

1000 mA, Low Voltage, Low Quiescent Current LDO Regulator

Features

- 1000 mA Output Current Capability
- Input Operating Voltage Range: 2.3V to 6.0V
- Adjustable Output Voltage Range: 0.8V to 5.0V (MCP1826 only)
- Standard Fixed Output Voltages:
 - 0.8V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
- Other Fixed Output Voltage Options Available
 Upon Request
- Low Dropout Voltage: 250 mV Typical at 1000 mA
- Typical Output Voltage Tolerance: 0.5%
- Stable with 1.0 µF Ceramic Output Capacitor
- · Fast response to Load Transients
- Low Supply Current: 120 µA (typ)
- Low Shutdown Supply Current: 0.1 µA (typ) (MCP1826 only)
- Fixed Delay on Power Good Output (MCP1826 only)
- Short Circuit Current Limiting and Overtemperature Protection
- TO-263-5 (DDPAK-5), TO-220-5, SOT-223-5 Package Options (MCP1826).
- TO-263-3 (DDPAK-3), TO-220-3, SOT-223-3 Package Options (MCP1826S).

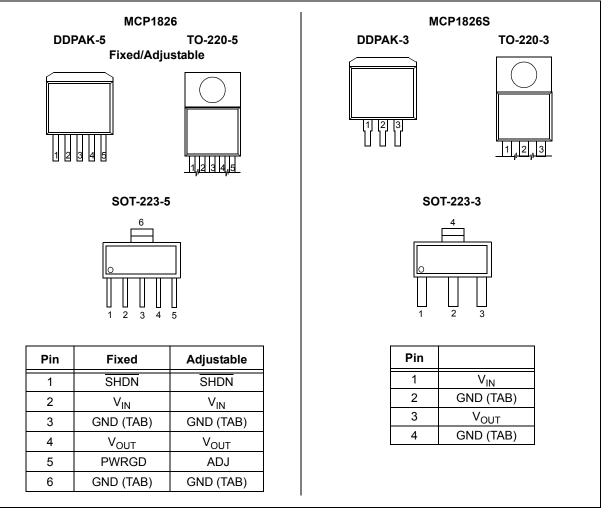
Applications

- High-Speed Driver Chipset Power
- Networking Backplane Cards
- Notebook Computers
- Network Interface Cards
- Palmtop Computers
- 2.5V to 1.XV Regulators

Description

The MCP1826/MCP1826S is a 1000 mA Low Dropout (LDO) linear regulator that provides high current and low output voltages. The MCP1826 comes in a fixed or adjustable output voltage version, with an output voltage range of 0.8V to 5.0V. The 1000 mA output current capability, combined with the low output voltage capability, make the MCP1826 a good choice for new sub-1.8V output voltage LDO applications that have high current demands. The MCP1826S is a 3-pin fixed voltage version.

The MCP1826/MCP1826S is stable using ceramic output capacitors that inherently provide lower output noise and reduce the size and cost of the entire regulator solution. Only 1 μ F of output capacitance is needed to stabilize the LDO.


Using CMOS construction, the quiescent current consumed by the MCP1826/MCP1826S is typically less than 120 μ A over the entire input voltage range, making it attractive for portable computing applications that demand high output <u>current</u>. The MCP1826 versions have a Shutdown (SHDN) pin. When shut down, the quiescent current is reduced to less than 0.1 μ A.

On the MCP1826 fixed output versions the scaleddown output voltage is internally monitored and a power good (PWRGD) output is provided when the output is within 92% of regulation (typical). The PWRGD delay is internally fixed at 200 µs (typical).

The overtemperature and short circuit current-limiting provide additional protection for the LDO during system fault conditions.

MCP1826/MCP1826S

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{IN}
Maximum Voltage on Any Pin (GND – 0.3V) to $(V_{DD}$ + 0.3)V
Maximum Power Dissipation Internally-Limited (Note 6)
Output Short Circuit Duration Continuous
Storage temperature65°C to +150°C
Maximum Junction Temperature, T _J +150°C
ESD protection on all pins (HBM/MM) \geq 4 kV; \geq 300V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 4.7 \ \mu\text{F}$ (X7R Ceramic), $T_A = +25^{\circ}\text{C}$. **Boldface** type applies for junction temperatures, T_1 (**Note 7**) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.3		6.0	V	Note 1
Input Quiescent Current	۱ _q	—	120	220	μA	I _L = 0 mA, V _{OUT} = 0.8V to 5.0V
Input Quiescent Current for SHDN Mode	ISHDN	—	0.1	3	μA	SHDN = GND
Maximum Output Current	Ι _{ΟUT}	1000	—	—	mA	V _{IN} = 2.3V to 6.0V V _R = 0.8V to 5.0V, Note 1
Line Regulation	ΔV _{OUT} / (V _{OUT} x ΔV _{IN})	—	±0.05	±0. 20	%/V	(Note 1) $\leq V_{IN} \leq 6V$
Load Regulation	$\Delta V_{OUT}/V_{OUT}$	-1.0	±0.5	1.0	%	I _{OUT} = 1 mA to 1000 mA, (Note 4)
Output Short Circuit Current	I _{OUT_SC}	_	2.2	_	Α	$R_{LOAD} < 0.1\Omega$, Peak Current
Adjust Pin Characteristics (Adj	ustable Output O	nly)				
Adjust Pin Reference Voltage	V _{ADJ}	0.402	0.410	0.418	V	V_{IN} = 2.3V to V_{IN} = 6.0V, I_{OUT} = 1 mA
Adjust Pin Leakage Current	I _{ADJ}	-10	±0.01	+10	nA	V_{IN} = 6.0V, V_{ADJ} = 0V to 6V
Adjust Temperature Coefficient	TCV _{OUT}	_	40	_	ppm/°C	Note 3
Fixed-Output Characteristics (F	•)	-		-	
Voltage Regulation	V _{OUT}	V _R - 2.5%	V _R ±0.5%	V _R + 2.5%	V	Note 2

Note 1: The minimum V_{IN} must meet two conditions: V_{IN} \ge 2.3V and V_{IN} \ge V_{OUT(MAX)} + V_{DROPOUT(MAX)}.

2: V_R is the nominal regulator output voltage for the fixed cases. V_R = 1.2V, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. V_R = $V_{ADJ} * ((R_1/R_2)+1)$. Figure 4-1.

3: TCV_{OUT} = (V_{OUT-HIGH} – V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature). V_{OUT-HIGH} is the highest voltage measured over the temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.

5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$.

6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.

7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 4.7 \,\mu\text{F}$ (X7R Ceramic), $T_A = +25^{\circ}\text{C}$. **Boldface** type applies for junction temperatures. T_1 (**Note 7**) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
	Sym	IVIIII	тур	IVIAX	Units	Conditions
Dropout Characteristics	1 1		1		-	T
Dropout Voltage	V _{DROPOUT}	_	250	400	mV	Note 5, I _{OUT} = 1000 mA, V _{IN(MIN)} = 2.3V
Power Good Characteristics						
PWRGD Input Voltage Operat-	V _{PWRGD_VIN}	1.0	_	6.0	V	T _A = +25°C
ing Range		1.2	_	6.0		$T_A = -40^{\circ}C$ to $+125^{\circ}C$
						For V _{IN} < 2.3V, I _{SINK} = 100 μ A
PWRGD Threshold Voltage	V _{PWRGD_TH}				%V _{OUT}	Falling Edge
(Referenced to V _{OUT})		89	92	95		V _{OUT} < 2.5V Fixed, V _{OUT} = Adj.
		90	92	94		V _{OUT} >= 2.5V Fixed
PWRGD Threshold Hysteresis	V _{PWRGD_HYS}	1.0	2.0	3.0	%V _{OUT}	
PWRGD Output Voltage Low	V _{PWRGD_L}	—	0.2	0.4	V	I _{PWRGD SINK} = 1.2 mA, ADJ = 0V
PWRGD Leakage	P _{WRGD_LK}	_	1		nA	$V_{PWRGD} = V_{IN} = 6.0V$
PWRGD Time Delay	T _{PG}	—	125		μs	Rising Edge R _{PULLUP} = 10 kΩ
Detect Threshold to PWRGD Active Time Delay	T _{VDET-PWRGD}	—	200		μs	V _{OUT} = V _{PWRGD_TH} + 20 mV to V _{PWRGD_TH} - 20 mV
Shutdown Input				_		
Logic High Input	V _{SHDN-HIGH}	45	—		%V _{IN}	V _{IN} = 2.3V to 6.0V
Logic Low Input	V _{SHDN-LOW}	_	_	15	%V _{IN}	V _{IN} = 2.3V to 6.0V
SHDN Input Leakage Current	SHDN _{ILK}	-0.1	±0.001	+0.1	μΑ	V _{IN} = 6V, SHDN =V _{IN} , SHDN = GND
AC Performance						
Output Delay From SHDN	T _{OR}	—	100	_	μs	SHDN = GND to V _{IN} V _{OUT} = GND to 95% V _R
Output Noise	e _N	_	2.0	_	µV/√Hz	I_{OUT} = 200 mA, f = 1 kHz, C_{OUT} = 10 µF (X7R Ceramic), V_{OUT} = 2.5V

Note 1: The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3V$ and $V_{IN} \ge V_{OUT(MAX)} + V_{DROPOUT(MAX)}$.

2: V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ} * ((R_1/R_2)+1)$. Figure 4-1.

3: TCV_{OUT} = (V_{OUT-HIGH} – V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature). V_{OUT-HIGH} is the highest voltage measured over the temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.

4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.

5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$.

6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.

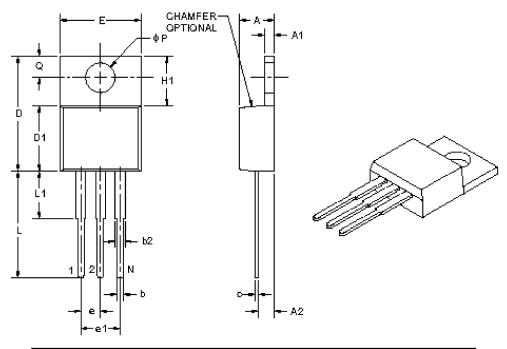
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 4.7 \mu F$ (X7R Ceramic), $T_A = +25^{\circ}C$. Boldface type applies for junction temperatures. T₁ (Note 7) of -40°C to +125°C

Boldiace type applies for junction temperatures, 1 (Note 7) of -40 C to +125 C							
Parameters	Sym	Min	Тур	Max	Units	Conditions	
Power Supply Ripple Rejection Ratio	PSRR	_	60	_	dB	f = 100 Hz, C_{OUT} = 4.7 µF, I _{OUT} = 100 µA, V _{INAC} = 100 mV pk-pk, C _{IN} = 0 µF	
Thermal Shutdown Temperature	T _{SD}	_	150	_	°C	I _{OUT} = 100 μA, V _{OUT} = 1.8V, V _{IN} = 2.8V	
Thermal Shutdown Hysteresis	ΔT_{SD}	_	10	_	°C	I _{OUT} = 100 μA, V _{OUT} = 1.8V, V _{IN} = 2.8V	

Note 1: The minimum V_{IN} must meet two conditions: V_{IN} \ge 2.3V and V_{IN} \ge V_{OUT(MAX)} + V_{DROPOUT(MAX)}.


 V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ} * ((R_1/R_2)+1)$. Figure 4-1. TCV_{OUT} = $(V_{OUT-HIGH} - V_{OUT-LOW}) *10^6 / (V_R * \Delta Temperature)$. $V_{OUT-HIGH}$ is the highest voltage measured over the temperature range 2:

- 3: temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.
- 4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.
- Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its 5: nominal value that was measured with an input voltage of V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}.
- The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction 6: temperature and the thermal resistance from junction to air. (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.
- 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

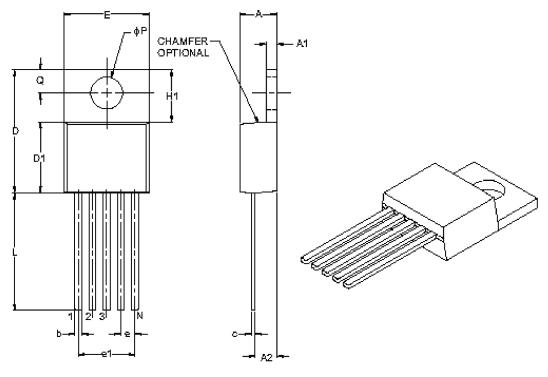
Parameters	Sym	Min	Тур	Мах	Units	Conditions	
Temperature Ranges		•	•			•	
Operating Junction Temperature Range	Τ _J	-40	—	+125	°C	Steady State	
Maximum Junction Temperature	Τ _J	—	—	+150	°C	Transient	
Storage Temperature Range	T _A	-65	—	+150	°C		
Thermal Package Resistances							
Thermal Resistance, 3L-DDPAK	θ_{JA}	—	31.4		°C/W	4-Layer JC51 Standard	
	θ_{JC}	—	3.0	_	°C/W	Board	
Thermal Resistance, 3L-TO-220	θ_{JA}	_	29.4	-	°C/W	4-Layer JC51 Standard	
	θ^{JC}	—	2.0		°C/W	Board	
Thermal Resistance, 3L-SOT-223	θ_{JA}	—	62	_	°C/W	EIA/JEDEC JESD51-751-7	
	θ_{JC}	—	15.0	_	°C/W	4 Layer Board	
Thermal Resistance, 5L-DDPAK	θ_{JA}	—	31.2	_	°C/W	4-Layer JC51 Standard	
	θ_{JC}	—	3.0	_	°C/W	Board	
Thermal Resistance, 5L-TO-220	θ_{JA}	—	29.3	_	°C/W	4-Layer JC51 Standard	
	θ^{JC}	—	2.0	—	°C/W	Board	
Thermal Resistance, 5L-SOT-223	θ_{JA}	_	62		°C/W	EIA/JEDEC JESD51-751-7	
	θ_{JC}	_	15.0	_	°C/W	4 Layer Board	

TEMPERATURE SPECIFICATIONS

3-Lead Plastic Transistor Outline (AB) [TO-220]

	INCHES					
	Dimension Limits		NOM	MAX		
Number of Pins	N	3				
Pitch	е					
Overall Pin Pitch	e1		.200 BSC			
Overall Height	А	.140	-	.190		
Tab Thickness	A1	.020	-	.055		
Base to Lead	A2	.080	-	.115		
Overall Width	E	.367	_	.420		
Mounting Hole Center	Q	.100	-	.120		
Overall Length	D	.560	_	.650		
Molded Package Length	D1	.330	-	.355		
Tab Length	H1	.230	-	.270		
Mounting Hole Diameter	φP	.139	-	.156		
Lead Length	L	.500	_	.580		
Lead Shoulder	L1	_	-	.250		
Lead Thickness	С	.012	_	.024		
Lead Width	Ь	.015	.027	.040		
Shoulder Width	Ь2	.045	.057	.070		

Notes:


1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005' per side.

2. Dimensioning and tolerancing per AS ME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-0348

5-Lead Plastic Transistor Outline (AT) [TO-220]

	Units		INCHES			
	Dimension Limits			MAX		
Number of Pins	N		5			
Pitch	е		.067 BSC			
Overall Pin Pitch	e1		.268 BSC			
Overall Height	А	.140	-	.190		
Overall Width	E	.380	-	.420		
Overall Length	D	.560	-	.650		
Molded Package Length	D1	.330	-	.355		
Tab Length	H1	.204	-	.293		
Tab Thickness	A1	.020	-	.055		
Mounting Hole Center	Q	.100	-	.120		
Mounting Hole Diameter	φP	.139	_	.156		
Lead Length	L	.482	-	.590		
Base to Bottom of Lead	A2	.080	_	.115		
Lead Thickness	C	.012	_	.025		
Lead Width	Ь	.015	.027	.040		

Notes:

1. Dimensions D and E do not include mold tash or protrusions. Mold flash or protrusions shall not exceed .005" per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing CO4-036B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO. XX X X X X/ XX</u>			Examples:				
	t Feature Tolerance Temp. Package		b) N c) N d) N e) N f) N g) N	MCP1826-0802E/XX:0.8V LDO RegulatorMCP1826-1002E/XX:1.0V LDO RegulatorMCP1826-1202E/XX:1.2V LDO RegulatorMCP1826-1802E/XX:1.8V LDO RegulatorMCP1826-2502EXX:25V LDO RegulatorMCP1826-3002E/XX:3.0V LDO RegulatorMCP1826-3302E/XX:3.3V LDO RegulatorMCP1826-3002E/XX:5.0V LDO RegulatorMCP1826-3002E/XX:5.0V LDO RegulatorMCP1826-3002E/XX:5.0V LDO RegulatorMCP1826-5002E/XX:5.0V LDO RegulatorMCP1826-5002E/XX:5.0V LDO RegulatorMCP1826-ADJE/XX:ADJ LDO Regulator			
Output Voltage *:	08 = 0.8V "Standard" 12 = 1.2V "Standard" 18 = 1.8V "Standard" 25 = 2.5V "Standard" 30 = 3.0V "Standard" 33 = 3.3V "Standard" 50 = 5.0V "Standard" ADJ = Adjustable Output Voltage ** (MCP1826 only) *Contact factory for other output voltage options ** When ADJ is used, the "extra feature code" and "tolerance" columns do not apply. Refer to examples.		b) N c) N d) N e) N f) N g) N	MCP1826S-0802E/XX:0.8V LDO Regulator MCP1826S-1002E/XX:1.0V LDO Regulator MCP1826S-1202E/XX 1.2V LDO Regulator MCP1826S-1802E/XX 1.8V LDO Regulator MCP1826S-2502E/XX 2.5V LDO Regulator MCP1826S-2502E/XX 3.0V LDO Regulator MCP1826S-3302E/XX 3.3V LDO Regulator MCP1826S-5002E/XX 5.0V LDO Regulator			
Extra Feature Code:	0 = Fixed		=	 AB for 3LD TO-220 package AT for 5LD TO-220 package 			
Tolerance: Temperature:	2 = 2.0% (Standard) E = -40° C to $+125^{\circ}$ C		:	 DB for 3LD SOT-223 package DC for 5LD SOT-223 package EB for 3LD DDPAK package ET for 5LD DDPAK package 			
Package Type:	AB = Plastic Transistor Outline, TO-220, 3-lead AT = Plastic Transistor Outline, TO-220, 5-lead DB = Plastic Transistor Outline, SOT-223, 3-lead DC = Plastic Transistor Outline, SOT-223, 5-lead EB = Plastic, DDPAK, 3-lead ET = Plastic, DDPAK, 5-lead Note: ADJ (Adjustable) only available in 5-lead version.		-	- LT IOI SLD DDFAR Package			