

MCP6141/2/3/4

600 nA, Non-Unity Gain Rail-to-Rail Input/Output Op Amps

Features:

- · Low Quiescent Current: 600 nA/amplifier (typical)
- Gain Bandwidth Product: 100 kHz (typical)
- Stable for gains of 10 V/V or higher
- Rail-to-Rail Input/Output
- Wide Supply Voltage Range: 1.4V to 6.0V
- · Available in Single, Dual, and Quad
- Chip Select (CS) with MCP6143
- · Available in 5-lead and 6-lead SOT-23 Packages
- · Temperature Ranges:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Applications:

- Toll Booth Tags
- · Wearable Products
- · Temperature Measurement
- · Battery Powered

Design Aids:

- · SPICE Macro Models
- FilterLab[®] Software
- Mindi™ Simulation Tool
- MAPS (Microchip Advanced Part Selector)
- · Analog Demonstration and Evaluation Boards
- · Application Notes

Related Devices:

• MCP6041/2/3/4: Unity Gain Stable Op Amps

Typical Application

Description:

The MCP6141/2/3/4 family of non-unity gain stable operational amplifiers (op amps) from Microchip Technology Inc. operate with a single supply voltage as low as 1.4V, while drawing less than 1 μ A (maximum) of quiescent current per amplifier. These devices are also designed to support rail-to-rail input and output operation. This combination of features supports battery-powered and portable applications.

The MCP6141/2/3/4 amplifiers have a gain bandwidth product of 100 kHz (typical) and are stable for gains of 10 V/V or higher. These specifications make these op amps appropriate for battery powered applications where a higher frequency response from the amplifier is required.

The MCP6141/2/3/4 family operational amplifiers are offered in single (MCP6141), single with Chip Select $\overline{(CS)}$ (MCP6143), dual (MCP6142) and quad (MCP6144) configurations. The MCP6141 device is available in the 5-lead SOT-23 package, and the MCP6143 device is available in the 6-lead SOT-23 package.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} – V _{SS}	7.0V
Current at Analog Input Pins	±2 mA
Analog Inputs (V _{IN} +, V _{IN} -) †† V_{SS} – 1.0V to V_{SS}	' _{DD} + 1.0V
All Other Inputs and Outputs V_{SS} – 0.3V to V_{SS}	_{DD} + 0.3V
Difference Input Voltage	$I_{DD} - V_{SS}$
Output Short Circuit Current	ontinuous
Current at Output and Supply Pins	±30 mA
Storage Temperature65°C	to +150°C
Maximum Junction Temperature (T _J)	+150°C
ESD Protection On All Pins (HBM; MM)≥ 4	ł kV; 400V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage and Current Limits".

DC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless of $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 1 \text{ M}\Omega$						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Offset						•
Input Offset Voltage	Vos	-3	_	+3	mV	V _{CM} = V _{SS}
Drift with Temperature	$\Delta V_{OS}/\Delta T_{A}$	_	±1.8	_	μV/°C	$V_{CM} = V_{SS}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	$\Delta V_{OS}/\Delta T_{A}$	_	±10	_	μV/°C	$V_{CM} = V_{SS},$ $T_A = +85^{\circ}C \text{ to } +125^{\circ}C$
Power Supply Rejection	PSRR	70	85	_	dB	$V_{CM} = V_{SS}$
Input Bias Current and Impedance						
Input Bias Current	I _B	_	1	_	pА	
Industrial Temperature	Ι _Β	_	20	100	pА	T _A = +85°
Extended Temperature	I _B	_	1200	5000	pА	T _A = +125°
Input Offset Current	Ios	_	1	_	pА	
Common Mode Input Impedance	Z _{CM}	_	10 ¹³ 6	_	Ω pF	
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 6	_	Ω pF	
Common Mode						
Common-Mode Input Range	V_{CMR}	V _{SS} -0.3	_	V _{DD} +0.3	V	
Common-Mode Rejection Ratio	CMRR	62	80	_	dB	$V_{DD} = 5V$, $V_{CM} = -0.3V$ to 5.3V
	CMRR	60	75	_	dB	$V_{DD} = 5V$, $V_{CM} = 2.5V$ to 5.3V
	CMRR	60	80	_	dB	$V_{DD} = 5V$, $V_{CM} = -0.3V$ to 2.5V
Open-Loop Gain						
DC Open-Loop Gain (large signal)	A _{OL}	95	115	_	dB	$R_L = 50 \text{ k}\Omega \text{ to V}_L,$ $V_{OUT} = 0.1 \text{V to V}_{DD} - 0.1 \text{V}$
Output						
Maximum Output Voltage Swing	V _{OL} , V _{OH}	V _{SS} + 10	_	V _{DD} – 10	mV	$R_L = 50 \text{ k}\Omega \text{ to } V_L,$ 0.5V output overdrive
Linear Region Output Voltage Swing	V _{OVR}	V _{SS} + 100	_	V _{DD} – 10 0	mV	$R_L = 50 \text{ k}\Omega \text{ to } V_L,$ $A_{OL} \ge 95 \text{ dB}$
Output Short Circuit Current	I _{SC}		2	_	mA	V _{DD} = 1.4V
	I _{SC}		20	_	mA	V _{DD} = 5.5V
Power Supply						
Supply Voltage	V_{DD}	1.4	_	6.0	V	Note 1
Quiescent Current per Amplifier	ΙQ	0.3	0.6	1.0	μA	I _O = 0

Note 1: All parts with date codes February 2008 and later have been screened to ensure operation at V_{DD} = 6.0V. However, the other minimum and maximum specifications are measured at 1.8V and 5.5V

AC ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = \pm 1.4V$ to $\pm 5.5V$, $V_{SS} = GND$, $T_A = \pm 25^{\circ}C$, $V_{CM} = V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_L = V_{DD}/2$, $V_L $									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
AC Response									
Gain Bandwidth Product	GBWP	_	100	_	kHz				
Slew Rate	SR	_	3.0	_	V/ms				
Phase Margin	PM	_	65	_	0	G = +1			
Noise									
Input Voltage Noise	E _{ni}		5.0		μV _{P-P}	f = 0.1 Hz to 10 Hz			
Input Voltage Noise Density	e _{ni}		170	_	nV/√Hz	f = 1 kHz			
Input Current Noise Density	i _{ni}	_	0.6	_	fA/√Hz	f = 1 kHz			

MCP6143 CHIP SELECT (CS) ELECTRICAL CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, V_{DD} = +1.4V to +5.5V, V_{SS} = GND, T_A = +25°C, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, $V_{L} = V_{DD}/2$, V_{L									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
CS Low Specifications									
CS Logic Threshold, Low	V_{IL}	V _{SS}		V _{SS} +0.3	V				
CS Input Current, Low	I _{CSL}	_	5	_	pA	CS = V _{SS}			
CS High Specifications									
CS Logic Threshold, High	V_{IH}	V _{DD} -0.3		V_{DD}	V				
CS Input Current, High	I _{CSH}	_	5	_	pA	$\overline{\text{CS}} = V_{\text{DD}}$			
CS Input High, GND Current	I _{SS}	_	-20	_	pA	$\overline{\text{CS}} = V_{\text{DD}}$			
Amplifier Output Leakage, CS High	I _{OLEAK}		20	_	pA	$\overline{\text{CS}} = V_{\text{DD}}$			
Dynamic Specifications									
CS Low to Amplifier Output Turn-on Time	t _{ON}	_	2	50	ms	$G = +1V/V$, $\overline{CS} = 0.3V$ to $V_{OUT} = 0.9V_{DD}/2$			
CS High to Amplifier Output High-Z	t _{OFF}	_	10	_	μs	G = +1V/V, $\overline{\text{CS}}$ = V _{DD} -0.3V to V _{OUT} = 0.1V _{DD} /2			
Hysteresis	V_{HYST}	_	0.6	_	V	$V_{DD} = 5.0V$			

FIGURE 1-1: Chip Select (CS) Timing Diagram (MCP6143 only).

TEMPERATURE CHARACTERISTICS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = +1.4V$ to +5.5V, $V_{SS} = GND$.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-40	_	+85	°C	Industrial Temperature parts		
	T _A	-40	_	+125	°C	Extended Temperature parts		
Operating Temperature Range	T _A	-40	_	+125	°C	(Note 1)		
Storage Temperature Range	T _A	-65	_	+150	°C			
Thermal Package Resistances								
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	256	_	°C/W			
Thermal Resistance, 6L-SOT-23	θ_{JA}	_	230	_	°C/W			
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W			
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W			
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W			
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W			
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W			
Thermal Resistance, 14L-TSSOP	$\theta_{\sf JA}$	_	100	_	°C/W			

Note 1: The MCP6141/2/3/4 family of Industrial Temperature op amps operates over this extended range, but with reduced performance. In any case, the internal Junction Temperature (T_J) must not exceed the Absolute Maximum specification of +150°C.

1.1 Test Circuits

The test circuits used for the DC and AC tests are shown in Figure 1-2 and Figure 1-2. The bypass capacitors are laid out according to the rules discussed in **Section 4.6 "Supply Bypass"**.

FIGURE 1-2: AC and DC Test Circuit for Most Non-Inverting Gain Conditions.

FIGURE 1-3: AC and DC Test Circuit for Most Inverting Gain Conditions.

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

	Units	MILLIMETERS				
Dimension	n Limits	MIN	NOM	MAX		
Number of Pins	N	8				
Pitch	е		0.65 BSC			
Overall Height	Α	1.10				
Molded Package Thickness	A2	0.75	0.95			
Standoff	A1	0.00 – 0.1				
Overall Width	E	4.90 BSC				
Molded Package Width	E1	3.00 BSC				
Overall Length	D	3.00 BSC				
Foot Length	L	0.40 0.60 0.80				
Footprint	L1	0.95 REF				
Foot Angle	ф	0° – 8°				
Lead Thickness	С	0.08 – 0.23				
Lead Width	b	0.22 – 0.40				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	- <u>X</u>	/ <u>XX</u>	E	camples:	
 Device Te	emperature Range	 Package	a) b)	MCP6141-I/P: MCP6141T-E/OT:	Industrial Temperature 8 lead PDIP package. Tape and Reel, Extended Temperature
Device: Temperature Range: Package:	E = -40° CH = Plas 6-lea MS = Plas OT = Plas 5-lea P = Plas SL = Plas SN = Plas	Single Op Amp Single Op Amp Single Op Amp (Tape and Reel for SOT-23, SOIC, MSOP) Dual Op Amp Dual Op Amp (Tape and Reel for SOIC and MSOP) Single Op Amp w/ CS Single Op Amp w/ CS (Tape and Reel for SOT-23, SOIC, MSOP) Quad Op Amp Quad Op Amp (Tape and Reel for SOIC and TSSOP) CC to +85°C (industrial) CC to +125°C (extended) Ctic Small Outline Transistor (SOT-23), and (Tape and Reel - MCP6143 only) tic Micro Small Outline (MSOP), 8-lead tic Small Outline Transistor (SOT-23), and (Tape and Reel - MCP6141 only) tic DIP (300 mil body), 8-lead, 14-lead tic SOIC (3.9 mm body), 14-lead tic SOIC (3.9 mm body), 14-lead tic TSSOP (4.4 mm body), 14-lead	a) b) a) b) a) b)	MCP6142-I/SN: MCP6142T-E/MS: MCP6143-I/P: MCP6143T-E/CH: MCP6144-I/SL: MCP6144T-E/ST:	Extended Temperature 8 lead MSOP package. Industrial Temperature, 8 lead PDIP package.