

MCP1700

Low Quiescent Current LDO

Features

- 1.6 µA Typical Quiescent Current
- Input Operating Voltage Range: 2.3V to 6.0V
- Output Voltage Range: 1.2V to 5.0V
- 250 mA Output Current for output voltages ≥ 2.5V
- 200 mA Output Current for output voltages < 2.5V
- Low Dropout (LDO) voltage
- 178 mV typical @ 250 mA for V_{OUT} = 2.8V
- 0.4% Typical Output Voltage Tolerance
- Standard Output Voltage Options:
- 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
- Stable with 1.0 µF Ceramic Output capacitor
- Short Circuit Protection
- Overtemperature Protection

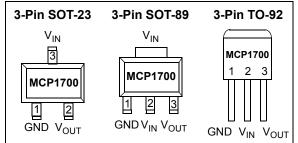
Applications

- Battery-powered Devices
- · Battery-powered Alarm Circuits
- Smoke Detectors
- CO² Detectors
- · Pagers and Cellular Phones
- Smart Battery Packs
- Low Quiescent Current Voltage Reference
- PDAs
- Digital Cameras
- Microcontroller Power

Related Literature

- AN765, "Using Microchip's Micropower LDOs", DS00765, Microchip Technology Inc., 2002
- AN766, "Pin-Compatible CMOS Upgrades to BiPolar LDOs", DS00766, Microchip Technology Inc., 2002
- AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application", DS00792, Microchip Technology Inc., 2001

General Description


The MCP1700 is a family of CMOS low dropout (LDO) voltage regulators that can deliver up to 250 mA of current while consuming only 1.6 μ A of quiescent current (typical). The input operating range is specified from 2.3V to 6.0V, making it an ideal choice for two and three primary cell battery-powered applications, as well as single cell Li-Ion-powered applications.

The MCP1700 is capable of delivering 250 mA with only 178 mV of input to output voltage differential (V_{OUT} = 2.8V). The output voltage tolerance of the MCP1700 is typically ±0.4% at +25°C and ±3% maximum over the operating junction temperature range of -40°C to +125°C.

Output voltages available for the MCP1700 range from 1.2V to 5.0V. The LDO output is stable when using only 1 μ F output capacitance. Ceramic, tantalum or aluminum electrolytic capacitors can all be used for input and output. Overcurrent limit and overtemperature shutdown provide a robust solution for any application.

Package options include the SOT-23, SOT-89 and TO-92.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD}	+6.5V
All inputs and outputs w.r.t	0.3V) to (V _{IN} +0.3V)
Peak Output Current	Internally Limited
Storage temperature	65°C to +150°C
Maximum Junction Temperature	150°C
Operating Junction Temperature	40°C to +125°C
ESD protection on all pins (HBM;MM)	$\ldots \ge 4 \text{ kV}; \ge 400 \text{V}$

DC CHARACTERISTICS

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics: Un C_{OUT} = 1 µF (X7R), C_{IN} = 1 µF Boldface type applies for junc	⁻ (X7R), T _A = +2	25°C				V _R + 1, Ι _{LOAD} = 100 μA,
Parameters Sym Min Typ Max Units Conditions						
Input / Output Characteristics						
Input Operating Voltage V _{IN} 2.3 — 6.0 V Note 1						
Input Quiescent Current	lq	_	1.6	4	μA	I _L = 0 mA, V _{IN} = V _R +1V
Maximum Output Current	I _{OUT_mA}	250 200	_	_	mA	For $V_R \ge 2.5V$

		200	_	—		For $V_R < 2.5V$
Output Short Circuit Current	I _{OUT_SC}	_	408	_	mA	$V_{IN} = V_R + V$, $V_{OUT} = GND$, Current (peak current) measured 10 ms after short is applied.
Output Voltage Regulation	V _{OUT}	V_R-3.0% V _R -2.0%	V _R ±0.4 %	V_R+3.0% V _R +2.0%	V	Note 2
V _{OUT} Temperature Coefficient	TCV _{OUT}	—	50	—	ppm/°C	Note 3
Line Regulation	ΔV _{OUT} / (V _{OUT} XΔV _{IN})	-1.0	±0.75	+1.0	%/V	$(V_R+1)V \le V_{IN} \le 6V$
Load Regulation	$\Delta V_{OUT} / V_{OUT}$	-1.5	±1.0	+1.5	%	I_L = 0.1 mA to 250 mA for $V_R \ge 2.5V$ I_L = 0.1 mA to 200 mA for $V_R < 2.5V$ Note 4
Dropout Voltage $V_R > 2.5V$	V _{IN} -V _{OUT}	—	178	350	mV	I _L = 250 mA, (Note 1, Note 5)
Dropout Voltage $V_R < 2.5V$	V _{IN} -V _{OUT}	—	150	350	mV	I _L = 200 mA, (Note 1, Note 5)
Output Rise Time	T _R	—	500	—	μs	10% V _R to 90% V _R V _{IN} = 0V to 6V, R _L = 50 Ω resistive
Output Noise	e _N	_	3	_	µV/(Hz) ^{1/2}	I_{L} = 100 mA, f = 1 kHz, C_{OUT} = 1 µF

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3V$ and $V_{IN} \ge (V_R + 3.0\%) + V_{DROPOUT}$.

2: V_R is the nominal regulator output voltage. For example: V_R = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The input voltage (V_{IN} = V_R + 1.0V); I_{OUT} = 100 μA.

3: TCV_{OUT} = (V_{OUT-HIGH} - V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature), V_{OUT-HIGH} = highest voltage measured over the temperature range. V_{OUT-LOW} = lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV_{OUT}.

5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with a V_R + 1V differential applied.

6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant.

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise specified, all limits are established for $V_{IN} = V_R + 1$, $I_{LOAD} = 100 \ \mu$ A,

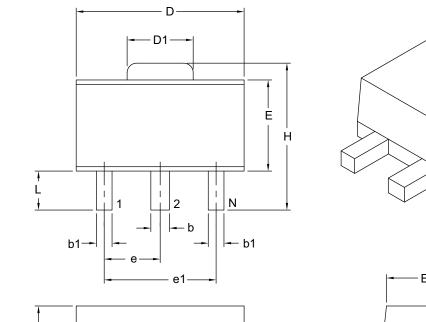
 $C_{OUT} = 1 \ \mu F (X7R), C_{IN} = 1 \ \mu F (X7R), T_A = +25^{\circ}C.$

Boldface type applies for junction temperatures, T_J (Note 6) of -40°C to +125°C.

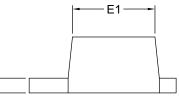
Parameters	Sym	Min	Тур	Мах	Units	Conditions
Power Supply Ripple Rejection Ratio	PSRR	_	44		dB	f = 100 Hz, C_{OUT} = 1 µF, I _L = 50 mA, V _{INAC} = 100 mV pk-pk, C_{IN} = 0 µF, V _R = 1.2V
Thermal Shutdown Protection	T _{SD}	_	140		°C	$V_{IN} = V_R + 1$, $I_L = 100 \ \mu A$

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3V$ and $V_{IN} \ge (V_R + 3.0\%) + V_{DROPOUT}$.

- 2: V_R is the nominal regulator output voltage. For example: V_R = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The input voltage (V_{IN} = V_R + 1.0V); I_{OUT} = 100 μ A.
- 3: TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10⁶ / (V_R * ∆Temperature), V_{OUT-HIGH} = highest voltage measured over the temperature range. V_{OUT-LOW} = lowest voltage measured over the temperature range.
- 4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCV_{OUT}.
- 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with a V_{R} + 1V differential applied.
- 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
- 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant.


TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise specified, all limits are established for $V_{IN} = V_R + 1$, $I_{LOAD} = 100 \ \mu$ A, $C_{OUT} = 1 \ \mu$ F (X7R), $C_{IN} = 1 \ \mu$ F (X7R), $T_A = +25^{\circ}$ C.


Deleterer truce enables t	an it the stime terms a net the second	T (Nata 4) of 40% to 1405%
BOIDTACE TYPE ADDILES I	or junction temperatures.	1 (NOTE 1) OT -40 (. TO + 125 (.))
Doranado (ypo applico i	or janoaon tomporataroo	, T _J (Note 1) of -40°C to +125°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	T _A	-40		+125	°C	
Operating Temperature Range	T _A	-40		+125	°C	
Storage Temperature Range	T _A	-65		+150	°C	
Thermal Package Resistance						
Thermal Resistance, SOT-23	θ_{JA}	_	336	_	°C/W	Minimum Trace Width Single Layer Board
		_	230	_	°C/W	Typical FR4 4-layer Application
Thermal Resistance, SOT-89	θ_{JA}	_	52	_	°C/W	Typical, 1 square inch of copper
Thermal Resistance, TO-92	θ_{JA}	_	131.9	_	°C/W	EIA/JEDEC JESD51-751-7 4-Layer Board

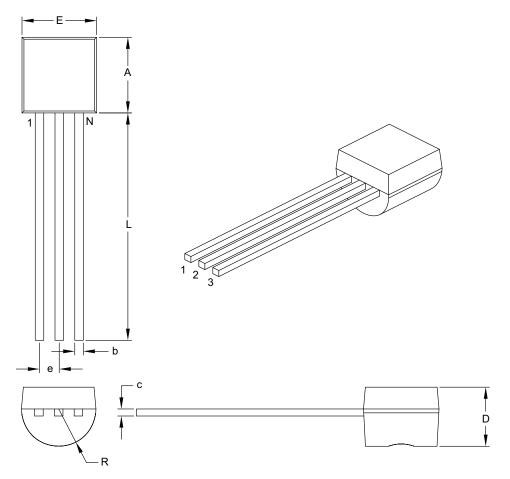
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.

3-Lead Plastic Small Outline Transistor Header (MB) [SOT-89]

	MILLIN	IETERS	
Din	nension Limits	MIN	MAX
Number of Leads	N		3
Pitch	е	1.50	BSC
Outside Lead Pitch	e1	3.00	BSC
Overall Height	А	1.40	1.60
Overall Width	н	3.94	4.25
Molded Package Width at Base	E	2.29	2.60
Molded Package Width at Top	E1	2.13	2.29
Overall Length	D	4.39	4.60
Tab Length	D1	1.40	1.83
Foot Length	L	0.79	1.20
Lead Thickness	С	0.35	0.44
Lead 2 Width	b	0.41	0.56
Leads 1 & 3 Width	b1	0.36	0.48

сŢ

Notes:


А

- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-029B

3-Lead Plastic Transistor Outline (TO or ZB) [TO-92]

	INC	HES	
Dimension	n Limits	MIN	MAX
Number of Pins	N	;	3
Pitch	е	.050	BSC
Bottom to Package Flat	D	.125	.165
Overall Width	E	.175	.205
Overall Length	Α	.170	.210
Molded Package Radius	R	.080	.105
Tip to Seating Plane	L	.500	-
Lead Thickness	С	.014	.021
Lead Width	b	.014	.022

Notes:

- 1. Dimensions A and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-101B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X-	<u>ххх х х /хх</u>	Examples:
MCP1700 Tape 8	k Voltage Tolerance Temp. Package	SOT-89 Package:
Reel	Output Range	a) MCP1700T-1202E/MB: 1.2V V _{OUT}
		b) MCP1700T-1802E/MB: 1.8V V _{OUT}
		c) MCP1700T-2502E/MB: 2.5V V _{OUT}
Device:	MCP1700: Low Quiescent Current LDO	d) MCP1700T-3002E/MB: 3.0V V _{OUT}
		e) MCP1700T-3302E/MB: 3.3V V _{OUT}
Tape and Reel:	T: Tape and Reel only applies to SOT-23 and SOT-89	f) MCP1700T-5002E/MB: 5.0V V _{OUT}
	devices	TO-92 Package:
		g) MCP1700-1202E/TO: 1.2V V _{OUT}
Standard Output Voltage: *	120 = 1.2V 180 = 1.8V	h) MCP1700-1802E/TO: 1.8V V _{OUT}
vollage.	250 = 2.5V	i) MCP1700-2502E/TO: 2.5V V _{OUT}
	300 = 3.0V	j) MCP1700-3002E/TO: 3.0V V _{OUT}
	330 = 3.3V 500 = 5.0V	k) MCP1700-3302E/TO: 3.3V V _{OUT}
	* Custom output voltages available upon request. Contact	I) MCP1700-5002E/TO: 5.0V V _{OUT}
	your local Microchip sales office for more information	SOT-23 Package:
		a) MCP1700T-1202E/TT: 1.2V V _{OUT}
Tolerance:	2 = 2%	b) MCP1700T-1802E/TT: 1.8V V _{OUT}
		c) MCP1700T-2502E/TT: 2.5V V _{OUT}
Temperature Range:	$E = -40^{\circ}C$ to $+125^{\circ}C$ (Extended)	d) MCP1700T-3002E/TT: 3.0V V _{OUT}
		e) MCP1700T-3302E/TT: 3.3V V _{OUT}
Package:	MB = Plastic Small Outline Transistor (SOT-89), 3-lead TO = Plastic Small Outline Transistor (TO-92), 3-lead	f) MCP1700T-5002E/TT: 5.0V V _{OUT}
	TT = Plastic Small Outline Transistor SOT-23), 3-lead	