International Rectifier

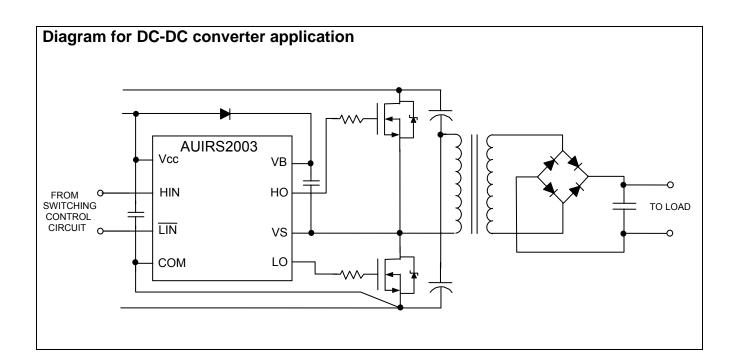
Automotive Grade AUIRS2003S

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +200V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10V to 20V
- Undervoltage lockout
- 3.3V, 5V, and 15V logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set deadtime
- High-side output in phase with HIN input
- Low-side output out of phase with LIN input
- Leadfree, RoHS compliant
- Automotive qualified*

Typical Applications


- Pre-charge Switch Drives
- Stepper / Motor Drives
- DC-DC Converters

Product Summary

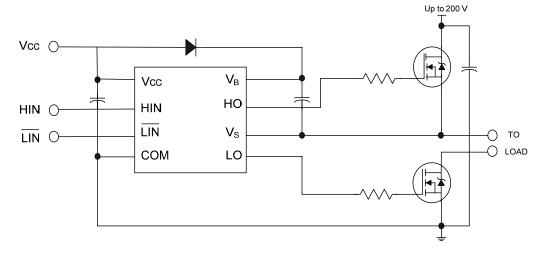
Topology	General Driver
V _{OFFSET}	≤ 200V
V _{OUT}	10V – 20V
I _{o+} & I _{o-} (typical)	290mA & 600mA
t _{on} & t _{off} (typical)	680ns & 150ns
Deadtime (typical)	520ns

Package Options

^{*} Qualification standards can be found on IR's web site www.irf.com

AUIRS2003S

International TOR Rectifier


Table of Contents	Page
Typical Connection Diagram	1
Description/Feature Comparison	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	6
Functional Block Diagram	7
Input/Output Pin Equivalent Circuit Diagram	8
Lead Definitions	9
Lead Assignments	9
Application Information and Additional Details	10
Package Details: SOIC8N	11
Package Details: SOIC8N, Tape and Reel	12
Part Marking Information	13
Ordering Information	14

Description

The AUIRS2003S is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200V.

Typical Connection Diagram

(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

Qualification Information[†]

		1		
Qualification Level		Automotive (per AEC-Q100 ^{††})		
		Comments: This family of ICs has passed an Automotive		
		is granted by extension of the	ind Consumer qualification level	
		is granted by extension of the		
Maiatura Canaiti	vity Laval	SOIC8N	MSL3 ^{†††} 260°C	
Moisture Sensiti	vity Level	SOICON	(per IPC/JEDEC J-STD-020)	
	Machine Madel	Cla	ass M2	
	Machine Model	(per AEC-Q100-003)		
ESD	Human Bady Madal	Class H2		
ESD	Human Body Model	(per AEC-Q100-002)		
	Charged Device Model	Class C5		
	Charged Device Model	(per AEC-Q100-011)		
IC Leteb Un Teet		Class II, Level B		
IC Latch-Up Tes	ι	(per AEC-Q100-004)		
RoHS Compliant		Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Exceptions to AEC-Q100 requirements are noted in the qualification report.

^{†††} Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_B	High side floating absolute voltage	-0.3	225	
Vs	High side floating supply offset voltage	V _B - 25	V _B + 0.3	
V_{HO}	High side floating output voltage	V _S - 0.3	V _B + 0.3	V
V_{CC}	Low side and logic fixed supply voltage	-0.3	25	V
V_{LO}	Low side output voltage	-0.3	$V_{CC} + 0.3$	
V _{IN}	Logic input voltage (HIN & $\overline{\text{LIN}}$) -0.3 V_{CC} + 0.3			
dV _S /dt	Allowable offset supply voltage transient — 50		V/ns	
P_{D}	Package power dissipation @ TA ≤ 25°C	_	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient — 200		°C/W	
T_J	Junction temperature	_	150	
Ts	Storage temperature	-55	150	°C
T _L	Lead temperature (soldering, 10 seconds)	_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

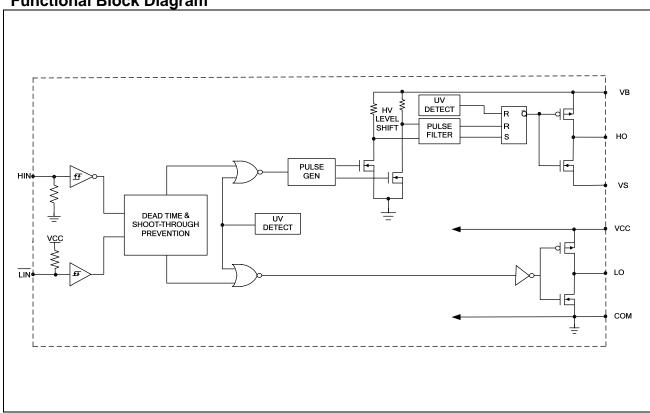
Symbol	Definition	Min.	Max.	Units
V_B	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	†	200	
V_{HO}	High side floating output voltage	Vs	V_{B}	W
V_{CC}	Low side and logic fixed supply voltage	10	20	V
V_{LO}	Low side output voltage	0	V_{CC}	
V_{IN}	Logic input voltage	0	V_{CC}	
T _A	Ambient temperature	-40	125	°C

[†] Logic operational for V_S of -5V to +200V. Logic state held for V_S of -5V to $-V_{BS}$. (Please refer to the Design Tip DR97-3 for more details).

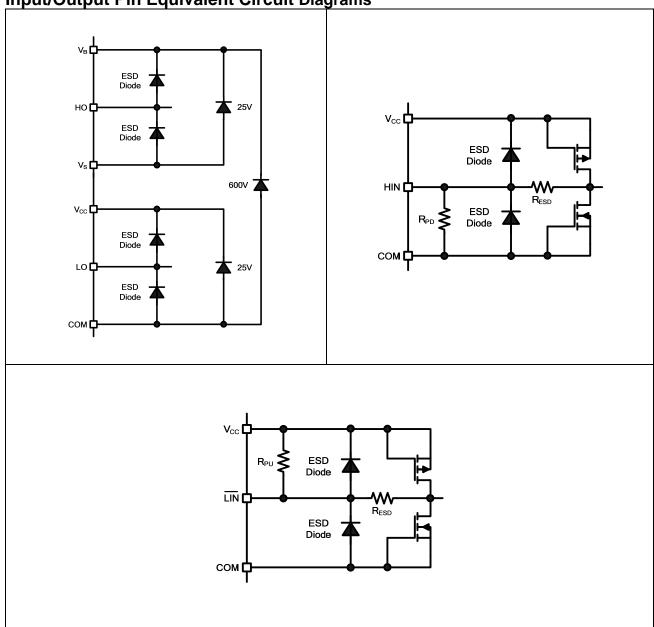
Dynamic Electrical Characteristics

 V_{CC} = V_{BS} = 15V, C_L = 1000pF, T_A = 25°C unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	680	820		$V_S = 0V$
t_{off}	Turn-off propagation delay	_	150	220		V _S = 200V
tr	Turn-on rise time	_	70	170		
t _f	Turn-off fall time	_	35	90	ns	
DT	Deadtime, LO turn-off to HO turn-on & HO turn-on to LO turn-off	400	520	650		
MT	Delay matching , HO & LO turn-on/off	_		60		


Static Electrical Characteristics

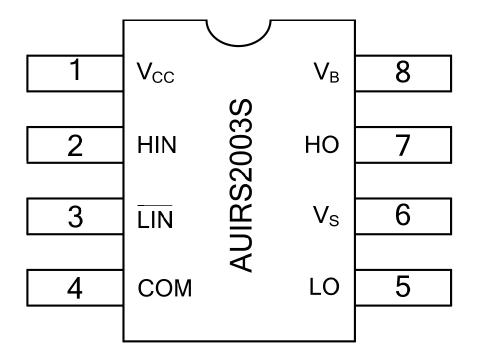
 V_{CC} = V_{BS} = 15V and T_A = 25°C unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM and are applicable to the input leads: HIN and $\overline{\text{LIN}}$. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO and LO.


Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V_{IH}	Logic "1" input voltage	2.5				V _{CC} = 10V to 20V
V_{IL}	Logic "0" input voltage	_	_	8.0	V	V _{CC} = 10V to 20V
V_{OH}	High level output voltage, V_{CC} or V_{BS} - V_{O}	_	0.05	0.2	ď	I _O = 2mA
V_{OL}	Low level output voltage, V _O	_	0.02	0.1		1 ₀ – 2111A
I_{LK}	Offset supply leakage current	_	_	50		$V_{B} = V_{S} = 200V$
I_{QBS}	Quiescent V _{BS} supply current	_	30	55		V _{IN} = 0V or 5V
I _{QCC}	Quiescent V _{CC} supply current	_	150	270	μA	V _{IN} = 0 V 01 5 V
I _{IN+}	Logic "1" input bias current	_	3	10		$V_{IN} = 5V$
I _{IN-}	Logic "0" input bias current	_		5		$V_{IN} = 0V$
$V_{\text{CCUV+}} \ V_{\text{BSUV+}}$	V_{CC} and V_{BS} supply undervoltage positive going threshold	8.0	8.9	9.8	V	
V _{CCUV} - V _{BSUV} -	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
I _{O+}	Output high short circuit pulsed current	130	290	_	mΛ	$V_O = 0V,$ $V_{IN} = V_{IH}$ $PW \le 10 \ \mu s$
I _{O-}	Output low short circuit pulsed current	270	600	_	mA .	$V_O = 15V$, $V_{IN} = V_{IL}$ $PW \le 10 \ \mu s$

www.irf.com © 2008 International Rectifier

Functional Block Diagram

Input/Output Pin Equivalent Circuit Diagrams



Lead Definitions

PIN	Symbol	Description		
1	V _{cc}	Low side and logic fixed supply		
2	HIN	Logic input for high side gate driver output (HO), in phase		
3	LIN	Logic input for low side driver output (LO), out of phase		
4	COM	Low side return		
5	LO	Low side gate drive output		
6	V_S	High side floating supply return		
7	НО	High side gate drive output		
8	V_{B}	High side floating supply		

Lead Assignments

Application Information and Additional Details

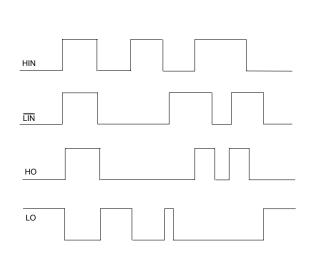
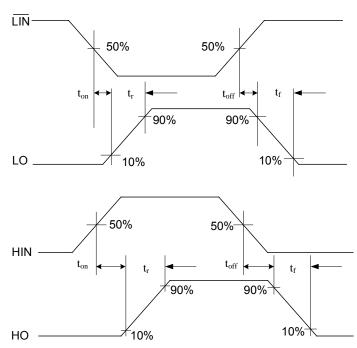



Figure 1: Input/Output Timing Diagram

Figure 2: Switching Time Waveform Definition

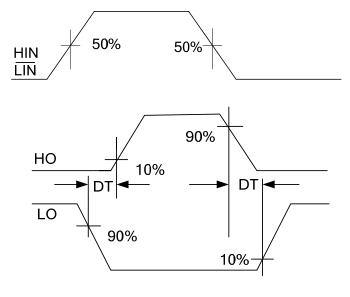
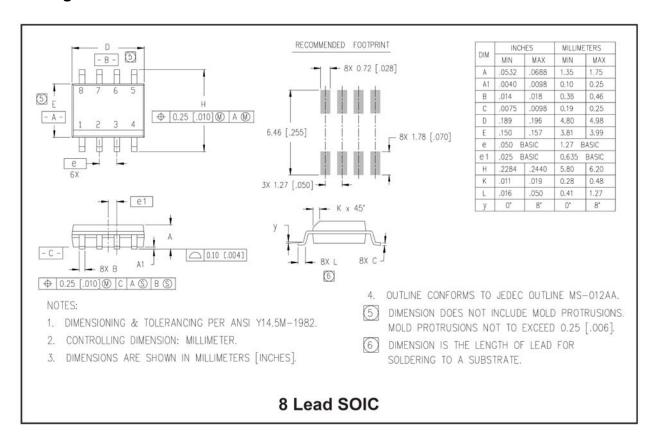
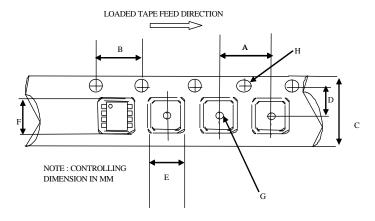
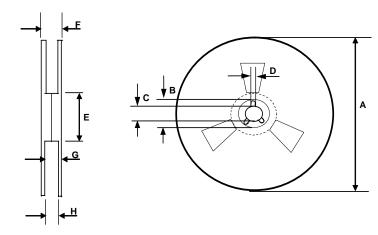



Figure 3: Delay Matching Waveform Definitions

AUIRS2003S

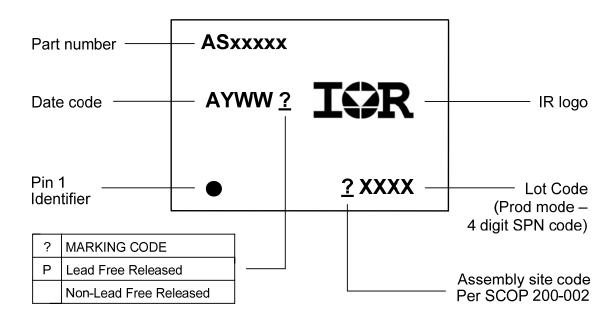

Package Details: SOIC8N

www.irf.com © 2008 International Rectifier



Package Details: SOIC8N, Tape and Reel

CARRIER TAPE DIMENSION FOR 8SOICN


Gradulation of the control of the co				
	Metric		Imperial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial	
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
В	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E	98.00	102.00	3.858	4.015	
F	n/a	18.40	n/a	0.724	
G	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

Part Marking Information

Ordering Information

Dana Bart Namelan	Dealess Tons	Standard F	Pack	Occupation Board Normalism	
Base Part Number	Package Type	Form	Quantity	Complete Part Number	
ALUDOOOOO	SOIC8	Tube/Bulk	95	AUIRS2003S	
AUIRS2003S	AUIRS2003S SOIC8		2500	AUIRS2003STR	

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Revision History

Date	Comment
5/12/08	Tables modified for AUIRS2003
8/20/08	Added cross conduction prevention comment to IC features Changed product summary topology to "General Driver" Changed product summary I _{O+} & I _{O-} units from A to mA Modified functional block diagram to include the deadtime and shoot-through protection Added V _{BSUV+} and V _{BSUV-} parameters Added input/output pin equivalent circuit diagrams Added IC label on lead assignment block Updated waveform diagrams to reflect proper labeling Reviewed all text/diagrams to reflect proper reference to LIN
10/13/08	Updated LU rating to Class II level B (due to input pins having LU<100mA)
10/20/08	Reformatted I/O table Edited lead assignment dwg Deleted parameter trends place holder Removed coloration n functional block dwg Removed unnecessary "AUIRS2003S" label in typical connection dwg, functional block dwg, lead assignment dwg Updated table of contents Updated MM rating to Class A based on latest ESD data
10/23/08	Updated MSL rating from 2 to 3 Updated ESD and LU classification to Q100
1/20/09	Changes from APBU: Added Typical Application list – P1 Added Diagram for DC-DC converter application, and moved Typical Connection Diagram to P3
1/28/09	Reviewed by Scott, Preliminary sign removed
9/21/09	Change part description on front page to "Half-Bridge Driver" from "High and Low Side driver".