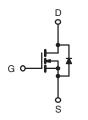


N-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	r _{DS(on)} (Ω)	I _D (A)			
60	0.011 @ V _{GS} = 10 V	15.8			
	0.013 @ V _{GS} = 6 V	14.5			

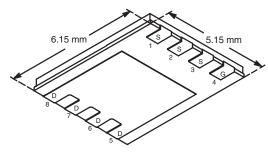
FEATURES

- TrenchFET[®] Power MOSFET
- New Low Thermal Resistance PowerPAK® Package with Low 1.07-mm Profile



PWM Optimized for Fast Switching

100 % R_g Tested


APPLICATIONS

- Primary Side Switch for 24-V DC/DC Applications
- Secondary Synchronous Rectifier

N-Channel MOSFET

PowerPAK SO-8

Ordering Information: Si7370DP-T1

Bottom View

Si7370DP-T1—E3 (Lead (Pb)-Free)

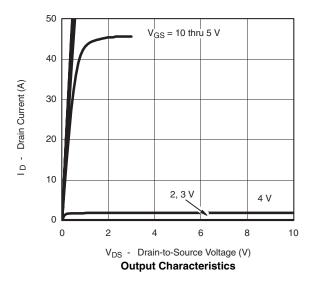
ABSOLUTE MAXIMUM RATINGS	5 T _A = 25 °C, unle	ess otherwise r	noted		
Parameter		Symbol	10 secs	Steady State	Unit
Drain-Source Voltage		V _{DS}	60		V
Gate-Source Voltage		V _{GS}	±20		V
Continuous Drain Current (T _J = 150°C) ^a	$T_A = 25^{\circ}C$	I_	15.8	9.6	
	$T_A = 70^{\circ}C$	l _D	12.6	7.7	
Continuous Source Current		I _S	4.7	1.7	Α
Pulsed Drain Current		I _{DM}	50		
Avalanche Current		I _{AS}	50		
Single Avalanche Energy		E _{AS}	125		mJ
Maximum Power Dissipation	$T_A = 25^{\circ}C$	P _D	5.2	1.9	W
	$T_A = 70^{\circ}C$] ' [*] D	3.3	1.25	VV
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150 260		°C
Soldering Recommendations (Peak Temperature)b,c					

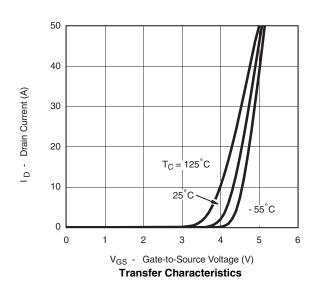
THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^a	t ≤ 10 sec	R _{thJA}	19	24		
waximum Junction-to-Ambient	Steady State		52	65	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	1.5	1.8		

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
 b. See Solder Profile (http://www.vishay.com/ppg?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is
- not required to ensure adequate bottom side solder interconnection.
 c. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- * Pb containing terminations are not RoHS compliant, exemptions may apply.

Vishay Siliconix


SPECIFICATIONS $T_J = 25$ °C, unless otherwise noted								
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Static				•				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V		
Gate-Body Leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V	V _{DS} = 60 V, V _{GS} = 0 V		1			
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			5	- μΑ		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	50			Α		
Drain-Source On-State Resistance ^a	_	V _{GS} = 10 V, I _D = 12 A		0.009	0.011	0		
	r _{DS(on)}	$V_{GS} = 6.0 \text{ V}, I_D = 10 \text{ A}$		0.0105	0.013	Ω		
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 10 A		50		S		
Diode Forward Voltage ^a	V_{SD}	$I_S = 3.0 \text{ A}, V_{GS} = 0 \text{ V}$		0.75	1.2	V		
Dynamic ^b				•				
Total Gate Charge	Q_g			46	57			
Gate-Source Charge	Q_{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 12 \text{ A}$		11.5		nC		
Gate-Drain Charge	Q _{gd}			11.5				
Gate Resistance	R_g		0.2	0.85	1.2	Ω		
Turn-On Delay Time	t _{d(on)}			16	25			
Rise Time	t _r	V_{DD} = 30 V, R_L = 30 Ω		12	18			
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ 1.0 A, V_{GEN} = 10 V, R_G = 6 Ω		50	75	ns		
Fall Time	t _f			30	45]		
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 3.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		40	60			


Notes

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS 25 °C unless noted

