instructions and Common Precautions I Ion the products mentioned in this I I catalog, and refer to pages 11-1-4 to 6 I I for Precautions on every series. JIS Symbol

Series CRBU2

Rotary Actuator: Replaceable Shaft
A shaft can be replaced with a different shaft type except standard shaft type (W).

Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
C	8	9	10	13	15
D	14	18	20	22	30

Note 1) Only side ports are available except for basic type.
Note 2) Dimensions and tolerance of the shaft and single flat (a parallel keyway for size 40)
are the same as the standard.

Copper-free

Use the standard vane type rotary actuators in all series to prevent any adverse effects to color CRTs due to copper ions or fluororesin.

Specifications

Vane type	Single/Double vane				
Size	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
Operating pressure range (MPa)	0.2 to 0.7	0.15 to 0.7	0.15 to 1.0		
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	Side ported or Axial ported				
Port location	Sountable				
Shaft type	Double shaft (Shaft with single flat on both shafts)	 Single flat			
Auto switch					

. Precautions

; Be sure to read before handling. Refer to pages 11-13-3 ; It to 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

\triangle Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	
	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
$180^{\circ+4} 0$	0 to $240^{\circ}($ Size: $15,20,30)$
$90^{\circ+4}$	0 to 175°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself (i.e., without angle adjuster).
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2

Effective Output

Chamfered Position and Rotation Range: Top View from Long Shaft Side

Chamfered positions shown below illustrate the conditions of the actuators when B port is pressurized.

,

* For size 40 actuators, a parallel keyway will be used instead of chamfer.

Note) For single vane style, rotation tolerance of $90^{\circ}, 180^{\circ}$, and 270° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only. For double vane style, rotation tolerance of 90° actuators ${ }_{0}^{+5^{\circ}}$ will be for size 10 actuators only.

Construction: 10, 15, 20, 30, 40
Single vane type
Standard: CRBU2W10/15/20/30/40- \square S (3 female threads (one of them is indicated with "**") spaced equally apart in 120° are not available for size 10 .)

For 270°
(Top view from long shaft side)

(Long shaft side)

For 180°
 (Top view from long shaft side)

For 90°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Stainless steel *	
(4)	Stopper	Resin	For 270°
(5)	Stopper	Resin	For 180°
(6)	Bearing	High carbon chrome bearing steel	
(7)	Back-up ring	Stainless steel	
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	O-ring	NBR	
(10)	Stopper seal	NBR	Special seal

CRB2
CRBU2

With auto switch unit CDRBU2W10/15- \square D

CDRBU2W20/30/40- $\square_{\mathrm{D}}^{\mathrm{S}}$
CDRBU2W40-S/D

Component Parts

No.	Description	Material
(1)	Cover (A)	Resin
(2)	Cover (B)	Resin
(3)	Magnet lever	Resin
(4)	Holding block (A)	Aluminum alloy
(5)	Holding block (B)	Aluminum alloy
(6)	Holding block	Aluminum alloy
(7)	Switch block (A)	Resin
(8)	Switch block (B)	Resin
(9)	Switch block	Resin
(10)	Magnet	Magnetic body
(11)	Arm	Stainless steel
(12)	Hexagon socket head set screw	Stainless steel
(13)	Round head Phillips screw	Stainless steel
(14)	Round head Phillips screw	Stainless steel
(15)	Round head Phillips screw	Stainless steel
(16)	Round head Phillips screw	Stainless steel
(17)	Rubber cap	NBR (size 40 only)

* For CDRBU2W10, two round head Phillips screws (13), are required.

Series CRBU2

Construction: 10, 15, 20, 30, 40

Double vane type

Standard: CRBU2W10-■D

For 90°
(Top view from long shaft side)

(Long shaft side)

Standard: CRBU2W15/20/30/40- \square D

For 90°
(Top view from long shaft side)

(Long shaft side)

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Cover	Aluminum alloy	
(10)	Plate	Resin	
(11)	Hexagon socket head cap screw	Stainless steel	Special screw
(12)	O-ring	NBR	
(13)	Stopper seal	NBR	
(14)	Gasket	NBR	
(15)	O-ring	NBR	
(16)	O-ring	NBR	

For 100°
(Top view from long shaft side)

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum alloy	
(2)	Body (B)	Aluminum alloy	
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Stainless steel	
(5)	Stopper	Resin	
(6)	Stopper	Stainless steel	
(7)	Bearing	High carbon chrome bearing steel	
(8)	Back-up ring	Stainless steel	
(9)	Hexagon socket head cap screw	Stainless steel	Special screw
$(10$	O-ring	NBR	
(11)	Stopper seal	NBR	

Dimensions: 10, 15, 20, 30
Single vane type - Following illustrations show actuators for 90° and 180° when B port is pressurized.

CRBU2W \square - \square S
<Port location: Side ported>

CRBU2W $\square-\square$ SE
<Port location: Axial ported>

CRBU2W10■- \square SE
<Port location: Axial ported>

Series CRBU2

Dimensions: 10, 15, 20, 30
Double vane type - llustrations below show the intermediate rotation position when A or B port is pressurized.

CRBU2W10- \square D

<Port location: Side ported>

CRBU2W15/20/30-DD
<Port location: Side ported>(llustrations below show size 30 actuators.)

CRBU2W15/20/30--DE <Port location: Axial ported>

Model	A	B	C	D	E(g6)	F(h9)	G	H	J	K	L	M	N	P	Q1	R	S1	S2	T	U	V	W	X
CRBU2W15-DD	34	25	9	18	$5_{-0.012}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	6	10	0.5	10.510 .5		29	M3 x 0.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48
CRBU2W15-7DE													10			M3 $\times 0.5$							
CRBU2W20- \square	42	34.5	10	20	$6_{-0.012}^{-0.004}$	$14{ }_{-0.043}^{0}$	1.5	17	7	10	0.5	11.5	11	36	M4 x 0.7	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59
CRBU2W20- \square DE													13										
CRBU2W30- \square D	50	47.5	13	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{-0.00}$	217.5		8	12	1		13	43	M5 x 0.8	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69
CRBU2W30-7DE									15.5														

Dimensions: 40

Single vane type/Double vane type

CRBU2W40- \square S/D

<Port location: Side ported>

CRBU2W40-DSE/DE

<Port location: Axial ported>

Series CRBU2

Dimensions: 10, 15, 20, 30 (With auto switch unit)
Single vane type Following illustrations show actuators for 90° and 180° when B port is pressurized.
CDRBU2W10/15- \square S
CDRBU2W20/30-■S

*1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).
The length is 30 when any of the following auto switches are used: D-97 and D-93A
*2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.
The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

For rotary actuators with auto switch unit connection ports are side ports only.

- The above exterior view drawings illustrate rotary actuators with one right-hand and one left-hand

(mm)																					
Model	A	B	C	D	E(g6)	$F(\mathrm{~h} 9)$	G	H	K	L	M	N	R	S1	S2	T	\mathbf{U}	V	W	X	Y
CDRBU2W10-■S	29	22	29	14	$4_{-0.012}^{-0.004}$	$9_{-0.036}^{0}$	1	15.5	9	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	17	3	25	31	41	18.5
CDRBU2W15-■S	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5
CDRBU2W20- \square	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59	25
CDRBU2W30-■S	50	47.5	31	22	$8{ }_{-0.014}^{-0.005}$	$16-0.043$	2	17.5	12	1	12	13	M5 x 0.8	5.5	M5 x 0.8	29	4.5	42	52	69	25

Double vane type - lllustrations below show the intermediate rotation position when A or B port is pressurized.

CDRBU2W10- \square D

CDRBU2W15/20/30-■D
(Illustrations below show size 20 actuators.)

(Approx. 26.5 for connector type) CDRBU2W20/30-■D

* 1. The length is 24 when any of the following auto switches are used: D-90, D-90A, D-S99(V), D-T99 and D-S9P(V).

The length is 30 when any of the following auto switches are used: D-97 and D-93A.

* 2. The angle is 60° when any of the following auto switches are used: D-90, D-90A, D-97 and D-93A.

The angle is 69° when any of the following auto switches are used: D-S99(V), D-T99(V) and D-S9P(V).

* 3. The length (Dimension S) is 25.5 when any of the following grommet type auto switches are used: D-R73, D-R80, D-S79, D-T79, and D-S7P.

The length (Dimension S) is 34.5 when any of the following connector type auto switches are used: D-R73, D-R80, and D-T79.

(mm)																							
Model	A	B	C	D	E (g6)	$F(h 9)$	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y		Z
CDRBU2W15- \square	34	25	29	18	$5_{-0.012}^{-0.004}$	$12_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 x 0.8	3.5	M3 x 0.5	21	3	29	36	48	18.5	$24 * 1$	30 "1
CDRBU2W20- \square	42	34.5	30	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M5 x 0.8	4.5	M4 x 0.7	26	4	36	44	59	25	5	$5^{* 3}$
CDRBU2W30-■D	50	47.5	31	22	$8_{-0.014}^{-0.005}$	$16_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 x 0.8	29	4.5	42	52	69	25		

Series CRBU2

Dimensions: 40 (With auto switch unit)

Single vane type/Double vane type

CDRBU2W40- \square S $/ D$

D-

Rotary Actuator with Angle Adjuster Free Mount Type, Vane Style Series CRBU2WU

Size: 10, 15, 20, 30, 40

How to Order

Construction: 10, 15, 20, 30, 40

Single vane type/Double vane style
With angle adjuster
CRBU2W10/15/20/30/40- $\square_{\mathrm{D}}^{\text {S }}$

Single vane
Double vane
Component Parts

No.	Description	Material	Note
(1)	Stopper ring	Aluminum die-casted	
(2)	Stopper lever	Carbon steel	Zinc chromated
(3)	Lever retainer	Carbon steel	Zinc chromated
(4)	Rubber bumper	NBR	Zinc chromated
(5)	Stopper block	Carbon steel	
(6)	Block retainer	Carbon steel	Special screw
(7)	Cap	Resin	Special screw
(8)	Hexagon socket head cap screw	Stainless steel	Special screw
(9)	Hexagon socket head cap screw	Stainless steel	
(10)	Hexagon socket head cap screw	Stainless steel	
(11)	Joint	Aluminum alloy	Note)
(12)	Hexagon socket head set screw	Stainless steel	Hexagon nut will be used for CDRBU2W10 only.
	Hexagon nut	Stainless steel	
(13)	Round head Phillips screw	Stainless steel	Note)
(14)	Magnet lever	-	Note)

Note) These items (no. 11, 13, and 14) consist of auto switch unit and angle adjuster. Refer to page 11-4-20 to 11-4-27 for only.

With angle adjuster + Auto switch unit
CDRBU2WU10/15- $\square_{\mathrm{D}}^{\mathrm{S}} \quad$ CDRBU2WU20/30/40- $\square_{\mathrm{D}}^{\mathrm{S}}$

CRB2
CRBU2

- For single vane type:

Illustrations above show actuators for 90° and 180° when B port is pressurized.

- For double vane type:

Illustrations above show the intermediate rotation position when A or B port is pressurized.

\triangle Precautions

「Be sure to read before handing. Refer to pages 11-13-3 Ito 4 for Safety Instructions and Common Precautions I I on the products mentioned in this catalog, and refer to I pages 11-1-4 to 6 for Precautions on every series.

Angle Adjuster

1 Caution

1. Since the maximum angle of the rotation adjustment range will be limited by the rotation of the rotary actuator itself, make sure to take this into consideration when ordering.

Rotating angle of the rotary actuator	Rotating angle adjustment range
$270^{\circ+4}$	0 to $230^{\circ}(\text { Size: } 10,40)^{*}$
	0 to $240^{\circ}($ Size: $15,20,30)$
$180^{\circ+4}+0$	0 to 175°
$90^{\circ+4}$	0 to 85°

* The maximum adjustment angle of the angle adjuster for size 10 and 40 is 230°.

2. Connection ports are side ports only.
3. The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.
4. Use a 100° rotary actuator if you desire to adjust the angle to 90° using a double vane type.

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster)

Double vane type
CRBU2WU10-■D

CRBU2WU15/20/30-DD
Illustrations below show size 20 actuators.

* Illustrations above show the intermediate rotation position when A or B port is pressurized.

(mm)																					
Model	A	B	C	D	E(g6)	F(h9)	G	H	K	L	M	N	R	S1	S2	T	U	V	W	X	Y
CRBU2WU15-■D	34	25	21.2	18	$5_{-0.002}^{-0.004}$	$12{ }_{-0.043}^{0}$	1.5	15.5	10	0.5	10.5	10.5	M5 $\times 0.8$	3.5	M3 $\times 0.5$	21	3	29	36	48	3.2
CRBU2WU20-■D	42	34.5	25	20	$6_{-0.012}^{-0.004}$	$14_{-0.043}^{0}$	1.5	17	10	0.5	11.5	11	M 5×0.8	4.5	M4 $\times 0.7$	26	4	36	44	59	4
CRBU2WU30-■D	50	47.5	29	22	$8_{-0.014}^{-0.005}$	$16{ }_{-0.043}^{0}$	2	17.5	12	1	12	13	M5 $\times 0.8$	5.5	M5 x 0.8	29	4.5	42	52	69	4.5

Single vane type/Double vane type
CRBU2WU40- - S/D

Series CRBU2WU

Dimensions: 10, 15, 20, 30 (With angle adjuster and auto switch unit)

Single vane type
CDRBU2WU10/15- \square S

CDRBU2WU20/30-■S

Model	B	C	D	R
CDRBU2WU10- $\square \mathbf{S}$	22	45.5	14	$\mathrm{M} 5 \times 0.8$
CDRBU2WU15- $\square \mathbf{S}$	25	47	18	$\mathrm{M} 5 \times 0.8$
CDRBU2WU20- $\square \mathbf{S}$	34.5	51	20	$\mathrm{M} 5 \times 0.8$
CDRBU2WU30- $\square \mathbf{S}$	47.5	55.5	22	$\mathrm{M} 5 \times 0.8$

Double vane type

CDRBU2WU10/15-■D

(mm)				
Model	B	C	D	R
CDRBU2WU10-7D	31	45.5	14	M5 x 0.8
CDRBU2WU15--D	25	47	18	M5 $\times 0.8$
CDRBU2WU20-DD	34.5	51	20	M5 x 0.8
CDRBU2WU30-DD	47.5	55.5	22	M5 x 0.8

CDRBU2WU20/30-■D

* Illustrations above show the intermediate rotation position when A or B port is pressurized.
Note) • For rotary actuators with angle adjuster and auto switch unit, connection ports are side ports only.
- The above exterior view drawings illustrate the rotary actuator equipped with one right-hand and one left-hand switches.

Dimensions: 40 (With angle adjuster and auto switch unit)

Single vane type/Double vane type

 CDRBU2WU40-■S/D

Series CRBU2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with simple made-to-order system.
 Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I

Applicable shaft type: W (Standard)

Shaft Pattern Sequencing Symbol

Axial: Top (Long shaft side)

Symbol	Description	Applicable size				
		10	15	20	30	40
XA1	Shaft-end female thread		\bigcirc	\bigcirc	\bigcirc	
XA3	Shaft-end male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA5	Stepped round shaft	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA7	Stepped round shaft with male thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA9	Modified length of standard chamfer	-	\bigcirc	-	\bigcirc	
XA11	Two-sided chamfer	\bigcirc			\bigcirc	
XA14*	Shaft through-hole + Shaft-end female thread		\bigcirc	\bigcirc	\bullet	\bigcirc
XA17	Shortened shaft	-	\bigcirc	-	\bigcirc	
XA21	Stepped round shaft with double-sided chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA23	Right-angle chamfer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
XA24	Double key					\bigcirc

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

Axial: Bottom (Short shaft side)

Symbol	Description		Applicable size			
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA2 ${ }^{*}$	Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA4 *	Shaft-end male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA6 *	Stepped round shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA8 *	Stepped round shaft with male thread	\bullet	\bullet	\bullet	\bullet	\bullet
XA10 *	Modified length of standard chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA12 *	Two-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet
XA15 *	Shaft through-hole + Shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA18* *	Shortened shaft	\bullet	\bullet	\bullet	\bullet	\bullet
XA22 *	Stepped round shaft with double-sided chamfer	\bullet	\bullet	\bullet	\bullet	\bullet

Double Shaft

Symbol	Description	Applicable size				
		$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$
XA13 *	Shaft through-hole		\bullet	\bullet	\bullet	\bullet
XA16 *	Shaft through-hole + Double shaft-end female thread		\bullet	\bullet	\bullet	\bullet
XA19 *	Shortened shaft	\bullet	\bullet		\bullet	
XA20 *	Reversed shaft	\bullet	\bullet		\bullet	\bullet

Combination
YA \square Combination

A combination of up to two $X A \square$ s are available.
Example: -XA1 A24

Combination other than -XA \square, such as Made to Order (-XC \square), is also available.
Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

A total of four $X A \square$ and $X C \square$ combinations is available.
Example: -XA1A24C1C30
-XA2C1C4C30

Axial: Top (Long shaft side)

Symbol: A1 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate " $*$ " for dimension X .)

- Not available for size 10
- The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	Q1
$\mathbf{1 5}$	1.5 to 18	M3
$\mathbf{2 0}$	1.5 to 20	$\mathrm{M} 3, \mathrm{M} 4$
$\mathbf{3 0}$	2 to 22	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$

Symbol: A3 The long shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

Symbol: A5 The long shaft can be further shortened by machining it into a stepped round shaft
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Symbol: A7 The long shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

(mm)			
Size	X	L1 max	Q1
10	5.5 to 14	$\mathrm{X}-1$	M3
15	7.5 to 18	X-1.5	M3, M4
20	9 to 20	X-1.5	M3, M4, M5
30	11 to 22	X-2	$\begin{aligned} & \text { M3, M4, } \\ & \text { M5, M6 } \end{aligned}$

Axial: Bottom (Short shaft side)

Symbol: A2 The long shaft can be further shortened by machining emale threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Not available for size 10.
- The maximum dimension L2 is, as a rule, twice the thread size
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A4 \quad The short shaft can be further shortened by machining male threads into it.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

					(mm)
		Size	Y	L2 max	Q2
		10	7 to 8	Y - 3	M4
		15	8.5 to 9	$Y-3.5$	M5
		20	10	Y - 4	M6
		30	13	Y - 5	M8
		40	15	Y - 6	M10

Symbol: A6 The short shaft can be further shortened by machining it int a stepped round shaft.
(If shortening the shaft is not required, indicate " k " for dimension Y .)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate " $*$ " instead.)

Size	Y	L2 max
$\mathbf{1 0}$	$\mathbf{2}$ to $\mathbf{8}$	Y - 1
$\mathbf{1 5}$	3 to 9	Y - 1.5
$\mathbf{2 0}$	3 to 10	Y - 1.5
$\mathbf{3 0}$	3 to 13	Y - 2
$\mathbf{4 0}$	6 to 15	$\mathrm{Y}-4.5$

Symbol: A8 The short shaft can be further shortened by machining it into a stepped round shaft with male threads.
(If shortening the shaft is not required, indicate "*" for dimension Y .)
Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(lf not specifying dimension C 2 , indicate "*" instead.)

Axial: Top (Long shaft side)

Symbol: A9 \quad The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W

	(mm)	
Size	X	L1
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$
$\mathbf{1 5}$	5.5 to 18	$10-(18-X)$ to $(X-1.5)$
$\mathbf{2 0}$	7 to 20	$10-(20-X)$ to $(X-1.5)$
$\mathbf{3 0}$	7 to 22	$10-(22-X)$ to $(X-1.5)$

Symbol: A11 The long shaft can be further shortened by machining a double-sided chamfer onto it.
(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more.
- Applicable shaft type: W

	(mm)		
Size	X	L1	L3 max
$\mathbf{1 0}$	3 to 14	$9-(14-X)$ to $(X-1)$	$X-1$
$\mathbf{1 5}$	3 to 18	$10-(18-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{2 0}$	3 to 20	$10-(20-X)$ to $(X-1.5)$	$X-1.5$
$\mathbf{3 0}$	5 to $\mathbf{2 2}$	$12-(22-X)$ to $(X-2)$	$X-2$

Symbol: A14

Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- Not available for size 10.
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M3: L1 max. $=6 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

Axial: Bottom (Short shaft side)

Symbol: A10 $\begin{aligned} & \text { The short shaft can be further shortened by changing the }\end{aligned}$ length of the standard chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: W

(mm)		
Size	Y	L2
10	3 to 8	5-(8-Y) to (Y - 1)
15	3 to 9	6-(9-Y) to (Y-1.5)
20	3 to 10	$7-(10-Y)$ to ($Y-1.5)$
30	5 to 13	8-(13-Y) to (Y-2)
40	7 to 15	9-(15-Y) to (Y - 4.5)

Symbol: A12 The short shaft can be further shortened by machining a
(If altering the standard chamfer and shortening the shaft are not required,
indicate "*" for both the L2 and Y dimensions.)

- Since L2 is a standard chamfer, dimension E2 is 0.5 mm or more, and 1 mm
or more with shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Size	\mathbf{Y}	$\mathbf{L 2}$	L2 max
$\mathbf{1 0}$	3 to 8	$5-(8-Y)$ to $(Y-1)$	$Y-1$
$\mathbf{1 5}$	3 to 9	$6-(9-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{2 0}$	3 to 10	$7-(10-Y)$ to $(Y-1.5)$	$Y-1.5$
$\mathbf{3 0}$	5 to 13	$8-(13-Y)$ to $(Y-2)$	$Y-2$
$\mathbf{4 0}$	7 to 15	$9-(15-Y)$ to $(Y-4.5)$	$Y-4.5$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter-

- Not available for size 10
- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) for M4: L2 max. $=8 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Symbol: A18

Shorten the short shaft.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Size	\mathbf{Y}
$\mathbf{1 0}$	1 to 8
$\mathbf{1 5}$	1.5 to 9
$\mathbf{2 0}$	1.5 to 10
$\mathbf{3 0}$	2 to 13
$\mathbf{4 0}$	4.5 to 15

Series CRBU2

Axial: Top (Long shaft side)

Symbol: A21 The long shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

Axial: Bottom (Short shaft side)

Symbol: A22 The short shaft can be further shortened by machining it into a stepped round shaft with a double-sided chamfer.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
Applicable shaft type: W

- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Double Shaft

Symbol: A13

Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	d1
$\mathbf{1 5}$	$ø 2.5$
$\mathbf{2 0}$	$ø 2.5$ to $\varnothing 3.5$
$\mathbf{3 0}$	$\varnothing 2.5$ to $\varnothing 4$
$\mathbf{4 0}$	$\varnothing 2.5$ to $\varnothing 3$

Symbol: A19

Both the long shaft and short shaft are shortened.

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	$\mathbf{1}$ to 14	1 to 8
$\mathbf{1 5}$	1.5 to 18	1.5 to 9
$\mathbf{2 0}$	1.5 to 20	1.5 to 10
$\mathbf{3 0}$	2 to 22	2 to 13

Symbol: A23 angle double-sided be further sho

(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)

- Since L1 is a standard chamfer, dimension E1 is 0.5 mm or more, and 1 mm or more with a shaft bore sizes of $\varnothing 30$ or $\varnothing 40$.
- Applicable shaft type: W

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10 .
- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) for M5: L1 max $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

$\underline{\mathrm{Q}}=\mathrm{ML}_{\text {[---1 }}^{\text {- }}$	$\mathrm{M} \text { Size }$	15	20	30	40
	M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
Q1速	M4 x 0.7	-	ø3.3	ø3.3	-
	M5 x 0.8	-	-	$\varnothing 4.2$	-

Symbol: A20

The rotation axis is reversed.
(The long shaft and short shaft are shortened.)

- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: W

	(mm)	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{1 0}$	1 to 3	1 to 12
$\mathbf{1 5}$	1.5 to 6.5	1.5 to 15.5
$\mathbf{2 0}$	1.5 to 7.5	1.5 to 17
$\mathbf{3 0}$	2 to 8.5	2 to 19
$\mathbf{4 0}$	3 to 9	-

Symbol: A24

Double key
Keys and keyways are machined at 180° from the standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

	(mm)	
Size	Keyway dimensions	LL
40	$4 \times 4 \times 20$	2

Series CRBU2 (Size: 10, 15, 20, 30, 40) Simple Specials:
-XA31 to -XA47: Shaft Pattern Sequencing II
Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing II
-XA31 to XA47
Applicable shaft type: J, K, S, T, Y

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size				
			$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	
XA31	Shaft-end female thread	S, Y		\bullet	\bullet	\bullet	
XA33	Shaft-end female thread	$\mathrm{J}, \mathrm{K}, \mathrm{T}$		\bullet	\bullet	\bullet	\bullet
XA37	Stepped round shaft	J, K, T	\bullet	\bullet		\bullet	\bullet
XA45	Middle-cut chamfer	J, K, T	\bullet	\bullet		\bullet	\bullet
XA47	Machined keyway	J, K, T			\bullet	\bullet	

Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA32 *	Shaft-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	
XA34 *	Shaft-end female thread	J, K, T		\bigcirc	\bigcirc	-	\bigcirc
XA38 *	Stepped round shaft	K	\bigcirc	\bigcirc	-	-	\bigcirc
XA46 *	Middle-cut chamfer	K	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc

Double Shaft

Symbol	Description	Shaft type	Applicable size				
			10	15	20	30	40
XA39 *	Shaft through-hole	S, Y		\bigcirc	\bigcirc	-	\bigcirc
XA40 *	Shaft through-hole	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA41 *	Shaft through-hole	J		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA42 *	Shatt through-hole + Shatt-end female thread	S, Y		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA43 *	Shaft through-hole + Shatt-end female thread	K, T		\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA44 *	Shaft through-hole + Shaft-end female thread	J		-	-	-	\bigcirc

[^3]
Combination

XA \square Combination

Symbol	Combination					
XA31	XA31					
XA32	SY	XA32				
XA33	-	JKT	XA33			
XA34	-	-	JKT	XA34		
XA37	-	-	-	JKT	XA37	
XA38	-	-	K	-	K	XA38

[^4]
$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XC \square), is also available. Refer to pages 11-3-31 to 11-3-32 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{array}{\|c\|} \hline \text { Combination } \\ \hline \text { XA31 to XA47 } \end{array}$
XC1	Change connection port location	10, 15, 20, 30, 40	\bigcirc
XC2	Change threaded hole to through-hole	15, 20, 30, 40	\bigcirc
XC3	Change the screw position		\bigcirc
XC4	Change rotation range		-
XC5	Change rotation range between 0 to 200°	10, 15, 20, 30, 40	-
XC6	Change rotation range between 0 to 110°		-
XC7	Reversed shaft		-
XC30	Fluorine grease		\bigcirc

[^5] auto switch unit and angle adjuster. A total of four XA \square and XC \square combinations is available. Example: -XA33 A34C27C3C

Series CRBU2

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T
(mm)

Symbol: A37
The long shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 1 , indicate "*" instead.)

(mm)			
Size	X	L1 max	D1
10	2 to 14	X-1	ø3 to ø3.9
15	3 to 18	X-1.5	ø3 to ø4.9
20	3 to 20	X-1.5	ø3 to ø5.9
30	3 to 22	X-2	ø3 to ø7.9
40	4 to 30	X-3	ø3 to ø9.9

Symbol: A45
The long shaft can be further shortened by machining a middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate "*" for dimension X.)

- Applicable shaft types: J, K, T

$\begin{aligned} & \substack{\text { shant } \\ \text { Size }} \end{aligned}$	X	W1	L1 max	L3 max
	$J\|K\| T$	J K T	J K T	J K T
10	6.5 to 14	0.5 to 2	X-3	L1-1
15	8 to 18	0.5 to 2.5	X-4	L1-1
20	9 to 20	0.5 to 3	X-4.5	L1-1
30	11.5 to 22	0.5 to 4	X-5	L1-2
40	15.5 to 30	0.5 to 5	X-5.5	L1-2

Axial: Bottom (Short shaft side)

Symbol: A32

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
However, for M5 with S shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: S, Y

	(mm)	
	Q2	
	S	Y
10	Not available	
15	M3	
20	M3, M4	
30	M3, M4, M5	

Symbol: A34

Machine female threads into the short shaft

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
However, for M5 with T shaft, the maximum dimension L2 is 1.5 times
the thread size.
- Applicable shaft types: J, K, T

Symbol: A38 The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y .)

- Applicable shaft type: K
- Equal dimensions are indicated by the same marker.
(If not specifying dimension C 2 , indicate "*" instead.)

Size	Y	L2 max	D2
10	2 to 14	Y - 1	ø3 to ø3.9
15	3 to 18	Y - 1.5	ø3 to ø4.9
20	3 to 20	Y-1.5	ø3 to ø5.9
30	6 to 22	Y -2	ø3 to $\varnothing 7.9$
40	6 to 30	Y-4.5	ø5 to ø9.9

Symbol: A46 $\begin{aligned} & \text { The short shaft can be further shortened by machining a } \\ & \text { middle-cut chamfer into it }\end{aligned}$ middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.) (If shortening the shaft is not required, indicate " $*$ " for dimension Y .)

- Applicable shaft type: K
(mm)

Size	Y	W2	L2 max	L4 max
10	4.5 to 14	0.5 to 2	Y-1	L2-1
15	5.5 to 18	0.5 to 2.5	Y - 1.5	L2-1
20	6 to 20	0.5 to 3	Y - 1.5	L2-1
30	8.5 to 22	0.5 to 4	Y-2	L2-2
40	13.5 to 30	0.5 to 5	$\mathrm{Y}-4.5$	L2-2

Axial: Top (Long shaft side)

Symbol: A47 Machine a keyway into the long shaft. (The position of the keyway is the same as the standard one.) The key must be ordered separately.

- Applicable shaft types: J, K, T

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole (Additional machining of S, Y shaft)

- Applicable shaft types: S, Y
- Equal dimensions are indicated by - A parallel
the same marker. shaft for size 40 .
- Not available for size 10.
- Minimum machining diameter for d1 is 0.1 mm .

Y axis

Symbol: A41
Applicable to single vane type only
Shaft with through-hole

- Not available for size 10.
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Symbol: A43

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum L1 dimension is, in principle,

Twice the thread size.
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of T shaft:

$\mathrm{L} 1=7.5 \mathrm{~mm}$

Size	(mm)			
	15	20	30	40
Thread	K ${ }^{\text {T }}$	K T	K T	K T
M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
M4 $\times 0.7$	-	ø3.3	ø3.3	ø3.3
M5 x 0.8	-	-	$\varnothing 4.2$	$ø 4.2$

- Applicable shaft types: K, T
- Equal dimensions are indicated by the same marker.

Symbol: A40

Applicable to single vane type only
Shaft with through-hole (Additional machining of K, T shaft)

- Applicable shaft types: K, T
- Equal dimensions are indicated
by the same marker.
- Not available for size 10.

$$
\mathrm{d} 3=\varnothing \quad-\quad \text {, }
$$

$$
\xrightarrow[\rightarrow c \mid c c]{\mathrm{d} 3=\varnothing} \underbrace{--1}
$$

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L1 is,
as a rule, twice the thread size
(Example) For M5: L1 max. $=10 \mathrm{~mm}$
However, for M5 on the short shaft of S shaft: $L 1=7.5 \mathrm{~mm}$

A parallel keyw

- Applicable shaft types: S, Y
- Equal dimensions are indicated by the same marker.

(mm)				
	15	20	30	40
	S Y	S Y	S Y	S ${ }^{\text {Y }}$
M3 x 0.5	ø2.5	ø2.5	ø2.5	$ø 2.5$
M4 $\times 0.7$	-	$ø 3.3$	$ø 3.3$	-
M5 x 0.8	-	-	$ø 4.2$	-

Symbol: A44
Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- Not available for size 10.
- The maximum dimension L 1 is, as a rule, twice the thread size (Example) For M5: L1 max. $=10 \mathrm{~mm}$
- A parallel keyway is used on the long shaft for size 40.
- Applicable shaft type: J
- Equal dimensions are indicated by the same marker.

Size	15	20	30	40
M3 x 0.5	ø2.5	ø2.5	ø2.5	ø2.5
M4 $\times 0.7$	-	ø3.3	ø3.3	ø3.3
M5 x 0.8	-	-	ø4.2	ø4.2

Series CRBU2 (Size: 10, 15, 20, 30, 40)
Made to Order Specifications:
-XC1, 2, 3, 4, 5, 6, 7, 30

Made to Order Symbol

| Symbol | Description | | Applicable shaft type |
| :---: | :--- | :---: | :---: | Applicable

* These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

$\text { Symbol: C1 } \quad \begin{aligned} & \text { Add connecting ports on Body (A). } \\ & \text { (An additionally machined port will have an aluminum } \end{aligned}$				
- Parallel keyway is used on the long shaft for size 40. - This specification is not available for the rotary actuator with auto switch unit.				
dy (B) \quad (mm)				
-	Size	Q	M	N
	10	M3	8.5	9.5
,	15	M3	11	10
	20	M5	14	13
$\xrightarrow{+\infty}$	30	M5	15.5	14
	40	M5	21	20

Combination

Symbol	Combination						
XC1	XC1						
XC2	\bigcirc	XC2					
XC3	\bigcirc	-	XC3				
XC4	\bigcirc	\bigcirc	\bigcirc	XC4			
XC5	\bigcirc	\bigcirc	\bigcirc	-	XC5		
XC6	\bigcirc	\bigcirc	\bigcirc	-	-	XC6	
XC7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	XC7
XC30	\bigcirc						

| Symbol: $\mathbf{C 2}$ | Change 2 threaded holes on Body (B) into through holes
 (An additionally machined port will have an aluminum
 surface since it will be left unfinished.) |
| :---: | :--- | :--- |

Symbol: C3 Change the position of the screws for tightening the actuator

- Not available for size 10.

Symbol: C5

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+50^{\circ}}$.
- A parallel keyway is used instead of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C7

The shafts are reversed.

- A parallel keyway is used instead of chamfer for size 40.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{1 0}$	19	3
$\mathbf{1 5}$	20.5	6.5
$\mathbf{2 0}$	22.5	7.5
$\mathbf{3 0}$	26.5	8.5
$\mathbf{4 0}$	36	9

Symbol: C4

Applicable to single vane style only
Rotation starts from the horizontal line $\left(90^{\circ}\right.$ down from the top to the right side)

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$
- A parallel keyway is used instead ${ }_{0}^{+5^{\circ}}$ of chamfer for size 40.

Start of rotation is the position of the chamfer (keyway) when A port is pressurized.

Symbol: C6

Applicable to single vane style only
Start of rotation is 45° up from the bottom of the vertical line to the left side.

- Rotation tolerance for CRBU2W10 is ${ }^{+5}$.
- A parallel keyway is used instead of chamfer for size 40

Start of rotation is the position of the chamfer (keyway) when B port is pressurized.

Symbol: C30

Change the standard grease to fluoro grease (Not for low-speed specifications.)

Rotary Actuator Vane Style

Series CRB1
 Size: 50, 63, 80, 100

Series Variations

Rotary Actuator Vane Style

Series CRB1
Size: 50, 63, 80, 100

How to Order

Applicable Auto Switch/Refer to page 11-11-1 for detailed auto switch switches.

Type	Electrical entry		Wiring (Output)	Load voltage			Auto switch model	Lead wire length (m) *				Applicable load	
				DC		AC		$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$	None (N)		
Reed switch	Grommet	은	2-wire	24 V	$\begin{gathered} 48 \mathrm{~V} \\ 100 \mathrm{~V} \end{gathered}$	$\begin{gathered} 24 \mathrm{~V}, 48 \mathrm{~V} \\ 100 \mathrm{~V} \end{gathered}$	R80	\bigcirc	\bigcirc	-	-	IC circuit	Relay, PLC
	Connector						R80C	\bigcirc	\bigcirc	-	\bigcirc		
	Grommet	$\stackrel{\infty}{\infty}$			-	100 V	R73	\bigcirc	\bigcirc	-	-	-	
	Connector						R73C	\bigcirc	\bigcirc	-	\bigcirc		
Solid state switch	Grommet	$\stackrel{\otimes}{\infty} \underset{\sim}{\infty}$	2-wire	24 V	12 V	-	T79	-	\bigcirc	-	-	-	Relay, PLC
	Connector						T79C	\bigcirc	\bigcirc	-	\bigcirc		
	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		S79	\bigcirc	\bigcirc	-	-	IC circuit	
			3-wire (PNP)				S7P	-	\bigcirc	-	-		
* Lead wire length symbols:		$\begin{gathered} 0.5 \mathrm{~m} \cdots \mathrm{Nil} \\ 3 \mathrm{~m} \cdots \mathrm{~L} \\ 5 \mathrm{~m} \cdots \mathrm{Z} \\ \text { None } \cdots \mathrm{N} \end{gathered}$		Example) Example) Example) Example)	$\begin{aligned} & \text { R73C } \\ & \text { R73CL } \\ & \text { R73CZ } \\ & \text { R73CN } \end{aligned}$								

Specifications

JIS Symbol

Excellent reliability and durability The use of bearings to support thrust and radial loads improves reli-ability and durability.
\square The body of the rotary actuator can be mounted directly.
$■$ Two different port locations

Size: 80

Size		CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100	CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100
Vane type		Single vane (S)				Double vane (D)			
Rotating angle	Standard	$90^{\circ+4}{ }_{0}, 180{ }_{0}^{\circ+4}, 270^{\circ+4}{ }_{0}$				$90^{\circ+4}$			
	Option	$100^{\circ+4}{ }_{0}, 190^{\circ+4}, \quad 280{ }_{0}^{\circ+4}$				$100^{\circ+4}$			
Fluid		Air (Non-lube)							
Proof pressure		1.5 MPa							
Ambient and fluid temperature		5 to $60^{\circ} \mathrm{C}$							
Max. operating pressure		1.0 MPa							
Min. operating pressure		0.15 MPa							
Speed regulation range (s/900)		0.1 to 1							
Allowable kinetic energy		0.082 J	0.12 J	0.398 J	0.6 J	0.112 J	0.16 J	0.54 J	0.811 J
Shaft load 	Allowable radial load	245 N	390 N	490 N	588 N	245 N	390 N	490 N	588 N
	mable thrust load	196 N	340 N	490 N	539 N	196 N	340 N	490 N	539 N
Bearing		Bearing							
Port location		Side ported or Axial ported							
Size S A	Side ported	Rc $1 / 8$		Rc $1 / 4$		Rc $1 / 8$		Rc $1 / 4$	
	Axial ported	Rc $1 / 8$		Rc $1 / 4$		Rc $1 / 8$		Rc $1 / 4$	
Mounting		Basic style, Foot style							
Volume									
$\left(\mathrm{cm}^{3}\right)$									
Classification	Rotating angle	Single vane (S)				Double vane (D)			
		CRB1BW50	CRB1BW63	3 CRB1BW80	CRB1BW100	CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100
Standard	90°	30	70	88	186	48	98	136	272
	180°	49	94	138	281	-	-	-	-
	270°	66	118	188	376	-	-	-	-
Option	100°	32	73	93	197	52	104	146	294
	190°	51	97	143	292	-	-	-	-
	280°	68	121	193	387	-	-	-	-

Weight

$\left(\mathrm{cm}^{3}\right)$

Model	Rotating angle	Single vane (S)				Double vane (D)			
		CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100	CRB1BW50	CRB1BW63	CRB1BW80	CRB1BW100
Main body	90°	810	1365	2070	3990	830	1410	2120	4150
	180°	790	1330	2010	3880	-	-	-	-
	270°	770	1290	1950	3760	-	-	-	-
	100°	808	1360	2065	3980	822	1400	2100	4100
	190°	788	1325	2005	3870	-	-	-	-
	280°	766	1285	1940	3735	-	-	-	-
Auto switch unit +2 switches		65	85	95	165	65	85	95	165
Foot bracket assembly		384	785	993	1722	384	785	993	1722

Caution

I Be sure to read before handling. Refer to pages 11-13-3 to 11-13-4 for ISafety Instructions and Common Precautions on the products I Imentioned in this catalog, and refer to pages 11-1-4 to 11-1-6 for I ן Precautions on every series.

Series CRB1

Effective Output

Key Position and Rotation Range

Key positions in the illustrations below show the intermediate rotation position when A or B port is pressurized.
Top View from Long Shaft Side
Single vane type

Direct Mounting of Body

Model	L	Screw
CRB1BW50	48	M6
CRB1BW63	52	M8
CRB1BW80	60	M8
CRB1BW100	80	M10

With One-touch Fittings

With One-touch fittings facilitate the piping work and greatly reduce the installation space.

Specifications

Vane type	Single vane	Double vane
Size	$\mathbf{5 0}$	
Operating pressure range (MPa)	0.15 to 1.0	
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	0.1 to 1	
Port location	Side ported or Axial ported	
Piping	With One-touch fittings	
Mounting	Basic style, Foot style	
Variations	Basic style, With auto switch	

Applicable Tubing and Size

Applicable tubing O.D/I.D (mm)	$\varnothing 6 / \varnothing 4$
Applicable tubing material	Nylon, Soft nylon, Polyurethane

Refer to page 11-4-8 for construction drawing. Refer to page 11-4-12 for external dimensions.

Clean Series

The double-seal construction of the actuator shaft section of these series to channel exhaust through the relief ports directly to the outside of a clean room environment allows operation of these cylinders in a class 100 clean room.

Specifications

Vane type	Single vane	Double vane
Size	$\mathbf{5 0 , 6 3}$	
Operating pressure range (MPa)	0.15 to 1.0	
Speed regulation range $\left(\mathrm{s} / 90^{\circ}\right)$	0.1 to 1	
Port location	Side ported or Axial ported	
Piping	Screw-in type	
Relief port size	$\mathrm{M} 5 \times 0.8$	
Mounting	Basic style	
Variations	Basic style, With auto switch	

For further specifications, refer to "Pneumatic Clean Series" catalog.

Copper-free

Series CRB1

Rotary Actuator with Solenoid Valve

How to Order

Specifications

Fluid	Air
Operating pressure (MPa)	0.15 to 0.7
Rotating angle	Standard: $90^{\circ}, 180^{\circ}, 270^{\circ} ;$ Option: $100^{\circ}, 190^{\circ}, 280^{\circ}$
Rotation time adjustment range $\left(\mathrm{s} / 90^{\circ}\right)$	0.3 to 1.0
Applicable solenoid valve	Size 50, 63: VZ3000, Size 80, 100: VZ5000
Operating voltage	100 VAC, 200 VAC, 24 VDC
Electrical entry	L plug connector, DIN terminal
	M plug connector

Allowable Kinetic Energy

Size	Vane style	Allowable kinetic energy
	Single vane	0.082 J
	Double vane	0.112 J
$\mathbf{6 3}$	Single vane	0.120 J
	Double vane	0.160 J
$\mathbf{8 0}$	Single vane	0.398 J
	Double vane	0.54 J
$\mathbf{1 0 0}$	Single vane	0.6 J
	Double vane	0.811 J

* Speed regulation range: 0.3 to $1 \mathrm{~s} / 90^{\circ}$

Dimensions

Rotary Actuator: Replaceable Shaft

A shaft can be replaced with a different shaft type except for standard shaft type (W).

\mathbf{J}	Double shaft (Long shaft without keyway \& Four chamfers)
\mathbf{K}	Double round shaft
\mathbf{S}	Single shaft key
\mathbf{T}	Single round shaft
\mathbf{X}	Single shaft with four chamfers
\mathbf{Y}	Double shaft key
\mathbf{Z}	Double shaft with four chamfers

	(mm)	
Nominal size	\mathbf{C}	\mathbf{D}
$\mathbf{5 0}$	19.5	39.5
$\mathbf{6 3}$	21	45
$\mathbf{8 0}$	23.5	53.5
$\mathbf{1 0 0}$	30	65

$\overline{\text { Note) Dimensions and tolerance of the shaft and keyway are the same as }}$ the standard.

Series CRB1

Construction

Standard (Keys in the illustrations below show the intermediate rotation position.)
$\begin{aligned} & \text { For } 270 \\ & \\ & \\ & \\ & \text { (Top view long shaft side) }\end{aligned}$
Single vane

Single vane

For 90° (Top view
from long shaft side)
Single vane

For 90° (Top view
from long shatt side)
Double vane

Component Parts

No.	Description	Material	Note
(1)	Body (A)	Aluminum die-casted	CRB1BW50/63/80, painted
		Cast aluminum	CRB1BW100, painted
(2)	Body (B)	Aluminum die-casted	CRB1BW50/63/80, painted
		Cast aluminum	CRB1BW100, painted
(3)	Vane shaft	Carbon steel	
(4)	Stopper	Aluminum die-casted	
(5)	Stopper	Resin	For 90
(6)	Stopper	Resin	For 180
(7)	Bearing	High carbon chrome bearing steel	
(8)	Hexagon socket (with washer)	Carbon steel	
(9)	Fuji lock bolt	Carbon steel	
(10)	Parallel keyway	Carbon steel	
(11)	O-ring	NBR	
(12)	O-ring	NBR	Special O-ring
(13)	Stopper seal	NBR	Special seal
(14)	Holding rubber	NBR	

With auto switch
(Keys in the illustrations below show the actuator for 180° when A port is pressurized.)

Component Parts

No.	Description	Material	Note
(1)	Cover (A)	Resin	
(2)	Cover (B)	Resin	
(3)	Magnet lever	Resin	
(4)	Holding block	Aluminum alloy	
(5)	Switch block (A)	Resin	
(6)	Switch block (B)	Resin	
(7)	Magnet	Magnetic body	
(8)	Arm	Stainless steel	
(9)	Rubber cap	NBR	
(10	Round head Phillips screw	Stainless steel	
(11)	Hexagon socket head set screw	Stainless steel	
(12)	Round head Phillips screw	Carbon steel	For CDRB1BW50/63/80
	Hexagon socket head cap screw	Carbon steel	For CDRB1BW100
(13)	Round head Phillips screw	Stainless steel	

Dimensions: 50, 63, 80, 100

Single vane type/Double vane type

CDRB1BW $\square-\square S / D$
<Port location: Side ported>

Model	A1	A2	B	C	D	$\begin{gathered} E_{1} \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} E_{2} \\ \text { (h9) } \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G	H	J	K	L	M1	M2	N	P	Q	$\begin{gathered} \hline \mathbf{R} \\ (\mathrm{Rc}) \\ \hline \end{gathered}$	S	T	U	V	W	X	Y	Z
CRB1BW50- $\square \square$	67	78	70	19.5	39.5	$12_{-0.017}^{-0.06}$	$11.9{ }_{-0.043}^{0}$	$25_{-0.052}^{0}$	3	10	13	5	13.5	26	18	14	50	M6 x 1 depth 9	1/8	60	R6	11	34	66	46	5.5	
CRB1BW50-7]E														21	-	18											6.5
CRB1BW63-[]	82	98	80	21	45	$15_{-0.017}^{-0.066}$	$14.9{ }_{-0.043}^{0}$	$28{ }_{-0.052}^{0}$	3	12	14	5	17	29	22	15	60	$\begin{aligned} & \text { M8 } \times 1.25 \\ & \text { depth } 10 \\ & \hline \end{aligned}$	1/8	75	R7.5	14		83			9
CRB1BW63- \square [27	-	25							39		52	8	
CRB1BW80- $\square \square$	95	110	90	23.5	53.5	$17_{-0.017}^{-0.066}$	$16.9{ }_{-0.043}^{0}$	$30_{-0.052}^{0}$	3	13	16	5	19	30	30	20	70	$\begin{aligned} & \text { M8 x } 1.25 \\ & \text { depth } 12 \\ & \hline \end{aligned}$	1/4	88	R8	15	48	94	63	7.5	9
CRB1BW80- \square [29	-	30											
CRB1BW100- \square	125	140	103	30	65	$25_{-0.020}^{-0.07}$	$24.9{ }_{-0.052}^{0}$	$45_{-0.062}^{0}$	4	19	22	5	28	35.5	32	24	80	$\begin{gathered} \text { M10 x } 1.5 \\ \text { depth } 13 \end{gathered}$	1/4	108	${ }^{1} 11$	11.5		120	78		
CRB1BW100-7]														38	-	38							60			7.5	11

* For single vane: Above illustrations show actuators for 180° when B port is pressurized.

Dimensions：50，63，80， 100 （With auto switch unit）

Single vane type／Double vane type

CDRB1BW $\square-\square$ S／D
＜Port location：Side ported＞

			（m
Keyway dimension			
Model	b（h9）	h（h9）	ℓ
CDRB1BW50－■ด口	4－0．030	$4{ }_{-0.030}^{0}$	20
CDRB1BW63－■ด口	$5-0.030$	$5{ }_{-0.030}^{0}$	25
CDRB1BW80－■प口	$5-0.030$	$5-0.030$	36
CDRB1BW100－$\square \square$	7－0．036	7－0．036	40

＊For single vane：Above illustrations show actuators for 180° when B port is pressurized．

Model	A1	A2	B	C	D	$\begin{gathered} E \\ (\mathrm{~g} 6) \end{gathered}$	$\begin{gathered} F \\ (h 9) \end{gathered}$	G1	G2	H （R）	J	K	L	M1	M2	N	P	Q	$\begin{gathered} \mathrm{R} \\ (\mathrm{Rc}) \end{gathered}$	S	T	\mathbf{U}	V	W	X	Y	Z
CDRB1BW50－\square	67	78	70	32	39.5	$12_{-0.017}^{-0.006}$	$25{ }_{-0.052}^{0}$	3	6.5	R22．5	32.5	5	13.5	26	18	14	50	$\begin{aligned} & \text { M6 x } 1 \\ & \text { depth } 9 \end{aligned}$	1／8	60	R6	11	34	66	46	5.5	
CDRB1BW50－－7E														21	－	18											6.5
CDRB1BW63－\square	82	98	80	34	45	$15_{-0.017}^{-0.006}$	$28{ }_{-0.052}^{0}$	3	8	R30	21	5	17	29	22	15	60	$\begin{gathered} \text { M8 x } 1.25 \\ \text { depth } 10 \\ \hline \end{gathered}$	1／8	75	R7．5	14	39	83		8	9
CDRB1BW63－－7E														27		25									52		
CDRB1BW80－\square	95	110	90	34	53.5	$17_{-0.017}^{-0.006}$	$30_{-0.052}^{0}$	3	8	${ }^{\text {R30 }}$	21	5	19	30	30	20	70	$\begin{array}{\|c\|} \hline \text { M8 x } 1.25 \\ \text { depth } 12 \\ \hline \end{array}$	1／4	88	R8	15	48	94			
CDRB1BW80－－7E														29	－	30									63	7.5	9
CDRB1BW100－\square	125	140	103	39	65	$25_{-0.020}^{-0.007}$	$45_{-0.062}^{0}$	4	13	R30	21	5	28	35.5	32	24	80	M10 x 1.5 depth 13	1／4	108		11.5	60				
CDRB1BW100－7］E														38	－	38					R11			120	78	7.5	11

[^6]
Option: Foot bracket

CRB2
CRBU2
CRB1

Applicable size	Foot bracket assembly no.	LA1	LA2	LB1	LB2	LC	LD	LE	LF	LG	LH	LJ1	LJ2	LK	LM	T
50	P411020-5	78	70	45	50	36	25.5	10	4.5	45	7.5	34	66	60.5	84	48
63	P411030-5	100	90	56		44	30	$\varnothing 12$	5	60	9.5	39	83	75.5	110	52
80	P411040-5	111	100	63		46	32	$\varnothing 12$	6	65	9.5	48	94	88.5	120.5	60
100	P411050-5	141	126	80		55	39.5	$\varnothing 14$	6	80	11.5	60	120	108.5	150.5	80

() Note 1) The foot bracket (with bolt, nut, and washer) is not mounted on the actuator at the time of shipment.
Note 2) The foot bracket can be mounted on the rotary actuator bracket 90° intervals.
Note 3) Refer to the foot bracket assembly part no. in the table at right when foot bracket assembly is required separately.

Model		Foot bracket assembly no.
Standard	With auto switch	
CRB1LW50	CDRB1LW50	P411020-5
CRB1LW63	CDRB1LW63	P411030-5
CRB1LW80	CDRB1LW80	P411040-5
CRB1LW100	CDRB1LW100	P411050-5

Series CRB1

With One-touch Fittings: 50

Standard
CRB1■W50F-■
<Port location: Side ported>

CRB1ロW50F-पロE
<Port location: Axial ported>

Applicable Tubing and O.D/I.D

Applicable tubing O.D/I.D (mm)
Applicable tubing material

With auto switch
CDRB1 \square W50F- $\square \square-\square$
<Port location: Side ported>

CDRB1 \square W50F- $\square \square E-\square$
<Port location: Axial ported>

Shaft shape pattern is dealt with simple made-to-order system. Please contact SMC for a specification sheet when placing an order.

Shaft Pattern Sequencing I
-XA1 to XA24
Applicable shaft type: W (Standard)

Combination

$X A \square$ Combination

Symbol	Combination		A combination of up to two $X A \square$ s are available.
XA1	XA1	XA24	Example: -XA1A2
XA2	\bigcirc	\bigcirc	
XA13	\bigcirc	-	
XA14	-	\bigcirc	
XA15	-	\bigcirc	
XA16	-	\bigcirc	
XA24	-	-	

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than -XA \square, such as Made to Order (-XCD), is also available. Refer to pages 11-4-18 to 11-4-19 for details of made-to-order specifications.

Symbol	Description	Applicable size	$\begin{gathered} \text { XA1, XA2 } \\ \text { XA13 to } 16,24 \end{gathered}$
XC1	Add connection port	$\begin{aligned} & 50,63 \\ & 80,100 \end{aligned}$	-
XC4	Change of rotation range and direction		\bullet
XC5	Change of rotation range and direction		\bigcirc
XC6	Change of rotation range and direction		\bigcirc
XC7	Reversed shaft		-
XC26	Change of rotation range and direction		\bigcirc
XC27	Change of rotation range and direction		\bigcirc
XC30	Fluorine grease		\bigcirc

A total of four XA \square and XC \square combinations is available.
Example: -XA1A2C1C30

Series CRB1

Axial: Top (Long shaft side)

Symbol: A1

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft type: W

	(mm)
Size	Q1
$\mathbf{5 0}$	M3, M4, M5
$\mathbf{6 3}$	M4, M5, M6
$\mathbf{8 0}$	M4, M5, M6
$\mathbf{1 0 0}$	M5, M6, M8

Symbol: A14

 Applicable to single vane type onlyA special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 $=10 \mathrm{~mm}$
- Applicable shaft type: W

Symbol: A24

Double key
Keys and keyways are machined at 180° of standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

		(mm)
Size	Keyway dimension	LL
$\mathbf{5 0}$	$4 \times 4 \times 20$	
$\mathbf{6 3}$	$5 \times 5 \times 25$	5
$\mathbf{8 0}$	$5 \times 5 \times 36$	
$\mathbf{1 0 0}$	$7 \times 7 \times 40$	

Axial: Bottom (Short shaft side)

Symbol: A2

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
- Applicable shaft type: W

	(mm)
Size	Q2
$\mathbf{5 0}$	M3, M4, M5
$\mathbf{6 3}$	M4, M5, M6
$\mathbf{8 0}$	M4, M5, M6
$\mathbf{1 0 0}$	$M 5, M 6, M 8$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$
- Applicable shaft type: W

Double Shaft

Symbol: A13

Shaft with through-hole

- Minimum machining diametor for d 1 is 0.1 mm .
- Applicable shaft type: W

	(mm)
Size	$\mathbf{d 1}$
$\mathbf{5 0}$	$\varnothing 4$ to $\varnothing 5$
$\mathbf{6 3}$	$\varnothing 4$ to $\varnothing 6$
$\mathbf{8 0}$	$\varnothing 4$ to $\varnothing 6.5$
$\mathbf{1 0 0}$	$\varnothing 5$ to $\varnothing 8$

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 = 10 mm
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Size	50	63	80	100
Thread				
M5 x 0.8	$\varnothing 4.2$	$\varnothing 4.2$	$\varnothing 4.2$	-
M6 x1	-	$\varnothing 5$	$\varnothing 5$	$\varnothing 5$
M8 x 1.25	-	-	-	$\varnothing 6.8$

Series CRB1 (size: 50, 63, 80, 100) Simple Specials:
-XA31 to -XA46: Shaft Pattern Sequecing II
Shaft shape pattern is dealt with simple made-to-order system.
Please contact SMC for a specification sheet when placing an order.
Shaft Pattern Sequencing II
-XA31 to XA46
Applicable shaft type: J, K, S, T, X, Y, Z

CRB2
CRBU2
CRB1
MSU

Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Applicable size
XA31	Shaft-end female thread	S, Y	$\begin{array}{r} 50, \\ 63, \\ 80, \\ 100 \end{array}$
XA33	Shaft-end female thread	J, K, T	
XA35	Shaft-end female thread	X, Z	
XA37	Stepped round shaft	J, K, T	
XA45	Middle-cut chamfer	J, K, T	

- Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Applicable size
XA32	*	Shaft-end female thread	S, Y

Combination

$X A \square$ Combination

Symbol	Combination						
XA31	XA31	* These are shaft types that can be combined.					
XA32	\bigcirc						
XA33	-	XA33					
XA34	-	\bigcirc	XA34				
XA35	-	-	-	XA35			
XA36	-	J*	K, T *	X, Z *	XA36		
XA37	-	-	-	-	J*	XA37	
XA38	-	K*	K, ${ }^{\text {* }}$	-	-	\bigcirc	
XA45	-	-	-	-	J*	-	XA45
XA46	-	\bigcirc	-	-	-	\bigcirc	\bigcirc

Combinations of XA39 to XA44 with others are not available.
A combination of up to two XA \square s are available.
Example: -XA1A24

XA $\square, \mathrm{XC} \square$ Combinations

Combination other than -XA \square, such as made-to order ($-\mathrm{XC} \square$), is also available. Refer to pages 11-4-18 to 11-4-19 for details of made-to-order specifications.

Symbol	Description	Shaft type	XA31 to XA46
		$\mathrm{J}, \mathrm{K}, \mathrm{S}, \mathrm{T}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$	
$\mathbf{X C 1}$	Add connection port	\bullet	\bullet
$\mathbf{X C 4}$	Change of rotation range and direction	\bullet	\bullet
$\mathbf{X C 5}$	Change of rotation range and direction	\bullet	\bullet
$\mathbf{X C 6}$	Change of rotation range and direction	\bullet	-
$\mathbf{X C 7}$	Reversed shaft	$\mathrm{J}, \mathrm{S}, \mathrm{T}, \mathrm{X}$	-
$\mathbf{X C 2 6}$	Change of rotation range and direction	\bullet	\bullet
$\mathbf{X C 2 7}$	Change of rotation range and direction	\bullet	\bullet
$\mathbf{X C 3 0}$	Fluorine grease	\bullet	\bullet

[^7]
Axial: Top (Long shaft side)

Symbol: A31

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: S, Y

Symbol: A33
Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: J, K, T

Symbol: A35
Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6 \mathrm{~mm}$
- Applicable shaft types: X, Z

-		
Size ${ }^{\text {trpe }}$	X	Z
50		
63		
80		
100		

Symbol: A37 $\quad \begin{aligned} & \text { The long shaft can be further shortened by machining it into a } \\ & \text { stepped round shaft. }\end{aligned}$
(If shortening the shaft is not required, indicate " "*" for dimension X.)
(If not specifying dimension C 1 , indicate "*" instead.)

- Equal dimensions are indicated by the same marker.
- Applicable shaft types: J, K, T

Axial: Bottom (Short shaft side)

Symbol: A32

- The maximum dime

Ex maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 $=8 \mathrm{~mm}$

- Applicable shaft types: S, Y

Symbol: A34

- The maximum dimension L 2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft types: K, T

Symbol: A36

Machine female threads into the short shaft.

- The maximum dimension $L 2$ is, as a rule, twice the thread size.
(Example) For M3: L2 $=6 \mathrm{~mm}$
- Applicable shaft types: J, X, Z

Symbol: A38

The short shaft can be further shortened by machining it into a stepped round shaft.
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension C 2 , indicate "*" instead.)

- Equal dimensions are indicated by the same marker.
- Applicable shaft type: K

Axial: Top (Long shaft side)

Symbol: A45
The long shaft can be further shortened by machining a middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Minimum machining dimension is 0.1 mm . Applicable shaft types: $\mathrm{J}, \mathrm{K}, \mathrm{T}$

\triangle Caution

For the shaft patterns A45 and A46, a middle-cut chamfer may interfere with the center hole if the W1/W2 dimensions and (L1 - L3), (L2 - L4) dimensions are less than what are shown in the tables at right.

Axial: Bottom (Short shaft side)

Symbol: A46 The short shaft can be further shortened by machining a middle-cut chamfer into it
(The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Minimum machining dimension is 0.1 mm .
- Applicable shaft type: K

(mm)

Size	W1, W2	L1-L3, L2 - L4
$\mathbf{5 0}$	4.5 to 6	2 to 5.5
$\mathbf{6 3}$	6 to 7.5	2 to 3

Size	W1, W2	L1 - L3, L2 - L4
$\mathbf{8 0}$	6.5 to 8.5	2 to 6.5
$\mathbf{1 0 0}$	10.5 to 12.5	2 to 6.5

Double Shaft

Symbol: A39

Applicable to single vane type only

Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 mm
- Applicable shaft types: S, Y

S axis

Y axis

Applicable to single vane type only

Symbol: A41

Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 mm .
- Applicable shaft types: J, X, Z

J axis

	(mm)		
\bigcirc	d1		
Size	J	X	Z
50	$\varnothing 4$ to ø5		
63	ø4 to ø6		
80	ø4 to ø6.5		
100	ø5 to ø8		

Symbol: A43

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through holes, whose diameter is equivalent to the diameter of the pilot holes,

- The maximum dimension L1 is, as a rule, twice the thread size
- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft types: K, T• Equal dimensions are indicated by the same marker.
(mm)

Symbol: A40

Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 mm .
- Applicable shaft types: K, T

Symbol: A42

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L 1 is, as a rule, twice the thread size
- Applicable shaft types: S, Y • Equal dimensions are indicated by the same marker.

S axis

Applicable to single vane type only
Symbol: A44
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes

- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft types: $J, X, Z \bullet$ Equal dimensions are indicated by the same marker.

Z axis

J axis

Series CRB1 (Size: 50, 63, 80, 100)

 Made to Order Specifications: -XC1, 4, 5, 6, 7, 26, 27, 30

Made-to-Order Symbol

Symbol	Description	Applicable shaft type	Applicable
		$\mathbf{W}, \mathbf{J}, \mathbf{K}, \mathbf{S}, \mathbf{T}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$	size

* This specification is not available for rotary actuators with auto

Combination

Symbol	Combination	
	XC1	XC30
XC1	-	\bigcirc
XC4	\bigcirc	\bigcirc
XC5	\bigcirc	\bigcirc
XC6	\bigcirc	\bigcirc
XC7	\bigcirc	\bigcirc
XC26	\bigcirc	\bigcirc
XC27	\bigcirc	\bigcirc
XC30	\bigcirc	-

| Symbol: C4 |
| :--- | | Change of rotation. (Applicable to single vane type only) |
| :--- |
| Rotation starts from the horizontal line (90° down from the |
| top to the right side). |

Start of rotation is the position of the key when A port is pressurized.
(Top view from long shaft side)

Symbol: C5 Change of rotation. (Applicable to single vane type only) Rotation starts from the horizontal line (45° down from the top to the left side).

Start of rotation is the position of the key when B port is pressurized (Top view from long shaft side)

Symbol: C7
The shafts are reversed.

		(mm)
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{5 0}$	39.5	19.5
$\mathbf{6 3}$	45	21
$\mathbf{8 0}$	53.5	23.5
$\mathbf{1 0 0}$	56	30

Symbol: C27 Change of rotation. (Applicable to double vane type only) Rotation: 90° Rotation starts from the horizontal line (45° down from the top to the right side).

Start of rotation is the position of the key when A port is pressurized.
(Top view from long shaft side)

Symbol: C26	Change of rotation. (Applicable to single vane type only)
Rotation starts from the horizontal line (45° down from the	
top to the right side).	

Auto Switch Unit and Angle Adjuster

Series CRB2/CRBU2 Auto switch unit and angle adjuster can be mounted on the rotary actuator vane type.

[^8]1 Auto Switch Unit Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BW10	Single/Double type	P611070-1
	CDRB2BW15		P611090-1
	CDRB2BW20		P611060-1
	CDRB2BW30		P611080-1
	CDRB2BW40	Single type	P612010-1
		Double type	P611010-1
Free mount type Series CRBU2	CDRBU2W10	Single/Double type	P611070-1
	CDRBU2W15		P611090-1
	CDRBU2W20		P611060-1
	CDRBU2W30		P611080-1
	CDRBU2W40		P612010-1
Series CRB1	CDRB1BW50	Single/Double type	P411020-1
	CDRB1BW63		P411030-1
	CDRB1BW80		P411040-1
	CDRB1BW100		P411050-1

* Auto switch unit can be ordered separately if the rotary actuator with auto switch unit is required after the product being delivered. Auto switch itself will not be included. Please order separately.

2 Switch Block Unit Part No.

Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged.

Series	Model	Unit part no.	
Series CRB2	CDRB2BW10, 15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRB2BW20, 30	Right-handed	P611060-8
		Left-handed	
	CDRB2BW40	Right-handed	P611010-8
		Left-handed	P611010-9
Free mount type Series CRBU2	CDRBU2W10, 15	Right-handed	P611070-8
		Left-handed	P611070-9
	CDRBU2W20, 30	Right-handed	P611060-8
		Left-handed	
	CDRBU2W40	Right-handed	P611010-8
		Left-handed	P611010-9
Series CRB1	CDRB1BW50	Right-handed	P411020-8
		Left-handed	P411020-9
	CDRB1BW63, 80, 100	Right-handed	P411040-8
		Left-handed	P411040-9

* Solid state switch for size 10 and 15 requires no switch block, therefore the unit part no. will be P611070-13.

3 Angle Adjuster Part No.
Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CRB2BWU10	Single/Double type	P611070-3
	CRB2BWU15		P611090-3
	CRB2BWU20		P611060-3
	CRB2BWU30		P611080-3
	CRB2BWU40	Single type	P612010-3
		Double type	P611010-3
Free mount type Series CRBU2	CRBU2WU10	Single/Double type	P611070-3
	CRBU2WU15		P611090-3
	CRBU2WU20		P611060-3
	CRBU2WU30		P611080-3
	CRBU2WU40		P612010-3

4 Auto Switch Angle Adjuster Part No.

Each unit can be retrofitted to the rotary actuator.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BWU10	Single/Double type	P611070-4
	CDRB2BWU15		P611090-4
	CDRB2BWU20		P611060-4
	CDRB2BWU30		P611080-4
	CDRB2BWU40	Single type	P612010-4
		Double type	P611010-4
Free-mount type Series CRBU2	CDRBU2WU10	Single/Double type	P611070-4
	CDRBU2WU15		P611090-4
	CDRBU2WU20		P611060-4
	CDRBU2WU30		P611080-4
	CDRBU2WU40		P612010-4

5 Joint Unit Part No.

Joint unit is a unit required to retrofit the angle adjuster to a rotary actuator with a switch unit or to retrofit the switch unit to a rotary actuator with angle adjuster.

Series	Model	Vane type	Unit part no.
Series CRB2	CDRB2BWU10	Single/Double type	P211070-10
	CDRB2BWU15		P211090-10
	CDRB2BWU20		P211060-10
	CDRB2BWU30		P211080-10
	CDRB2BWU40		P211010-10
Free mount type Series CRBU2	CDRBU2WU10	Single/Double type	P211070-10
	CDRBU2WU15		P211090-10
	CDRBU2WU20		P211060-10
	CDRBU2WU30		P211080-10
	CDRBU2WU40		P211010-10

Series CRB2/CRBU2

 Installation of Angle Adjuster
Specifications

Single Vane Type

Model	Rotation adjustment range	Rubber bumper
CRB2BWU10, CRBU2WU10	0 to 230°	Yes
CRB2BWU15, CRBU2WU15	0 to 240°	
CRB2BWU20, CRBU2WU20		
CRB2BWU30, CRBU2WU30		
CRB2BWU40, CRBU2WU40	0 to 230°	

Note 1) Use rotary actuator for 270°.
Note 2) Connection ports are side ports only.
Note 3) The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.

Double Vane Type

Model	Rotation adjustment range	Rubber bumper
CRB2BWU10, CRBU2WU10	0 to $90^{\circ} \mathrm{C}$	Yes
CRB2BWU15, CRBU2WU15		
CRB2BWU20, CRBU2WU20		
CRB2BWU30, CRBU2WU30		
CRB2BWU40, CRBU2WU40		

Note 1) Since the maximum angle of the rotation adjustment range will be limited by the rotation when using a rotary actuator for 90°, make sure to take this into consideration when ordering. Rotary actuator for 90° should be used to adjust the angle of 85° or less as a guide.
Note 2) Connection ports are side ports only.
Note 3) The allowable kinetic energy is the same as the specifications of the rotary actuator by itself.

Rotation Adjustment Method

Remove the resin cap in the illustrations below, slide the stopper block on the long groove and lock it into the appropriate position to adjust the rotation and rotation position. Protruding four chamfers for wrench on the output shaft that rotates allows manual operation and convenient positioning. (Refer to the rotation setting examples shown in the next page for details.)

Section A-A
Section A-A
(Single vane)
(Double vane)
Note) For size 40, each stopper block comes with 2 holding bolts.

Recommended Tightening Torque for Holding Stopper Block

Model	
Tightening torque (N•m)	
CRB2BWU10, CRBU2WU10	1.0 to 1.2
CRB2BWU15, CRBU2WU15	
CRB2BWU20, CRBU2WU20	3.4 to 3.9
CRB2BWU30, CRBU2WU30	

Note) Stopper block is tightened temporarily at the time of shipment. Angle is not adjusted before shipment.
Output shaft with single flat
(Key is used for size 40)

Other Operating Method

Although one stopper block is mounted on each long groove for standard specifications as shown in the illustrations below, 2 stopper blocks can be mounted on one long groove.
Angle adjustment range when 2 stopper blocks are mounted on a single long groove

Size: 10, 40 50°
Size: 15, 20, 30 60°
As shown in <Figure b>, when mounting 2 pcs.stopper blocks in the 1 pc . long groove, by revolving each stopper block (A)(B), the rotating range of the output shaft with single flat (key) is adjustable, as described in <Figure $a>$, within either left 50° and 60° against port A and B. (Rotating range of single flat (key) when mounting 2 pcs. stopper blocks on the other side's groove is the opposite side from <Figure $\mathrm{a}>$ and the setting range is within either right 50° and 60° against port A and B.)

<Figure a>

<Figure b>

Rotation Setting Example

Example 1
The stopper ring is mounted on the standard position. (Rotary actuator with a rotation of 270° is used.)

Lock block (D) in Fig. 1-2, and move block (C) clockwise to allow the rotation of the shaft with single flat in Fig. 1-1 from point zero to end of rotation (1). When block (C) is locked and block (D) is moved counterclockwise, the shaft with single flat in Fig. 1-1 rotates from point zero to end of rotation (2). The maximum rotation range of the shaft with single flat is as follows: Sizes 10, 40 : up to 230°; Sizes $15,20,30$: up to 240° (Fig. 1-2 shows when the rotation is 0°.)

Example 3
The stopper ring is mounted on 120° clockwise from the standard position shown in Fig. 1-2 in Example 1, just as in Fig. 4-2 of Example 4

Lock block (C) in Fig. 3-2 and move block (D) counterclockwise to allow the rotation of the shaft with single flat in Fig. 3-1 from end of rotation (1) to end of rotation (2). However, since the internal stopper will come into contact with the vane at end of rotation (1), make sure that the stopper lever stops at block (C) when adjusting. End of rotation side (1) can be adjusted within 30° by turning block (c) counterclockwise.

Example 2
The stopper ring is mounted on 120° counterclockwise from the standard position shown in Fig. 1-2 in Example 1.

The maximum rotation range of the shaft with single flat in Fig. 2-2 is 195°, from end of rotation (1) to end of rotation (2). The rotation range decreases to the range between end of rotation (2) and (3) as in 2-1 when moving block (C) in Fig. 2-2 clockwise, and similarly when block (D) is moved counterclockwise, the rotation range decreases to the range between end of rotation (1) and (4). However, since the internal stopper will come into contact with the vane at end of rotation (1) in Fig. 2-1, make sure that the stopper lever stops at block (D) when adjusting.

Example 4 The stopper ring is mounted on 120° clockwise from the standard position shown in Fig. 1-2 in Example 1, just as in Fig. 3-2 of Example 3.

The maximum rotation range of the shaft with single flat is 270°, from end of rotation (1) to end of rotation (2), when using the actuator for 270° and end of rotation (1) side in Fig. 4-1 is stopped with the internal stopper and end of rotation (2) side is adjusted using block (C). The rotation can be adjusted within 90° from end of rotation (2). Note that block (c) cannot be moved and set 90° counterclockwise from its position in Fig. 4-2 since the internal stopper will come into contact with the vane.

Note 1) Mounting of the stopper ring shown in Examples 2, 3, and 4 are not applicable for size 10.
Note 2) - marks in the illustrations above indicate the position of the stopper ring assembly.
Note 3) Select the appropriate rotation of the rotary actuator by itself after careful consideration of the content of "installation of angle adjuster".
Note 4) For size 40, each block comes with 2 holding bolts.

Series CDRB2/CDRBU2/CRB1
 With Auto Switch

Applicable Auto Switch

Applicable series	Auto switch model		Electrical entry
CDRB2BW10/15 CDRBU2W10/15	Reed switch	D-90, D-90A	Grommet, 2-wire
		D-97, D-93A	
	Solid state switch	D-S99, D-S99V *	Grommet, 3-wire (NPN)
		D-S9P, D-S9PV *	Grommet, 3-wire (PNP)
		D-T99, D-T99V	Grommet, 2-wire
CDRB2BW20/30/40 CDRBU2W20/30/40 CRB1BW50/63/80/100	Reed switch	D-R73	Grommet, 2-wire
		D-R80	Connector, 2-wire
	Solid state switch	D-S79 *	Grommet, 3-wire (NPN)
		D-S7P *	Grommet, 3-wire (PNP)
		D-T79	Grommet, 2-wire; Connector, 2-wire

* Solid state switch with 3-wire type has no connector type.

Operating Range and Hysteresis

* Operating range: $\theta \mathrm{m}$

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the switch turns OFF as the magnet travels the same direction.

* Hysteresis range: $\theta \mathrm{d}$

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the switch turns OFF as the magnet travels the opposite direction.

Model	Operating range: $\theta \mathrm{m}$	Switch actuation range: $\theta \mathrm{d}$
CDRB2BW10/15	110°	10°
CDRBU2W10/15		
CDRB2BW20/30		
CDRBU2W20/30		8°
CDRB2BW40	52°	
CDRBU2W40		
CDRB1BW50	38°	

How to Change the Detecting Position of Auto Switch

* When setting the detection location, loosen the tightening screw a bit and move a switch to the preferred location and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix location. Be sure to set the tightening torque around $0.49 \mathrm{~N} \cdot \mathrm{~m}$.

Adjustment of Auto Switch

Rotation range of the output shaft with single flat (key for size 40 only) and auto switch mounting position Size: 10, 15, 20, 30, 40
<Single vane>

* Solid-lined curves indicate the rotation range of the output shaft with single flat (key). When the single flat (key) is pointing to end of rotation (1), the switch for end of rotation (1) will operate, and when the single flat (key) is pointing to end of rotation (2), the switch for end of rotation (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (1) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the illustrations above is at the most sensitive position.
* Each auto switch unit comes with one righthand and one left-hand switch.

(CDRB2BW10 to 40)
(CDRBU2W10 to 40)

Series CDRB2/CDRBU2/CRB1

Adjustment of Auto Switch

Rotation range of the output key (keyway) and auto switch mounting position
Size: 50, 63, 80, 100
<Single vane>

Rotation: $\mathbf{9 0}^{\circ}$

Rotation: $\mathbf{1 8 0}^{\circ}$

Rotation: $\mathbf{2 7 0}^{\circ}$

* Solid-lined curves indicate the rotation range of the output key (keyway). When the key is pointing to end of rotation (1), the switch for end of rotation (1) will operate, and when the key is pointing to end of rotation (2), the switch for end of rotation (2) will operate.
* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (2) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the illustrations above is at the most sensitive position.
* Each auto switch unit comes with one right-hand and one left-hand switch.
* The magnet position can be checked with a convenient indication by removing a rubber cap when adjusting the auto switch position.
* Since four chamfers are machined into the axis of rotation, a magnet position can be readjusted at 90° intervals.

[^0]: * For CDRB2BW10, 2 round head Phillips screws, 13, are required.

[^1]: * Lead wire length symbols: 0.5 m Nil (Example) R73C

 | 3 m | $\cdots .$. | L | (Example) R73CL |
 | ---: | :--- | :--- | :--- |
 | 5 m | $\cdots .$. | Z | (Example) R73CZ |
 | None | $\cdots .$. | N | (Example) R73CN |

[^2]: ,
 These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

[^3]: . These specifications are not available for rotary actuators with auto switch unit and angle adjuster.

[^4]: A combination of up to two $X A \square$ s are available.
 Example: -XA31 A32

[^5]: * These specifications are not available for rotary actuators with

[^6]: ＊For single vane：Above illustrations show actuators for 180° when B port is pressurized．

[^7]: * These specifications are not available for rotary actuators with auto switch unit.
 A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
 Example: -XA1A2C1C30
 -XA2C1C4C30

[^8]: * For rotary actuator with switch unit and angle adjuster is basically a combination of a switch unit and an angle adjuster. The items marked with \star are additionally required parts for connection (joint unit parts), and the items marked with will not be in use.
 * Use a unit part number when ordering joint unit separately.

 Note) Illustrations above show Series CRB2BW.

