

MCP1826/MCP1826S

1000 mA, Low Voltage, Low Quiescent Current LDO Regulator

Features

- · 1000 mA Output Current Capability
- Input Operating Voltage Range: 2.3V to 6.0V
- Adjustable Output Voltage Range: 0.8V to 5.0V (MCP1826 only)
- · Standard Fixed Output Voltages:
 - 0.8V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
- Other Fixed Output Voltage Options Available Upon Request
- · Low Dropout Voltage: 250 mV Typical at 1000 mA
- Typical Output Voltage Tolerance: 0.5%
- Stable with 1.0 µF Ceramic Output Capacitor
- · Fast response to Load Transients
- Low Supply Current: 120 μA (typ)
- Low Shutdown Supply Current: 0.1 μA (typ) (MCP1826 only)
- Fixed Delay on Power Good Output (MCP1826 only)
- Short Circuit Current Limiting and Overtemperature Protection
- TO-263-5 (DDPAK-5), TO-220-5, SOT-223-5 Package Options (MCP1826).
- TO-263-3 (DDPAK-3), TO-220-3, SOT-223-3 Package Options (MCP1826S).

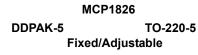
Applications

- · High-Speed Driver Chipset Power
- · Networking Backplane Cards
- Notebook Computers
- · Network Interface Cards
- Palmtop Computers
- 2.5V to 1.XV Regulators

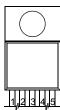
Description

The MCP1826/MCP1826S is a 1000 mA Low Dropout (LDO) linear regulator that provides high current and low output voltages. The MCP1826 comes in a fixed or adjustable output voltage version, with an output voltage range of 0.8V to 5.0V. The 1000 mA output current capability, combined with the low output voltage capability, make the MCP1826 a good choice for new sub-1.8V output voltage LDO applications that have high current demands. The MCP1826S is a 3-pin fixed voltage version.

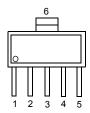
The MCP1826/MCP1826S is stable using ceramic output capacitors that inherently provide lower output noise and reduce the size and cost of the entire regulator solution. Only 1 μF of output capacitance is needed to stabilize the LDO.

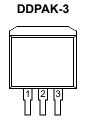

Using CMOS construction, the quiescent current consumed by the MCP1826/MCP1826S is typically less than 120 μ A over the entire input voltage range, making it attractive for portable computing applications that demand high output current. The MCP1826 versions have a Shutdown (SHDN) pin. When shut down, the quiescent current is reduced to less than 0.1 μ A.

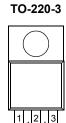
On the MCP1826 fixed output versions the scaled-down output voltage is internally monitored and a power good (PWRGD) output is provided when the output is within 92% of regulation (typical). The PWRGD delay is internally fixed at 200 µs (typical).

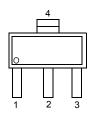

The overtemperature and short circuit current-limiting provide additional protection for the LDO during system fault conditions.

MCP1826/MCP1826S


Package Types




SOT-223-5


Pin	Fixed	Adjustable
1	SHDN	SHDN
2	V_{IN}	V _{IN}
3	GND (TAB)	GND (TAB)
4	V _{OUT}	V _{OUT}
5	PWRGD	ADJ
6	GND (TAB)	GND (TAB)

MCP1826S

SOT-223-3

Pin	
1	V _{IN}
2	GND (TAB)
3	V _{OUT}
4	GND (TAB)

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

 † Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 4.7 \,\mu\text{F}$ (X7R Ceramic), $T_A = +25^{\circ}\text{C}$.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.3		6.0	V	Note 1
Input Quiescent Current	Iq	_	120	220	μΑ	I _L = 0 mA, V _{OUT} = 0.8V to 5.0V
Input Quiescent Current for SHDN Mode	I _{SHDN}	_	0.1	3	μA	SHDN = GND
Maximum Output Current	I _{OUT}	1000	_	_	mA	V _{IN} = 2.3V to 6.0V V _R = 0.8V to 5.0V, Note 1
Line Regulation	ΔV _{OUT} / (V _{OUT} x ΔV _{IN})	_	±0.05	±0. 20	%/V	(Note 1) \leq $V_{IN} \leq$ 6V
Load Regulation	ΔV _{OUT} /V _{OUT}	-1.0	±0.5	1.0	%	I _{OUT} = 1 mA to 1000 mA, (Note 4)
Output Short Circuit Current	I _{OUT_SC}	_	2.2	_	Α	R _{LOAD} < 0.1Ω, Peak Current
Adjust Pin Characteristics (Adj	ustable Output O	nly)				
Adjust Pin Reference Voltage	V_{ADJ}	0.402	0.410	0.418	V	$V_{IN} = 2.3V \text{ to } V_{IN} = 6.0V,$ $I_{OUT} = 1 \text{ mA}$
Adjust Pin Leakage Current	I _{ADJ}	-10	±0.01	+10	nA	$V_{IN} = 6.0V, V_{ADJ} = 0V \text{ to } 6V$
Adjust Temperature Coefficient	TCV _{OUT}		40	_	ppm/°C	Note 3
Fixed-Output Characteristics (F	ixed Output Only	')				
Voltage Regulation	V _{OUT}	V _R - 2.5%	V _R ±0.5%	V _R + 2.5%	V	Note 2

- $\textbf{Note} \quad \textbf{1:} \quad \text{The minimum } V_{IN} \text{ must meet two conditions: } V_{IN} \geq 2.3V \text{ and } V_{IN} \geq V_{OUT(MAX)} + V_{DROPOUT(MAX)}.$
 - 2: V_R is the nominal regulator output voltage for the fixed cases. V_R = 1.2V, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. V_R = V_{ADJ} * ((R₁/R₂)+1). Figure 4-1.
 - 3: TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10⁶ / (V_R * ΔTemperature). V_{OUT-HIGH} is the highest voltage measured over the temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.
 - 4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.
 - 5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}.
 - 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.
 - 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

MCP1826/MCP1826S

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 4.7$ µF (X7R Ceramic), $T_A = +25$ °C.

Boldface type applies for junction temperatures, T_J (Note 7) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
Dropout Characteristics						
Dropout Voltage	V _{DROPOUT}	_	250	400	mV	Note 5, I _{OUT} = 1000 mA, V _{IN(MIN)} = 2.3V
Power Good Characteristics						
PWRGD Input Voltage Operat-	V _{PWRGD_VIN}	1.0	_	6.0	V	T _A = +25°C
ing Range		1.2	_	6.0		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$
						For V_{IN} < 2.3V, I_{SINK} = 100 μ A
PWRGD Threshold Voltage	V _{PWRGD_TH}				%V _{OUT}	Falling Edge
(Referenced to V _{OUT})		89	92	95		V _{OUT} < 2.5V Fixed, V _{OUT} = Adj.
		90	92	94		V _{OUT} >= 2.5V Fixed
PWRGD Threshold Hysteresis	V _{PWRGD_HYS}	1.0	2.0	3.0	%V _{OUT}	
PWRGD Output Voltage Low	V _{PWRGD_L}	_	0.2	0.4	V	I _{PWRGD SINK} = 1.2 mA, ADJ = 0V
PWRGD Leakage	P _{WRGD_LK}	_	1	_	nA	$V_{PWRGD} = V_{IN} = 6.0V$
PWRGD Time Delay	T _{PG}	-	125	_	μs	Rising Edge $R_{PULLUP} = 10 \text{ k}\Omega$
Detect Threshold to PWRGD Active Time Delay	T _{VDET-PWRGD}	-	200	_	μs	$V_{OUT} = V_{PWRGD_TH} + 20 \text{ mV}$ to $V_{PWRGD_TH} - 20 \text{ mV}$
Shutdown Input		_		_	_	
Logic High Input	V _{SHDN-HIGH}	45	_	_	%V _{IN}	V _{IN} = 2.3V to 6.0V
Logic Low Input	V _{SHDN-LOW}	_	_	15	%V _{IN}	V _{IN} = 2.3V to 6.0V
SHDN Input Leakage Current	SHDN _{ILK}	-0.1	±0.001	+0.1	μΑ	$V_{IN} = 6V$, $\overline{SHDN} = V_{IN}$, $\overline{SHDN} = GND$
AC Performance						
Output Delay From SHDN	T _{OR}	_	100	_	μs	SHDN = GND to V _{IN} V _{OUT} = GND to 95% V _R
Output Noise	e _N	_	2.0	_	μV/√Hz	I_{OUT} = 200 mA, f = 1 kHz, C_{OUT} = 10 µF (X7R Ceramic), V_{OUT} = 2.5V

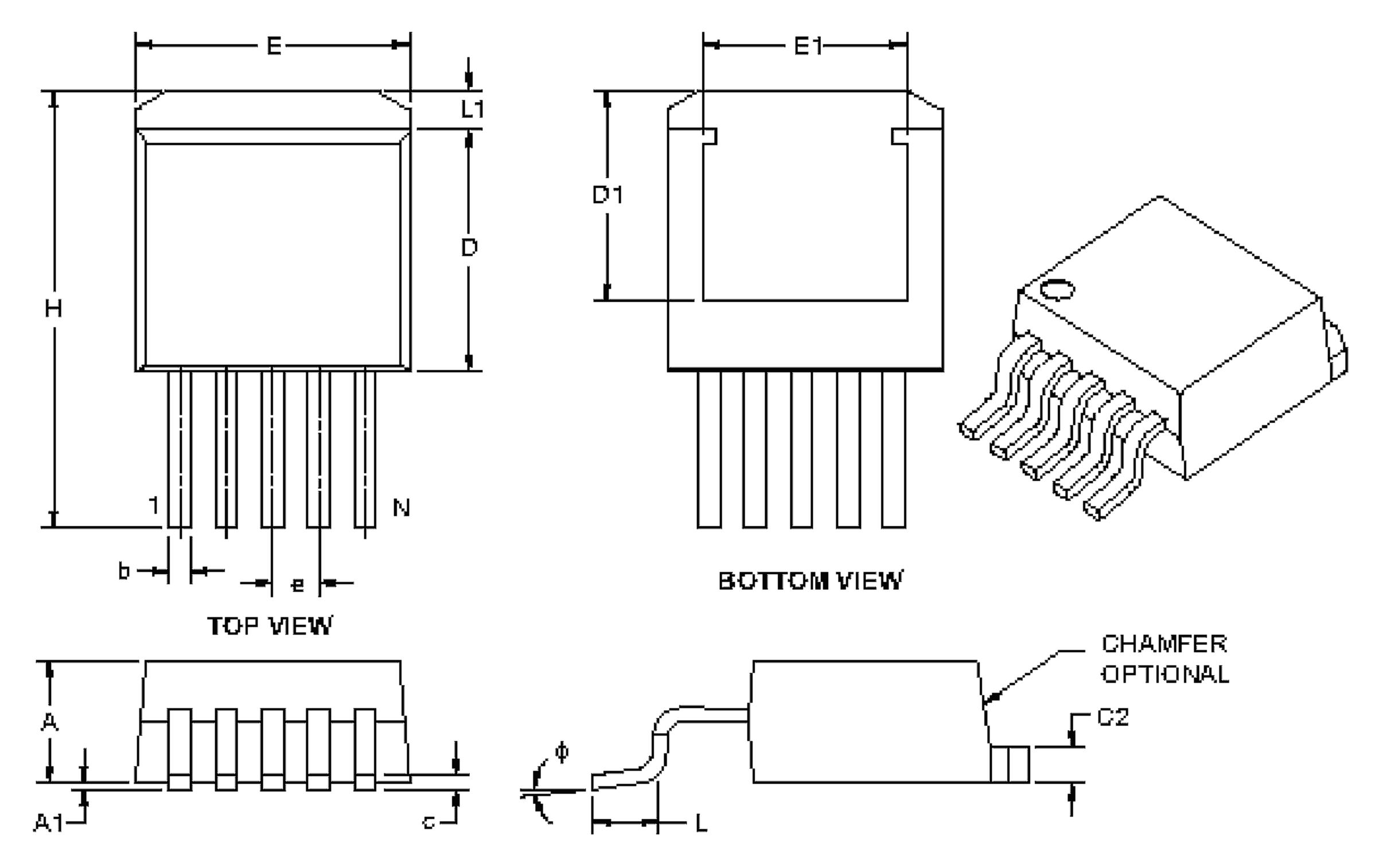
- Note 1: The minimum V_{IN} must meet two conditions: V_{IN} ≥ 2.3V and V_{IN} ≥ V_{OUT(MAX)} + V_{DROPOUT(MAX)}.
 - 2: V_R is the nominal regulator output voltage for the fixed cases. V_R = 1.2V, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. V_R = V_{ADJ} * ((R_1/R_2)+1). Figure 4-1.
 - 3: TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10⁶ / (V_R * ΔTemperature). V_{OUT-HIGH} is the highest voltage measured over the temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range.
 - **4:** Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.
 - 5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}.
 - 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.
 - 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

AC/DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$, **Note 1**, V_R =1.8V for Adjustable Output, $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 4.7$ µF (X7R Ceramic), $T_A = +25$ °C.

Boldface type applies for junction temperatures, T_J (Note 7) of -40°C to +125°C

Parameters	Sym	Min	Тур	Max	Units	Conditions
Power Supply Ripple Rejection Ratio	PSRR	_	60	_	dB	$\begin{split} & f = 100 \text{ Hz, } C_{OUT} = 4.7 \mu\text{F,} \\ & I_{OUT} = 100 \mu\text{A,} \\ & V_{INAC} = 100 \text{ mV pk-pk,} \\ & C_{IN} = 0 \mu\text{F} \end{split}$
Thermal Shutdown Temperature	T _{SD}	_	150	_	°C	I _{OUT} = 100 μA, V _{OUT} = 1.8V, V _{IN} = 2.8V
Thermal Shutdown Hysteresis	ΔT_SD	_	10	_	°C	I _{OUT} = 100 μA, V _{OUT} = 1.8V, V _{IN} = 2.8V


- The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3V$ and $V_{IN} \ge V_{OUT(MAX)} + V_{DROPOUT(MAX)}$. Note 1:
 - V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ} * ((R_1/R_2) + 1)$. Figure 4-1. $TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10^6 / (V_R * \Delta Temperature)$. $V_{OUT-HIGH}$ is the highest voltage measured over the temperature range. $V_{OUT-LOW}$ is the lowest voltage measured over the temperature range.

 - 4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current.
 - Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_{OUT(MAX)} + V_{DROPOUT(MAX)}$
 - The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A , T_J , θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above 150°C can impact device reliability.
 - The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant.

TEMPERATURE SPECIFICATIONS

Parameters	Sym	Min	Тур	Max	Units	Conditions	
Temperature Ranges							
Operating Junction Temperature Range	TJ	-40	_	+125	°C	Steady State	
Maximum Junction Temperature	T _J	_	_	+150	°C	Transient	
Storage Temperature Range	T _A	-65	_	+150	°C		
Thermal Package Resistances							
Thermal Resistance, 3L-DDPAK	$\theta_{\sf JA}$	_	31.4	_	°C/W	4-Layer JC51 Standard	
	$\theta_{\sf JC}$	_	3.0	_	°C/W	Board	
Thermal Resistance, 3L-TO-220	θ_{JA}	_	29.4	_	°C/W	4-Layer JC51 Standard	
	$\theta_{\sf JC}$	_	2.0	_	°C/W	Board	
Thermal Resistance, 3L-SOT-223	θ_{JA}	_	62	_	°C/W	EIA/JEDEC JESD51-751	
	$\theta_{\sf JC}$	_	15.0	_	°C/W	4 Layer Board	
Thermal Resistance, 5L-DDPAK	θ_{JA}	_	31.2	_	°C/W	4-Layer JC51 Standard	
	$\theta_{\sf JC}$	_	3.0	_	°C/W	Board	
Thermal Resistance, 5L-TO-220	θ_{JA}	_	29.3	_	°C/W	4-Layer JC51 Standard	
	$\theta_{\sf JC}$	_	2.0	_	°C/W	Board	
Thermal Resistance, 5L-SOT-223	θ_{JA}		62		°C/W	EIA/JEDEC JESD51-751-7	
	$\theta_{\sf JC}$	_	15.0	_	°C/W	4 Layer Board	

5-Lead Plastic (ET) [DDPAK]

	Units	INCHES			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	5			
Pitch	<u>e</u>	.067 BSC			
Overall Height	А	.160	_	.190	
Standoff §	A1	.000	_	.010	
Overall Width	E	.380	_	.420	
Exposed Pad Width	E1	.245	_	_	
Molded Package Length	D	.330		.380	
Overall Length	Н	.549	_	.625	
Exposed Pad Length	D1	.270	_	_	
Lead Thickness	C	.014	_	.029	
Pad Thickness	C2	.045	_	.065	
Lead Width	ь	.020	_	.039	
Foat Length	L	.068	_	.110	
Pad Length	L1	_	_	.067	
Foot Angle	ф	0°	_	8°	

Notes:

- 1. § Significant Characteristic.
- 2. Dimensions D and E do not include mold tash or protrusions. Mold tash or protrusions shall not exceed .005' per side.
- 3. Dimensioning and tolerancing per AS ME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04 012B

PRODUCT IDENTIFICATION SYSTEM

 $\label{thm:condition} \mbox{To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.}$

PART NO. XX	х х <u>х</u> ү <u>хх</u>	Examp	les:
	MCP1826: 1000 mA Low Dropout Regulator MCP1826T: 1000 mA Low Dropout Regulator Tape and Reel MCP1826S: 1000 mA Low Dropout Regulator Tape and Reel MCP1826ST: 1000 mA Low Dropout Regulator MCP1826ST: 1000 mA Low Dropout Regulator Tape and Reel	b) Me c) Me d) Me e) Me f) Me g) Me	CP1826-0802E/XX: 0.8V LDO Regulator CP1826-1002E/XX: 1.0V LDO Regulator CP1826-1202E/XX: 1.2V LDO Regulator CP1826-1802E/XX 1.8V LDO Regulator CP1826-2502EXX: 25V LDO Regulator CP1826-3002E/XX: 3.0V LDO Regulator CP1826-3002E/XX: 3.3V LDO Regulator CP1826-5002E/XX: 5.0V LDO Regulator CP1826-ADJE/XX: ADJ LDO Regulator
Output Voltage *:	08 = 0.8V "Standard" 12 = 1.2V "Standard" 18 = 1.8V "Standard" 25 = 2.5V "Standard" 30 = 3.0V "Standard" 33 = 3.3V "Standard" 50 = 5.0V "Standard" ADJ = Adjustable Output Voltage ** (MCP1826 only) *Contact factory for other output voltage options ** When ADJ is used, the "extra feature code" and "tolerance" columns do not apply. Refer to examples.	b) M ¹ c) M ¹ d) M ¹ e) M ¹ f) M ¹	CP1826S-0802E/XX:0.8V LDO Regulator CP1826S-1002E/XX:1.0V LDO Regulator CP1826S-1202E/XX 1.2V LDO Regulator CP1826S-1802E/XX 1.8V LDO Regulator CP1826S-2502E/XX 2.5V LDO Regulator CP1826S-2502E/XX 3.0V LDO Regulator CP1826S-3302E/XX 3.3V LDO Regulator CP1826S-5002E/XX 5.0V LDO Regulator
Extra Feature Code:	0 = Fixed		AB for 3LD TO-220 package AT for 5LD TO-220 package
Tolerance:	2 = 2.0% (Standard)	=	DB for 3LD SOT-223 package DC for 5LD SOT-223 package
Temperature:	E = -40°C to +125°C		EB for 3LD DDPAK package ET for 5LD DDPAK package
Package Type:	AB = Plastic Transistor Outline, TO-220, 3-lead AT = Plastic Transistor Outline, TO-220, 5-lead DB = Plastic Transistor Outline, SOT-223, 3-lead DC = Plastic Transistor Outline, SOT-223, 5-lead EB = Plastic, DDPAK, 3-lead ET = Plastic, DDPAK, 5-lead		
	Note: ADJ (Adjustable) only available in 5-lead version.		