

N-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (mA)			
60	2 at V _{GS} = 10 V	300			

2N7002K (7K)*

* Marking Code

Ordering Information: 2N7002K-T1 2N7002K-T1-E3 (Lead (Pb)-free) 2N7002K-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21
 Available
- Low On-Resistance: 2 Ω
- Low Threshold: 2 V (typ.)
- Low Input Capacitance: 25 pF
- Fast Switching Speed: 25 ns
- Low Input and Output Leakage
- TrenchFET[®] Power MOSFET
- 2000 V ESD Protection

BENEFITS

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits
- Low Error Voltage

APPLICATIONS

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise	noted			
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	60	V	
Gate-Source Voltage		V _{GS}	± 20	v	
Continuous Drain Current (T _{.I} = 150 °C) ^b	T _A = 25 °C	- I _D	300	mA	
Continuous Drain Current $(1_J = 150^{\circ}C)^2$	T _A = 100 °C		190		
Pulsed Drain Current ^a		I _{DM}	800		
Duran Dirationh	T _A = 25 °C	P_	0.35	W	
Power Dissipation ^b	T _A = 100 °C	PD	0.14	vv	
Maximum Junction-to-Ambient ^b		R _{thJA}	350	°C/W	
Operating Junction and Storage Temperature Range		T _{J,} T _{stg}	- 55 to 150	°C	

Notes:

a. Pulse width limited by maximum junction temperature.

b. Surface Mounted on FR4 board.

* Pb containing terminations are not RoHS compliant, exemptions may apply.

2N7002K

Vishay Siliconix

Parameter	Symbol	Test Conditions	Limits			
			Min.	Typ. ^a	Max.	Unit
Static	•			•		
Drain-Source Breakdown Voltage	V _{DS}	V_{GS} = 0 V, I _D = 10 µA	60			v
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1		2.5	
Gate-Body Leakage		$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 10	μA
		$V_{DS} = 0 V, V_{GS} = \pm 15 V$			1	
	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 10 V$			± 150	
	ŀ	$V_{DS} = 0 V$, $V_{GS} = \pm 10 V$, $T_{J} = 85 °C$			± 1000	1
		$V_{DS} = 0 V, V_{GS} = \pm 5 V$			± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$			10	-
		$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 85 ^{\circ}\text{C}$			100	
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA
		V_{DS} = 60 V, V_{GS} = 0 V , T_{J} = 125 °C			500	
On-State Drain Current ^a	I _{D(on)}	V _{GS} = 10 V, V _{DS} = 7.5 V	800			- mA
		V _{GS} = 4.5 V, V _{DS} = 10 V	500			
Drain-Source On-Resistance ^a	R _{DS(on)}	V _{GS} = 10 V, I _D = 500 mA			2	Ω
		V _{GS} = 4.5 V, I _D = 200 mA			4	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 10 V, I _D = 200 mA	100			mS
Diode Forward Voltage	V _{SD}	I _S = 200 mA, V _{GS} = 0 V			1.3	V
Dynamic ^a			J	•	J	
Total Gate Charge	Qg	$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 4.5 \text{ V}$ $\text{I}_{D} \cong 250 \text{ mA}$		0.4	0.6	nC
Input Capacitance	C _{iss}			30		pF
Output Capacitance	C _{oss}	$V_{DS} = 25 V, V_{GS} = 0 V$		6		
Reverse Transfer Capacitance	C _{rss}	f = 1 MHz		2.5		
Switching ^{a, b, c}				1	I	1
Turn-On Time	t _{d(on)}	$V_{DD} = 30 \text{ V}, \text{ R}_{L} = 150 \Omega$ $I_{D} \cong 200 \text{ mA}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_{G} = 10 \Omega$	1	1	25	ns
Turn-Off Time	t _{d(off)}				35	

Notes:

a. For DESIGN AID ONLY, not subject to production testing.

b. Pulse test: PW \leq 300 μ s duty cycle \leq 2 %.

c. Switching time is essentially independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.