

MCP1603

2.0 MHz, 500 mA Synchronous Buck Regulator

Features

- Over 90% Typical Efficiency
- Output Current Up To 500 mA
- Low Quiescent Current = 45 µA, typical
- Low Shutdown Current = 0.1 µA, typical
- · Adjustable Output Voltage:
 - 0.8V to 4.5V
- Fixed Output Voltage:
- 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V
- 2.0 MHz Fixed-Frequency PWM (Heavy Load)
- Automatic PWM to PFM Mode Transition
- 100% Duty Cycle Operation
- Internally Compensated
- Undervoltage Lockout (UVLO)
- Overtemperature Protection
- Space Saving Packages:
 - 5-Lead TSOT
 - 8-Lead 2X3 DFN

Applications

- Cellular Telephones
- · Portable Computers
- · Organizers / PDAs
- USB Powered Devices
- Digital Cameras
- · Portable Equipment
- +5V or +3.3V Distributed Systems

General Description

The MCP1603 is a high efficient, fully integrated 500 mA synchronous buck regulator whose 2.7V to 5.5V input voltage range makes it ideally suited for applications powered from 1-cell Li-lon or 2-cell/3-cell NiMH/NiCd batteries.

At heavy loads, the MCP1603 operates in the 2.0 MHz fixed frequency PWM mode which provides a low noise, low output ripple, small-size solution. When the load is reduced to light levels, the MCP1603 automatically changes operation to a PFM mode to minimize quiescent current draw from the battery. No intervention is necessary for a smooth transition from one mode to another. These two modes of operation allow the MCP1603 to achieve the highest efficiency over the entire operating current range.

The MCP1603 is available with either an adjustable or fixed output voltage. The available fixed output voltage options are 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V. When a fixed option is used, only three additional small external components are needed to form a complete solution. Couple this with the low profile, small-foot print packages and the entire system solution is achieved with minimal size.

Additional protection features include: UVLO, overtemperature, and overcurrent protection.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{IN} - GND	+6.0V
All Other I/O(GND -	0.3V) to (V _{IN} + 0.3V)
L _X to GND	0.3V to (V _{IN} + 0.3V)
Output Short Circuit Current	Continuous
Power Dissipation (Note 5)	Internally Limited
Storage Temperature	65°C to +150°C
Ambient Temp. with Power Applied	40°C to +85°C
Operating Junction Temperature	40°C to +125°C
ESD Protection On All Pins:	
HBM	4 kV
MM	300V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{IN} = \overline{SHDN} = 3.6V$, $C_{OUT} = C_{IN} = 4.7 \ \mu\text{F}$, $L = 4.7 \ \mu\text{H}$, $V_{OUT}(ADJ) = 1.8V$, $I_{OUT} = 100 \ \text{mA}$, $T_A = +25^{\circ}\text{C}$. **Boldface** specifications apply over the T_A range of -40°C to +85°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions	
Input Characteristics							
Input Voltage	V _{IN}	2.7		5.5	V	Note 1	
Maximum Output Current	I _{OUT}	500		_	mA	Note 1	
Shutdown Current	IIN_SHDN		0.1	1	μA	SHDN = GND	
Quiescent Current	Ι _Q	_	45	60	μA	SHDN = V _{IN} , I _{OUT} = 0 mA	
Shutdown/UVLO/Thermal Shutdown Characteristics							
SHDN, Logic Input Voltage Low	V _{IL}	_	_	15	%V _{IN}	V _{IN} = 2.7V to 5.5V	
SHDN, Logic Input Voltage High	V _{IH}	45	-		%V _{IN}	V _{IN} = 2.7V to 5.5V	
SHDN, Input Leakage Current	IL_SHDN	-1.0	±0.1	1.0	μA	V _{IN} = 2.7V to 5.5V	
Undervoltage Lockout	UVLO	2.12	2.28	2.43	V	V _{IN} Falling	
Undervoltage Lockout Hysteresis	$UVLO_{HYS}$	_	140		mV		
Thermal Shutdown	T _{SHD}	_	150	_	°C	Note 4, Note 5	
Thermal Shutdown Hysteresis	T _{SHD-HYS}	—	10	_	°C	Note 4, Note 5	

Note 1: The minimum V_{IN} has to meet two conditions: V_{IN} \ge 2.7V and V_{IN} \ge V_{OUT} + 0.5V.

2: Reference Feedback Voltage Tolerance applies to adjustable output voltage setting.

3: V_R is the output voltage setting.

4: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable temperature and the thermal resistance from junction to air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.

5: The internal MOSFET switches have an integral diode from the L_X pin to the V_{IN} pin, and from the L_X pin to the GND pin. In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.

6: The current limit threshold is a cycle-by-cycle peak current limit.

DC CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $V_{IN} = SHDN = 3.6V$, $C_{OUT} = C_{IN} = 4.7 \mu$ F, L = 4.7 μ H, $V_{OUT}(ADJ) = 1.8V$, $I_{OUT} = 100 \text{ mA}$, $T_A = +25^{\circ}$ C. Boldface specifications apply over the T_A range of -40°C to +85°C.							
Parameters	Sym	Min	Тур	Max	Units	Conditions	
Output Characteristics							
Adjustable Output Voltage Range	V _{OUT}	0.8	—	4.5	V	Note 2	
Reference Feedback Voltage	V _{FB}	_	0.8		V		
Reference Feedback Voltage		-3.0	_	+3.0	%	$T_A = -40^{\circ}C$ to $+25^{\circ}C$	
Tolerance		-2.5	_	+2.5	%	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$	
Feedback Input Bias Current	I _{VFB}	_	0.1		nA		
Output Voltage Tolerance Fixed	V _{OUT}	-3.0%	V _R	+3.0%	%	T _A = -40°C to +25°C, Note 3	
	V _{OUT}	-2.5	V _R	+2.5	%	T _A = +25°C to +85°C, Note 3	
Line Regulation	V _{LINE-}	—	0.3	_	%/V	$V_{IN} = V_R + 1V$ to 5.5V,	
	REG					I _{OUT} = 100 mA	
Load Regulation	V _{LOAD-}	—	0.35	—	%	$V_{IN} = V_R + 1.5V,$	
	REG					I _{LOAD} = 100 mA to 500 mA	
Internal Oscillator Frequency	F _{OSC}	1.5	2.0	2.8	MHz		
Start Up Time	T _{SS}	_	0.6	_	ms	T _R = 10% to 90%	
R _{DSon} P-Channel	R _{DSon-P}	_	500		mΩ	I _P = 100 mA	
R _{DSon} N-Channel	R _{DSon-N}	_	500		mΩ	I _N = 100 mA	
L _X Pin Leakage Current	I _{LX}	-1.0	±0.1	1.0	μA	SHDN = 0V, V _{IN} = 5.5V,	
						L _X = 0V, L _X = 5.5V	
Positive Current Limit Threshold	+I _{LX(MAX)}	_	860	_	mA	Note 6	

Note 1: The minimum V_{IN} has to meet two conditions: $V_{IN} \geq 2.7V$ and $V_{IN} \geq V_{OUT}$ + 0.5V.

2: Reference Feedback Voltage Tolerance applies to adjustable output voltage setting.

- **3:** V_R is the output voltage setting.
- **4:** The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable temperature and the thermal resistance from junction to air (i.e. T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown.
- **5:** The internal MOSFET switches have an integral diode from the L_X pin to the V_{IN} pin, and from the L_X pin to the GND pin. In cases where these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.

6: The current limit threshold is a cycle-by-cycle peak current limit.

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, all limits are specified for: V _{IN} + 2.7V to 5.5V							
Parameters	Sym	Min	Тур	Мах	Units	Conditions	
Temperature Ranges							
Operating Junction Temperature Range	ТJ	-40	—	+125	°C	Steady State	
Storage Temperature Range	Τ _Α	-65	—	+150	°C		
Maximum Junction Temperature	Τ _J	—	—	+150	°C	Transient	
Package Thermal Resistances							
Thermal Resistance, 5L-TSOT	θ_{JA}	—	256	—	°C/W	Typical 4-layer Board with Internal Ground Plane	
Thermal Resistance, 8L-2x3 DFN	θ_{JA}	—	84.5	—	°C/W	Typical 4-layer Board with Internal Ground Plane and 2-Vias in Thermal Pad	

8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]

	Units	MILLIMETERS		
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	8		
Pitch	е	0.50 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Length	D	2.00 BSC		
Overall Width	E	3.00 BSC		
Exposed Pad Length	D2	1.30	-	1.75
Exposed Pad Width	E2	1.50	-	1.90
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package may have one or more exposed tie bars at ends.
- 3. Package is saw singulated.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-123B

5-Lead Plastic Thin Small Outline Transistor (OS) [TSOT]

1	
A	- A2
Ĵ↓	↓
1	
A1	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-128B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X X XXX X / XX		Examples:			
		8-Lead DFN:			
Config. and Reel Option		a) MCP1603-120I/MC: 1.20V Buck Reg., 8LD-DFN pkg.			
Device:	MCP1603: 2.0 MHz, 500 mA Buck Regulator	b) MCP1603-150I/MC: 1.50V Buck Reg., 8LD-DFN pkg.			
TOOT D		c) MCP1603-180I/MC: 1.80V Buck Reg., 8LD-DFN pkg.			
Config. Designator *	Blank = Standard pinout L = Alternate pinout * Refer to Package Types for an explanation regarding the	d) MCP1603-250I/MC: 2.50V Buck Reg., 8LD-DFN pkg.			
	function of the device pins.	e) MCP1603-330I/MC: 3.30V Buck Reg., 8LD-DFN pkg.			
Tape and Reel:	T = Tape and Reel	5-Lead TSOT:			
	Blank = Tube	a) MCP1603T-120I/OS: 1.20V Buck Reg., 5LD-TSOT pkg.			
Voltage Option:	ADJ = Adjustable 120 = 1.20V "Standard" 150 = 1.50V "Standard" 180 = 1.80V "Standard" 250 = 2.50V "Standard"	b) MCP1603T-180I/OS: 1.80V Buck Reg., 5LD-TSOT pkg.			
		c) MCP1603T-250I/OS: 2.50V Buck Reg., 5LD-TSOT pkg.			
	330 = 3.30V "Standard"	d) MCP1603T-330I/OS: 3.30V Buck Reg., 5LD-TSOT pkg.			
Temperature:	$I = -40^{\circ}C \text{ to } +85^{\circ}C$	e) MCP1603T-ADJI/OS: Adj. Buck Reg., 5LD-TSOT pkg.			
Package Type:	MC = Plastic Dual-Flat No-Lead Package (MC), 8-Lead	f) MCP1603LT-250I/OS:2.50V Buck Reg., 5LD-TSOT pkg.			
	US = Plastic Thin Small Outline Transistor (US), 5-Lead	g) MCP1603LT-ADJI/OS:Adj. Buck Reg., 5LD-TSOT pkg.			