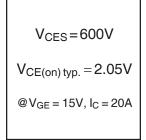
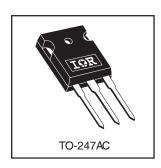

International Rectifier


IRG4PC40WPbF

INSULATED GATE BIPOLAR TRANSISTOR

Features


- Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications
- Industry-benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- Low IGBT conduction losses
- Latest-generation IGBT design and constructionoffers tighter parameters distribution, exceptional reliability
- Lead-Free

Benefits

- Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode)
- Of particular benefit to single-ended converters and boost PFC topologies 150W and higher
- Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	40	
I _C @ T _C = 100°C	Continuous Collector Current	20	Α
I _{CM}	Pulsed Collector Current ①	160	
I _{LM}	Clamped Inductive Load Current ②	160	
V_{GE}	Gate-to-Emitter Voltage	± 20	V
E _{ARV}	Reverse Voltage Avalanche Energy 3	160	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W
P _D @ T _C = 100°C	Maximum Power Dissipation	65	
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		∞
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm) from case)	7
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.77	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
R _{eJA}	Junction-to-Ambient, typical socket mount		40	
Wt	Weight	6 (0.21)		g (oz)

IRG4PC40WPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

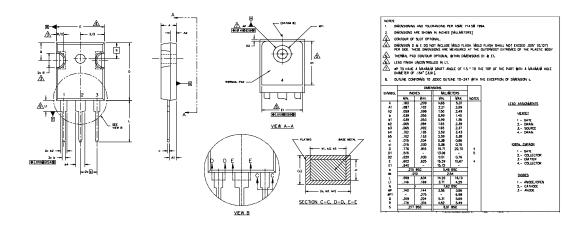
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	18	_	_	V	$V_{GE} = 0V$, $I_C = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.44	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
		_	2.05	2.5		I _C = 20A	V _{GE} = 15V
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.36	_	_v	$I_C = 40A$	See Fig.2, 5
		_	1.90	_		$I_C = 20A$, $T_J = 150^{\circ}C$	
V _{GE(th)}	Gate Threshold Voltage	3.0	—	6.0		$V_{CE}=V_{GE},I_{C}=250\mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	13	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
9 _{fe}	Forward Transconductance §	18	28	_	S	$V_{CE} = 100 \text{ V}, I_{C} = 20 \text{A}$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 600V$	
*CES	2010 Gate Voltage Collecter Carrell	_	_	2.0	"	$V_{GE} = 0V, V_{CE} = 10V, T_{CE}$	_J = 25°C
		_	_	2500		$V_{GE} = 0V, V_{CE} = 600V,$	Γ _J = 150°C
IGES	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	98	147		I _C = 20A
Q _{ge}	Gate - Emitter Charge (turn-on)		12	18	nC	V _{CC} = 400V See Fig.8
Q _{gc}	Gate - Collector Charge (turn-on)	T -	36	54		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	T -	27	_		
t _r	RiseTime		22	_	ns	$T_J = 25^{\circ}C$
t _{d(off)}	Turn-Off Delay Time		100	150	115	$I_C = 20A$, $V_{CC} = 480V$
t _f	FallTime	T -	74	110		V_{GE} = 15V, R_{G} = 10 Ω
E _{on}	Turn-On Switching Loss		0.11	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss		0.23	_	mJ	See Fig. 9,10, 14
E _{ts}	Total Switching Loss		0.34	0.45		
t _{d(on)}	Turn-On Delay Time		25	_		T _J = 150°C,
t _r	RiseTime		23	_	ns	$I_C = 20A$, $V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time		170	_	113	$V_{GE} = 15V$, $R_G = 10\Omega$
t _f	FallTime		124	—		Energy losses include "tail"
Ets	Total Switching Loss		0.85	_	mJ	See Fig.10,11, 14
LE	Internal Emitter Inductance		13	_	nΗ	Measured 5mm from package
Cies	Input Capacitance		1900	_		$V_{GE} = 0V$
Coes	Output Capacitance		140	—	рF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance		35	_		f = 1.0MHz

Notes:

- 1 Repetitive rating; $V_{GE} = 20V$, pulse width limited by max. junction temperature. (See fig. 13b)
- $\textcircled{2}~~V_{CC}$ = 80%(V_{CES}), V_{GE} = 20V, L = 10µH, R_G = 10Ω, (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- 4 Pulse width \leq 80µs; duty factor \leq 0.1%.
- ⑤ Pulse width 5.0µs, single shot.

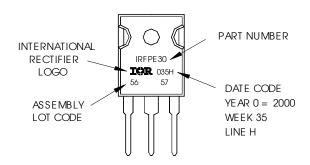

IRG4PC40WPbF

International

TOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

