PD- 95286

 I_{D}

9.0A

SMPS MOSFET

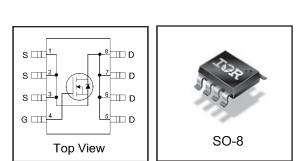
 V_{DSS}

40V

IRF7469PbF

HEXFET[®] Power MOSFET

 $R_{DS(on)} max(m\Omega)$


 $17@V_{GS} = 10V$

Applications

- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Computer Processor Power
- Lead-Free

Benefits

- Ultra-Low Gate Impedance
- Very Low R_{DS(on)}
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	40	V
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	9.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	7.3	A
I _{DM}	Pulsed Drain Current [®]	73	
P _D @T _A = 25°C	Maximum Power Dissipation③	2.5	W
P _D @T _A = 70°C	Maximum Power Dissipation③	1.6	W
	Linear Derating Factor	0.02	mW/°C
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJL}	Junction-to-Drain Lead		20	
R _{0JA}	Junction-to-Ambient ④		50	°C/W

Notes ① through ④ are on page 8

IRF7469PbF

International **TOR** Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40		—	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.04	—	V/°C	Reference to 25°C, I _D = 1mA
D	Static Drain-to-Source On-Resistance		12	17	mΩ	V _{GS} = 10V, I _D = 9.0A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		15.5	21	1162	V _{GS} = 4.5V, I _D = 7.2A ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
Inco	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 32V, V_{GS} = 0V$
DSS	Drain-to-Oburce Leakage Gurrent			100	μΛ	V_{DS} = 32V, V_{GS} = 0V, T_{J} = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -16V

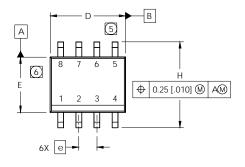
Dynamic @ T_J = 25°C (unless otherwise specified)

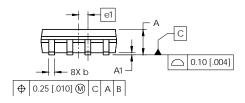
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	17	—		S	V _{DS} = 20V, I _D = 7.2A
Qg	Total Gate Charge		15	23		I _D = 7.2A
Q _{gs}	Gate-to-Source Charge	—	7.0	11	nC	V _{DS} = 20V
Q _{gd}	Gate-to-Drain ("Miller") Charge		5.0	8.0		V _{GS} = 4.5V ③
Q _{oss}	Output Gate Charge		16	24		V _{GS} = 0V, V _{DS} = 16V
t _{d(on)}	Turn-On Delay Time		11			$V_{DD} = 20V$
tr	Rise Time		2.2		ns	I _D = 7.2A
t _{d(off)}	Turn-Off Delay Time		14		113	R _G = 1.8Ω
t _f	Fall Time		3.5			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		2000	_		$V_{GS} = 0V$
C _{oss}	Output Capacitance		480			V _{DS} = 20V
C _{rss}	Reverse Transfer Capacitance		28	—	pF	f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy [®]		210	mJ
I _{AR}	Avalanche Current ^①		7.2	A

Diode Characteristics

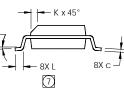

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current			2.3		MOSFET symbol	
	(Body Diode)			2.3	A	showing the	
I _{SM}	Pulsed Source Current			70		integral reverse	
	(Body Diode) ①			73	3	p-n junction diode.	
V _{SD}	Diode Forward Voltage		0.80	1.3	V	T_J = 25°C, I_S = 7.2A, V_{GS} = 0V ③	
VSD	Didde i ofward voltage		0.65	—		T_J = 125°C, I_S = 7.2A, V_{GS} = 0V ③	
t _{rr}	Reverse Recovery Time		47	71	ns	T _J = 25°C, I _F = 7.2A, V _R =15V	
Q _{rr}	Reverse Recovery Charge		91	140	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time		77	120	ns	T _J = 125°C, I _F = 7.2A, V _R =20V	
Q _{rr}	Reverse Recovery Charge		150	230	nC	di/dt = 100A/µs ③	


IRF7469PbF

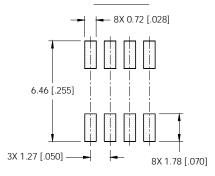
International **TOR** Rectifier

SO-8 Package Outline

Dimensions are shown in millimeters (inches)


1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.

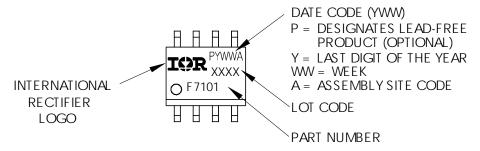
 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].


 (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
(7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO

2. CONTROLLING DIMENSION: MILLIMETER

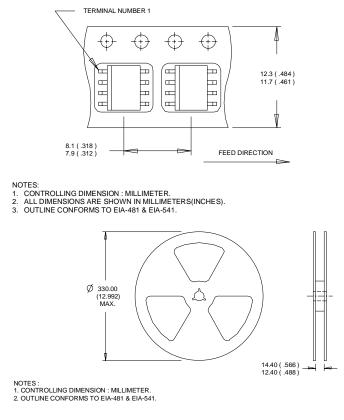
DIM	INC	HES	MILLIN	1ETERS
DIIVI	MIN	MAX	MIN	MAX
А	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Е	.1497	.1574	3.80	4.00
е	.050 BASIC		1.27 BASIC	
е1	.025 B	ASIC	0.635	BASIC
Н	.2284	.2440	5.80	6.20
Κ	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°

FOOTPRINT



SO-8 Part Marking

ASUBSTRATE.


NOTES:

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

International

IRF7469PbF SO-8 Tape and Reel

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

③ Pulse width \leq 400µs; duty cycle \leq 2%.

④ When mounted on 1 inch square copper board.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

