

MCP6S91/2/3

Single-Ended, Rail-to-Rail I/O, Low-Gain PGA

Features

• Multiplexed Inputs: 1 or 2 channels

• 8 Gain Selections:

- +1, +2, +4, +5, +8, +10, +16 or +32 V/V

Serial Peripheral Interface (SPI[™])

· Rail-to-Rail Input and Output

• Low Gain Error: ±1% (max.)

• Offset Mismatch Between Channels: 0 μV

• High Bandwidth: 1 to 18 MHz (typ.)

Low Noise: 10 nV/√Hz @ 10 kHz (typ.)

• Low Supply Current: 1.0 mA (typ.)

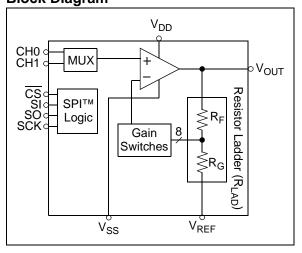
• Single Supply: 2.5V to 5.5V

Extended Temperature Range: -40°C to +125°C

Typical Applications

• A/D Converter Driver

Multiplexed Analog Applications


Data Acquisition

• Industrial Instrumentation

Test Equipment

· Medical Instrumentation

Block Diagram

Description

The Microchip Technology Inc. MCP6S91/2/3 are analog Programmable Gain Amplifiers (PGAs). They can be configured for gains from +1 V/V to +32 V/V and the input multiplexer can select one of up to two channels through a SPI port. The serial interface can also put the PGA into shutdown to conserve power. These PGAs are optimized for high-speed, low offset voltage and single-supply operation with rail-to-rail input and output capability. These specifications support single-supply applications needing flexible performance or multiple inputs.

The one-channel MCP6S91 and the two-channel MCP6S92 are available in 8-pin PDIP, SOIC and MSOP packages. The two-channel MCP6S93 is available in a 10-pin MSOP package. All parts are fully specified from -40°C to +125°C.

Package Types

MCP6S9 PDIP, SOIC,		MCP6S93 MSOP					
V _{OUT} 1 CH0 2 V _{REF} 3 V _{SS} 4	8 V _{DD} 7 SCK 6 SI 5 CS	V _{OUT} 1 CH0 2 CH1 3 V _{REF} 4	10 V _{DD} 9 SCK 8 SO 7 SI				
MCP6S9 PDIP, SOIC, I		V _{SS} 5	<u>6</u> CS				
Vout 1 CH0 2 CH1 3 Vss 4	8 V _{DD} 7 SCK 6 SI 5 CS						

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} - V _{SS}	7.0V
All inputs and outputsV _{SS} – (
Difference Input voltage	V _{DD} – V _{SS}
Output Short Circuit Current	continuous
Current at Input Pin	±2 mA
Current at Output and Supply Pins	±30 mA
Storage temperature	65°C to +150°C
Junction temperature	+150°C
ESD protection on all pins (HBM; MM)	≥ 4 kV; 200V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

Name	Function				
V _{OUT}	Analog Output				
CH0, CH1	H0, CH1 Analog Inputs				
V_{REF}	External Reference Pin				
V _{SS}	Negative Power Supply				
CS	SPI Chip Select				
SI	SPI Serial Data Input				
SO	SPI Serial Data Output				
SCK	SPI Clock Input				
V_{DD}	Positive Power Supply				

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.5V$ to $+5.5\underline{V}$, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 = 0.3V, $R_1 = 10 \text{ k}\Omega$ to $V_{DD}/2$, SI and SCK are tied low and \overline{CS} is tied high.

Imput = $Ch0 = (0.37)/G$, $Ch1 = 0.37$, $R_L = 10$ ksz to $V_{DD}/2$, Si and SCR are tied low and CS is tied high.								
Parameters		Sym	Min	Тур	Max	Units	Conditions	
Amplifier Inputs (CH0, C	H1)							
Input Offset Voltage		Vos	-4	_	+4	mV	G = +1	
Input Offset Voltage Mism	atch	ΔV _{OS}	_	0	_	μV	Between inputs (CH0, CH1)	
Input Offset Voltage Drift		$\Delta V_{OS}/\Delta T_{A}$	_	±1.8	_	μV/°C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	
Power Supply Rejection R	Ratio	PSRR	70	90	_	dB	G = +1 (Note 1)	
Input Bias Current		Ι _Β		±1		pА	$CHx = V_{DD}/2$	
Input Bias Current at		I_{B}	1	30		pА	$CHx = V_{DD}/2, T_A = +85^{\circ}C$	
Temperature		I_{B}		600		pА	$CHx = V_{DD}/2, T_A = +125^{\circ}C$	
Input Impedance		Z _{IN}		10 ¹³ 7		Ω pF		
Input Voltage Range		V_{IVR}	$V_{SS} - 0.3$	_	$V_{DD} + 0.3$	V	(Note 2)	
Reference Input (V _{REF})								
Input Impedance		Z _{IN_REF}		(5/G) 6		kΩ pF		
Voltage Range		V_{IVR_REF}	V_{SS}	1	V_{DD}	V	(Note 2)	
Amplifier Gain								
Nominal Gains		G		1 to 32		V/V	+1, +2, +4, +5, +8, +10, +16 or +32	
DC Gain Error	G = +1	9 _E	-0.2	1	+0.2	%	$V_{OUT} \approx 0.3V$ to $V_{DD} - 0.3V$	
	G ≥ + 2	9 _E	-1.0		+1.0	%	$V_{OUT} \approx 0.3V$ to $V_{DD} - 0.3V$	
DC Gain Drift	G = +1	$\Delta G/\Delta T_A$	_	±0.0002	_	%/°C	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	
	G ≥ + 2	$\Delta G/\Delta T_A$	_	±0.0004	_	%/°C	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	

- Note 1: R_{LAD} (R_F+R_G in Figure 4-1) connects V_{REF}, V_{OUT} and the inverting input of the internal amplifier. The MCP6S92 has V_{REF} tied internally to V_{SS}, so V_{SS} is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. It is recommended that the MCP6S92's V_{SS} pin be tied directly to ground to avoid noise problems.
 - 2: The MCP6S92's V_{IVR} and V_{IVR_REF} are not tested in production; they are set by design and characterization.
 - 3: I_Q includes current in R_{LAD} (typically 60 µA at V_{OUT} = 0.3V). Both I_Q and I_Q SHDN exclude digital switching currents.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.5V$ to +5.5V, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, SI and SCK are tied low and \overline{CS} is tied high.

The territory of the te								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Ladder Resistance								
Ladder Resistance	R _{LAD}	3.4	4.9	6.4	kΩ	(Note 1)		
Ladder Resistance across Temperature	$\Delta R_{LAD}/\Delta T_A$	_	+0.028	_	%/°C	$T_A = -40$ °C to +125°C (Note 1)		
Amplifier Output								
DC Output Non-linearity G = +1	V _{ONL}	_	±0.18	_	% of FSR	$V_{OUT} \approx 0.3 \text{V to } V_{DD} - 0.3 \text{V}, V_{DD} = 5.0 \text{V}$		
G ≥ +2	V_{ONL}	_	±0.050	_	% of FSR	$V_{OUT} \approx 0.3 \text{V to } V_{DD} - 0.3 \text{V}, V_{DD} = 5.0 \text{V}$		
Maximum Output Voltage Swing	V _{OH_ANA} ,	V _{SS} + 20		V _{DD} – 100	mV	G ≥ +2; 0.5V output overdrive		
	V _{OL_ANA}	V _{SS} + 60	_	V _{DD} – 60		$G \ge +2$; 0.5V output overdrive, $V_{REF} = V_{DD}/2$		
Short Circuit Current	I _{SC}	_	±25	_	mA			
Power Supply								
Supply Voltage	V_{DD}	2.5	_	5.5	V			
Minimum Valid Supply Voltage	V_{DD_VAL}	_	0.4	2.0	V	Register data still valid		
Quiescent Current	Ι _Q	0.4	1.0	1.6	mA	I _O = 0 (Note 3)		
Quiescent Current, Shutdown Mode	I _{Q_SHDN}		30		pA	I _O = 0 (Note 3)		

- Note 1: R_{LAD} (R_F+R_G in Figure 4-1) connects V_{REF}, V_{OUT} and the inverting input of the internal amplifier. The MCP6S92 has V_{REF} tied internally to V_{SS}, so V_{SS} is coupled to the internal amplifier and the PSRR spec describes PSRR+ only. It is recommended that the MCP6S92's V_{SS} pin be tied directly to ground to avoid noise problems.
 - 2: The MCP6S92's V_{IVR} and V_{IVR_REF} are not tested in production; they are set by design and characterization.
 - 3: I_Q includes current in R_{LAD} (typically 60 μ A at V_{OUT} = 0.3V). Both I_Q and I_{Q_SHDN} exclude digital switching currents.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +2.5V$ to +5.5V, $V_{SS} = GND$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 = 0.3V, R_L = 10 k Ω to $V_{DD}/2$, C_L = 60 pF, SI and SCK are tied low and \overline{CS} is tied high. Max Sym Min Тур Units **Conditions Parameters** Frequency Response All gains; V_{OUT} < 100 mV_{P-P} (Note 1) -3 dB Bandwidth BW MHz 1 to 18 Gain Peaking **GPK** 0 dB All gains; $V_{OUT} < 100 \text{ mV}_{P-P}$ **Total Harmonic Distortion plus Noise** f = 20 kHz. G = +1 V/V $V_{OUT} = 1.5V \pm 1.0 V_{PK}, V_{DD} = 5.0V,$ THD+N 0.0011 BW = 80 kHz, $R_L = 10 \text{ k}\Omega$ to 1.5V $V_{OUT} = 2.5V \pm 1.0 V_{PK}, V_{DD} = 5.0V, BW = 80 kHz$ f = 20 kHz, G = +1 V/VTHD+N 0.0089 f = 20 kHz, G = +4 V/VTHD+N $V_{OUT} = 2.5V \pm 1.0 V_{PK}, V_{DD} = 5.0V,$ 0.0045 % BW = 80 kHzf = 20 kHz, G = +16 V/VTHD+N 0.028 $V_{OUT} = 2.5V \pm 1.0 V_{PK}, V_{DD} = 5.0V,$ BW = 80 kHzStep Response Slew Rate SR 4.0 V/µs G = 1, 211 G = 4, 5, 8, 10V/µs 22 V/µs G = 16, 32Noise f = 0.1 Hz to 10 Hz (Note 2)Input Noise Voltage E_{ni} 4.5 f = 0.1 Hz to 200 kHz (Note 2)30 Input Noise Voltage Density 10 nV/√Hz f = 10 kHz (Note 2) e_{ni} Input Noise Current Density 4 fA/\sqrt{Hz} f = 10 kHzi_{ni}

Note 1: See Table 4-1 for a list of typical numbers and Figure 2-25 for the frequency response versus gain.

^{2:} E_{ni} and e_{ni} include ladder resistance noise. See Figure 2-12 for e_{ni} versus G data.

DIGITAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $T_A = 25^{\circ}C$, $V_{DD} = +2.5V$ to +5.5V, $V_{SS} = GN\underline{D}$, $V_{REF} = V_{SS}$, G = +1 V/V, Input = CH0 = (0.3V)/G, CH1 = 0.3V, $R_L = 10 \text{ k}\Omega$ to $V_{DD}/2$, $C_L = 60 \text{ pF}$, SI and SCK are tied low and \overline{CS} is tied high. **Units Parameters** Sym Min Тур Max Conditions SPI Inputs (CS, SI, SCK) Logic Threshold, Low V_{IL} $0.3V_{DD}$ -1.0 Input Leakage Current I_{IL} +1.0 μΑ Logic Threshold, High ٧ $0.7 V_{DD}$ V_{IH} V_{DD} Amplifier Output Leakage Current -1.0 1.0 μΑ In Shutdown mode SPI Output (SO, for MCP6S93) $V_{S\underline{S}}$ Logic Threshold, Low V_{SS}+0.4 V $V_{\text{OL_DIG}}$ $I_{OL} = 2.1 \text{ mA}, V_{DD} = 5 \text{V}$ ٧ $V_{DD} - 0.5$ Logic Threshold, High V_{OH DIG} V_{DD} $I_{OH} = -400 \, \mu A$ **SPI Timing** Pin Capacitance $\mathsf{C}_{\mathsf{P}\underline{\mathsf{IN}}}$ 10 All digital I/O pins pF Input Rise/Fall Times (CS, SI, SCK) 2 (Note 1) μs t_{RFI} Output Rise/Fall Times (SO) 5 ns MCP6S93 t_{RFO} CS High Time 40 ns t_{CSH} SCK Edge to CS Fall Setup Time SCK edge when CS is high 10 t_{CS0} ns CS Fall to First SCK Edge Setup Time 40 ns tcssc SCK Frequency 10 MHz V_{DD} = 5V (Note 2) f_{SCK} SCK High Time 40 t_{HI} ns SCK Low Time 40 t_{LO} ns SCK Last Edge to CS Rise Setup Time 30 ns t_{SCCS} CS Rise to SCK Edge Setup Time 100 SCK edge when CS is high t_{CS1} ns SI Setup Time 40 t_{SU} ns SI Hold Time 10 ns t_{HD} SCK to SO Valid Propagation Delay 80 ns **MCP6S93** t_{DO} CS Rise to SO Forced to Zero 80 MCP6S93 ns tsoz **Channel and Gain Select Timing** Channel Select Time CHx = 0.6V, CHy = 0.3V, G = 1, 15 t_{CH} μs CHx to CHy select, $\overline{\text{CS}} = 0.7 \text{ V}_{\text{DD}} \text{ to V}_{\text{OUT}} 90\% \text{ point}$ Gain Select Time 1 μs CHx = CHy = 0.3V t_{G} G = 5 to G = 1 select,

 t_{ON}

tOFF

3.5

1.5

10

μs

μs

Shutdown Mode Timing

Out of Shutdown mode (CS goes high)

Amplifier Output High-Z Turn-off Time

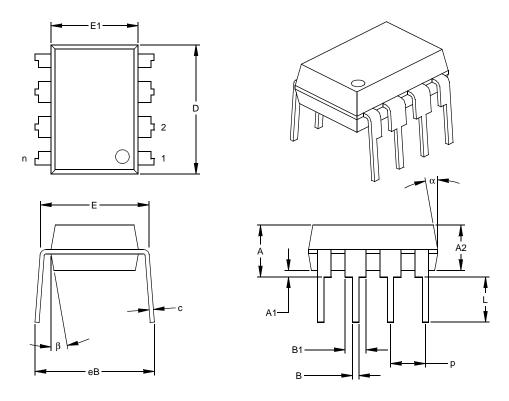
to Amplifier Output Turn-on Time Into Shutdown mode ($\overline{\text{CS}}$ goes high) to

 $\overline{\text{CS}} = 0.7 \text{ V}_{\text{DD}} \text{ to V}_{\text{OUT}} 90\% \text{ point}$

 $\overline{\text{CS}} = 0.7 \text{ V}_{\text{DD}} \text{ to V}_{\text{OUT}} 90\% \text{ point}$

 $\overline{\text{CS}} = 0.7 \text{ V}_{\text{DD}} \text{ to V}_{\text{OUT}} 90\% \text{ point}$

Note 1: Not tested in production. Set by design and characterization.


When using the device in the daisy-chain configuration, maximum clock frequency is determined by a combination of propagation delay time (t_{DO} ≤ 80 ns), data input set-up time (t_{SU} ≥ 40 ns), SCK high time (t_{HI} ≥ 40 ns) and SCK rise and fall times of 5 ns. Maximum f_{SCK} is therefore ≈ 5.8 MHz.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +2.5V$ to $+5.5V$, $V_{SS} = GND$.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-40	_	+125	°C	(Note 1)		
Operating Temperature Range	T _A	-40	_	+125	°C			
Storage Temperature Range	T _A	-65	_	+150	°C			
Thermal Package Resistances								
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W			
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W			
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W			
Thermal Resistance, 10L-MSOP	θ_{JA}	_	143	_	°C/W			

Note 1: Operation in this range must not cause T_J to exceed Maximum Junction Temperature (+150°C).

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

	Units		INCHES*		MILLIMETERS		
Dimens	Dimension Limits			MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-x</u> /xx	Ex	Examples:				
Device Temp	 perature Package	a)	MCP6S91-E/P:	One-channel PGA, PDIP package.			
Ra	inge	b)	MCP6S91-E/SN:	One-channel PGA, SOIC package.			
Device:	MCP6S91: One-channel PGA	c)	MCP6S91-E/MS:	One-channel PGA, MSOP package.			
	MCP6S91T: One-channel PGA (Tape and Reel for SOIC and MSOP-8) MCP6S92: Two-channel PGA	a)	MCP6S92-E/MS:	Two-channel PGA, MSOP-8 package.			
	MCP6S92T: Two-channel PGA (Tape and Reel for SOIC and MSOP-8) MCP6S93: Two-channel PGA	b)	MCP6S92T-E/MS:	Tape and Reel, Two-channel PGA, MSOP-8 package.			
	MCP6S93T: Two-channel PGA (Tape and Reel for MSOP-10)	a)	MCP6S93-E/UN:	Two-channel PGA, MSOP-10 package.			
Temperature Range:	E = -40°C to +125°C	b)	MCP6S93T-E/UN:	Tape and Reel, Two-channel PGA, MSOP-10 package.			
Package:	MS = Plastic Micro Small Outline (MSOP), 8-lead P = Plastic DIP (300 mil Body), 8-lead SN = Plastic SOIC (150 mil Body), 8-lead UN = Plastic Micro Small Outline (MSOP), 10-lead						