Load Switch with Level-Shift

PRODUCT SUMMARY		
$\mathbf{V}_{\mathbf{D S 2} 2}(\mathrm{~V})$	$\mathbf{r}_{\mathrm{DS}(\mathrm{on})}(\Omega)$	$\mathbf{I}_{\mathbf{D}}(\mathbf{A})$
1.8 to 8	$0.060 @ \mathrm{~V}_{\mathbb{N}}=4.5 \mathrm{~V}$	2.9
	$0.100 @ \mathrm{~V}_{\mathbb{N}}=2.5 \mathrm{~V}$	2.2
	$0.175 @ \mathrm{~V}_{\mathbb{N}}=1.8 \mathrm{~V}$	1.7

FEATURES

- $60-\mathrm{m} \Omega$ Low $\mathrm{r}_{\mathrm{DS}(\text { (on })}$ TrenchFET®
- 1.8 to 8 -V Input
- 1.5 to 8 -V Logic Level Control
- Low Profile, Small Footprint TSOP-6 Package
- 3000-V ESD Protection On Input Switch, V ON/OFF
- Adjustable Slew-Rate

DESCRIPTION

The Si3865BDV includes a p - and n-channel MOSFET in a single TSOP-6 package. The low on-resistance p-channel TrenchFET ${ }^{\circledR}$ is tailored for use as a load switch. The n-channel, with an external resistor, can be used as a
level-shift to drive the p-channel load-switch. The n-channel MOSFET has internal ESD protection and can be driven by logic signals as low as $1.5-\mathrm{V}$. The Si3865BDV operates on supply lines from 1.8 to $8-\mathrm{V}$, and can drive loads up to 2.9 A .

APPLICATION CIRCUITS

Note: For R2 switching variations with other $\mathrm{V}_{\mathrm{IN}} / \mathrm{R} 1$ combinations See Typical Characteristics

The Si3865BDV is ideally suited for high-side load switching in portable applications. The integrated n -channel level-shift device saves space by reducing external components. The slew rate is set externally so that rise-times can be tailored to different load types.

[^0]FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T $\mathbf{A}_{\mathbf{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED)

Parameter		Symbol	Limit	Unit
Input Voltage		$\mathrm{V}_{\text {IN }}$	8	V
ON/OFF Voltage		$\mathrm{V}_{\text {ON/OFF }}$	8	
Load Current	Continuous ${ }^{\text {a, b }}$	I_{L}	± 2.9	A
	Pulsedb, c		± 6	
Continuous Intrinsic Diode Conduction ${ }^{\text {a }}$		Is	-1	
Maximum Power Dissipation ${ }^{\text {a }}$		P_{D}	0.83	W
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to 150	${ }^{\circ} \mathrm{C}$
ESD Rating, MIL-STD-883D Human Body Model (100 pF, 1500Ω)		ESD	3	kV

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient (continuous current) 2	$\mathrm{R}_{\mathrm{thJA}}$	125	150	${ }^{\circ} \mathrm{CN}$
Maximum Junction-to-Foot (Q2)	$\mathrm{R}_{\mathrm{thJC}}$	40	55	

SPECIFICATIONS ($\mathbf{T}_{\mathbf{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF Characteristics							
Reverse Leakage Current	I_{FL}	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=0 \mathrm{~V}$				1	$\mu \mathrm{A}$
Diode Forward Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~A}$			-0.77	-1	V
ON Characteristics							
Input Voltage Range	$\mathrm{V}_{\text {IN }}$			1.8		8	V
On-Resistance (p-channel) @ 1A	${ }^{\text {rDS(on) }}$	$\begin{gathered} V_{\text {ON } / \text { OFF }}=1.5 \mathrm{~V} \\ I_{\mathrm{D}}=1 \mathrm{~A} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		0.045	0.060	Ω
			$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		0.075	0.100	
			$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		0.135	0.175	
On-State (p-channel) Drain-Current	${ }^{\text {D (on) }}$	$\mathrm{V}_{\text {IN-OUT }} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$		1			A
		$\mathrm{V}_{\text {IN-OUT }} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$		1			

Notes
a. Surface Mounted on FR4 Board.
b. $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON} / \mathrm{OFF}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
c. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

[^0]: *Minimum R1 value should be at least $10 \times$ R2 to ensure Q1 turn-on.

