

Description:

Each OPB870, OPB871 and OPB872 (TX, TXV) phototransistor device provides the flexibility of a custom device from a standard product line. Building from a standard housing with a $0.125^{\prime \prime}(3.175 \mathrm{~mm})$ wide slot and 0.425 " (mm) leads for PCBoard mounting, a user can choose aperture width, opaque or IR transmissive housing shell material and mounting tab configuration.

Housings are made from an opaque grade of injection-molded plastic to minimize sensitivity to both visible and near-infrared light. Discrete shells exposed on the parallel faces inside each device's throat are made from either IR transmissive plastic (for applications where dust protection is needed) or from opaque plastic with aperture openings (for applications that require maximum protection against ambient light).

TX and TXV devices are processed to OPTEK's military screening program patterned after MIL-PRF-19500.
Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.
Contact your local representative or OPTEK for more information.

Applications:

- Non-contact object sensing
- Assembly line automation
- Machine automation
- Equipment safety
- Machine safety
- Military and harsh environments

RoHS

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage Temperature ${ }^{(1)}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature ${ }^{(1)}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Soldering Temperature ${ }^{(3)}$	$240^{\circ} \mathrm{C}$
Input LED	
Forward DC Current	50 mA
Peak Forward Current ($1 \mu \mathrm{~s}$ pulse width, 300 pps)	1.0 A
Reverse DC Voltage	2.0 V
Power Dissipation ${ }^{(2)}$	100 mW

Output Phototransistor/Diode

Collector-Emitter Voltage	50 V
Emitter-Collector Voltage	7.0 V
Collector DC Current	30 mA
Power Dissipation	$100 \mathrm{~mW}^{(2)}$

Notes:
(1) Derate linearly $1.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(2) Cleaning agents methanol and isopropanol are recommended. Spray or wipe; do not submerge.
(3) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering
(4) All parameters were tested using pulse technique.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Transistor/Diode

V_{F}	Forward Voltage	1.00	-	1.70		
		1.20	-	1.90	V	$\mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA}$
		$\mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$				
		0.80	-	1.60		$\mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-100^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=2.0 \mathrm{VDC}$

Output Transistor

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	50	-	-	V	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$
$\mathrm{V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	7.0	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$
$\mathrm{IC}_{\text {(off) }}$	Collector-Emitter Dark Current		-	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V_{C E}=10.0 \mathrm{~V}, I_{F}=0 \\ & V_{C E}=10.0 \mathrm{~V}, I_{F}=0, T_{A}=100^{\circ} \mathrm{C} \end{aligned}$

Coupled

$\mathrm{I}_{\text {(ON) }}$	On-State Collector Current ${ }^{(4)}$					
	Parameter A OPB870 OPB870 OPB870	$\begin{aligned} & 500 \\ & 200 \\ & 200 \end{aligned}$	-	-	$\mu \mathrm{A}$	$\begin{aligned} & V_{C E}=10.0 \mathrm{~V}, I_{F}=20.0 \mathrm{~mA} \\ & V_{C E}=10.0 \mathrm{~V}, I_{F}=20.0 \mathrm{~mA}, T_{A}=-55^{\circ} \mathrm{C} \\ & V_{C E}=10.0 \mathrm{~V}, I_{F}=20.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
	Parameter B OPB871 OPB871 OPB871	$\begin{gathered} 1000 \\ 400 \\ 400 \end{gathered}$	-	-	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
	Parameter C OPB872 OPB872 OPB872	$\begin{gathered} 1800 \\ 800 \\ 800 \end{gathered}$	-	-	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CE}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{\text {CE(SAT) }}$	Collector-Emitter Saturation Voltage OPB870 OPB871 OPB872	-	-	$\begin{aligned} & 0.30 \\ & 0.30 \\ & 0.30 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=400 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=10.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=1800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA} \end{aligned}$
t_{r}	Output Rise Time OPB870 OPB871 OPB872	-	-	$\begin{aligned} & 15.0 \\ & 20.0 \\ & 20.0 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & V_{C C}=10.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=20.0 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=1000 \Omega \end{aligned}$
t_{f}	Output Fall Time OPB870 OPB871 OPB872	-	-	$\begin{aligned} & 15.0 \\ & 20.0 \\ & 20.0 \end{aligned}$	$\mu \mathrm{s}$	$\begin{aligned} & V_{C C}=10.0 \mathrm{~V} \\ & I_{F}=20.0 \mathrm{~mA} \\ & R_{L}=1000 \Omega \end{aligned}$

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPTEK Technology

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

