

Vishay Semiconductors

TELUXTM

FEATURES

- High luminous flux
- Supreme heat dissipation: R_{th,JP} = 90 K/W
- High operating temperature:
 T_{amb} = 40 °C to + 110 °C

- Packed in tubes for automatic insertion
- Luminous flux, forward voltage and color categorized for each tube
- Small mechanical tolerances allow precise usage of external reflectors or light guides
- Lead (Pb)-free device RoHS-COMPLIANT
- ESD-withstand voltage: up to 1 kV according to JESD22-A114-B
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
- Compatible with wave solder processes according to CECC 00802 and J-STD-020C
- · Automotive qualified

DESCRIPTION

The VLWTG9900 is a clear, non diffused LED for applications where high luminous flux is required.

It is designed in an industry standard 7.62 mm square package utilizing highly developed InGaN technology. The supreme heat dissipation of VLWTG9900 allows

applications at high ambient temperatures.

All packing units are binned for luminous flux, forward voltage and color to achieve the most homogenous light appearance in application.

PRODUCT GROUP AND PACKAGE DATA

Product group: LED

Package: TELUX™

Product series: power

• Angle of half intensity: ± 45°

APPLICATIONS

- Exterior lighting
- · Replacement of small incandescent lamps
- · Traffic signals and signs

PARTS TABLE		
PART	COLOR, LUMINOUS FLUX	TECHNOLOGY
VLWTG9900	True green, $\phi_V = 2500$ mlm (typ.)	InGaN on SiC

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS ¹⁾ VLWTG9900				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage	I _R = 10 μA	V_{R}	5	V
DC Forward current	T _{amb} ≤ 50 °C	I _F	50	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	A
Power dissipation		P_V	230	mW
Junction temperature		T _j	100	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldering temperature	t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C/ 30 s	T _{sd}	260	°C
Thermal resistance junction/ ambient	with cathode heatsink of 70 mm ²	R _{thJA}	200	K/W
Thermal resistance junction/pin		R _{thJP}	90	K/W

Note:

 $^{^{1)}}$ T_{amb} = 25 °C, unless otherwise specified

PARAMETER	TEST CONDITION	SYMBOL	MIN	TYP.	MAX	UNIT
Total flux	I _F = 50 mA, R _{thJA} = 200 °K/W	φV	2000	2500		mlm
Luminous intensity/Total flux	I _F = 50 mA, R _{thJA} = 200 °K/W	I _V /φ _V		0.7		mcd/mlm
Dominant wavelength	I _F = 50 mA, R _{thJA} = 200 °K/W	λ_{d}	509	523	535	nm
Peak wavelength	I _F = 50 mA, R _{thJA} = 200 °K/W	λ_{p}		518		nm
Angle of half intensity	I _F = 50 mA, R _{thJA} = 200 °K/W	φ		± 45		deg
Total included angle	90 % of Total Flux Captured	φ		100		deg
Forward voltage	$I_F = 50 \text{ mA}, R_{thJA} = 200 \text{ °K/W}$	V _F		3.9	4.7	V
Reverse voltage	I _R = 10 μA	V_R	5	10		V
Junction capacitance	V _R = 0, f = 1 MHz	C _j		50		pF
Temperature coefficient of λ_{dom}	I _F = 30 mA	TCλ _{dom}		0.02		nm/K

Note:

¹⁾ T_{amb} = 25 °C, unless otherwise specified

LUMINOUS FLUX CLASSIFICATION				
	TRUE GREEN			
GROUP	LUMINOUS	FLUX (MLM)		
	MIN.	MAX.		
D	2000	3000		
E	2500	3600		
F	3000	4200		

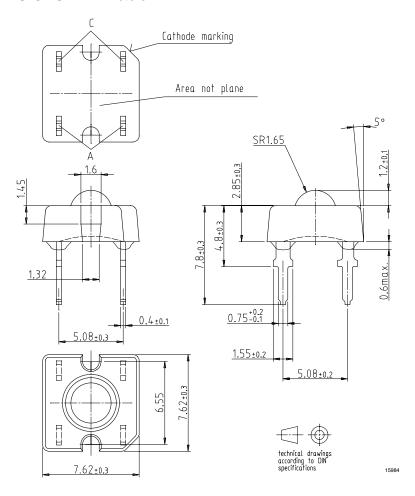
Note:

Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

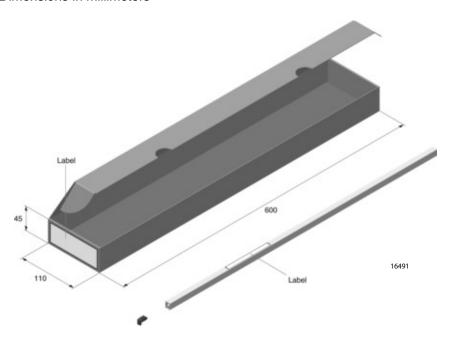
The above type numbers represent the order grous which include only a few brightness groups. Only one group will be shipped in one tube (there will be no mixing of two groups on each tube).

In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one tube.

In order to ensure availability, single wavelength groups will not be orderable.


COLOR CLASSIFICATION			
	TRUE GREEN		
GROUP	DOM. WAVELENGTH (NM)		
	MIN.	MAX.	
2	509	517	
3	515	523	
4	521	529	
5	527	535	

Note:


Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of \pm 1 nm.

PACKAGE DIMENSIONS in millimeters

FAN FOLD BOX Dimensions in millimeters

Vishay Semiconductors

TUBE WITH BAR CODE LABEL Dimensions in millimeters

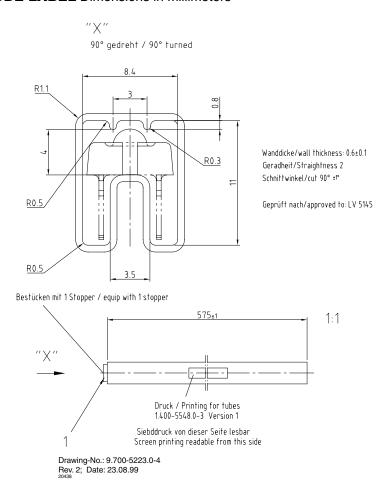


Figure 9. Drawing Proportions not Scaled