PD-94684 RevB

# International

#### Plug N Drive<sup>™</sup> Integrated Power Module for Appliance Motor Drive

## IRAMX16UP60A *MOTION*<sup>™</sup> Series 16A, 600V

#### Description

International Rectifier's IRAMX16UP60A is an Integrated Power Module developed and optimized for electronic motor control in appliance applications such as washing machines and variable speed compressor drives for inroom air-conditioning systems and commercial refrigerators. Plug N Drive technology offers an extremely compact, high performance AC motor-driver in a single isolated package for a very simple design.

An open emitter configuration of the low side IGBT switches offer easy current feedback and overcurrent monitor for high precision and reliable control.

A built-in temperature monitor and over-current protection, along with the short-circuit rated IGBTs and integrated under-voltage lockout function, deliver high level of protection and fail-safe operation.

The integration of the bootstrap diodes for the high-side driver section, and the single polarity power supply required to drive the internal circuitry, simplify the utilization of the module and deliver further cost reduction advantages.

#### Features

- Integrated Gate Drivers and Bootstrap Diodes.
- Temperature Monitor
- Temperature and Overcurrent shutdown
- Fully Isolated Package.
- Low VCE (on) Non Punch Through IGBT Technology.
- Undervoltage lockout for all channels
- Matched propagation delay for all channels
- Low side IGBT emitter pins for current control
- Schmitt-triggered input logic
- Cross-conduction prevention logic
- Lower di/dt gate driver for better noise immunity
- Motor Power range 0.75~2kW / 85~253 Vac
- Isolation 2000V<sub>RMS</sub> min

#### Absolute Maximum Ratings



| Parameter                              | Description                           | Max. Value  | Units            |
|----------------------------------------|---------------------------------------|-------------|------------------|
| V <sub>CES</sub>                       | Maximum IGBT Blocking Voltage         | 600         | N/               |
| V <sup>+</sup>                         | Positive Bus Input Voltage            | 450         | V                |
| I <sub>0</sub> @ T <sub>c</sub> =25°C  | RMS Phase Current                     | 16          |                  |
| I <sub>0</sub> @ T <sub>C</sub> =100°C | RMS Phase Current                     | 8           | А                |
| I <sub>pk</sub>                        | Maximum Peak Phase Current (tp<100ms) | 30          |                  |
| Fp                                     | Maximum PWM Carrier Frequency         | 20          | kHz              |
| P <sub>d</sub>                         | Maximum Power dissipation per Phase   | 35          | W                |
| V <sub>iso</sub>                       | Isolation Voltage (1min)              | 2000        | V <sub>RMS</sub> |
| TJ (IGBT & Diodes)                     | Operating Junction temperature Range  | -40 to +150 | *0               |
| T <sub>J</sub> (Driver IC)             | Operating Junction temperature Range  | -40 to +150 | °C               |
| Т                                      | Mounting torque Range (M3 screw)      | 0.8 to 1.0  | Nm               |

International IOR Rectifier

## IRAMX16UP60A

| Symbol                            | Parameter                                  | Min | Тур  | Мах  | Units | Conditions                                                   |
|-----------------------------------|--------------------------------------------|-----|------|------|-------|--------------------------------------------------------------|
| V <sub>(BR)CES</sub>              | Collector-to-Emitter Breakdown<br>Voltage  | 600 |      |      | V     | $V_{IN}$ =5V, $I_C$ =20mA                                    |
| $\Delta V_{(BR)CES}$ / $\Delta T$ | Temperature Coeff. Of<br>Breakdown Voltage |     | 0.3  |      | V/°C  | V <sub>IN</sub> =5V, I <sub>C</sub> =1.0mA<br>(25°C - 150°C) |
| V                                 | Collector-to-Emitter Saturation            |     | 1.60 | 1.90 | v     | $I_{c}=8A$ $T_{J}=25^{\circ}C$ , $V_{DD}=15V$                |
| V <sub>CE(ON)</sub>               | Voltage                                    |     | 1.75 | 2.00 | v     | $I_c=8A$ $T_J=150^{\circ}C$                                  |
| 1                                 | Zero Gate Voltage Collector                |     | 5    | 30   |       | $V_{IN} = 5V, V^+ = 600V$                                    |
| ICES                              | Current                                    |     | 50   | 80   | μA    | $V_{IN} = 5V, V^+ = 600V, T_J = 150^{\circ}C$                |
| I <sub>lk_module</sub>            | Zero Gate Phase-to-Phase<br>Current        |     |      | 50   | μA    | $V_{IN} = 5V, V^+ = 600V$                                    |
| M                                 |                                            |     | 2.0  | 3.25 | V     | I <sub>c</sub> =8A                                           |
| V <sub>FM</sub>                   | Diode Forward Voltage Drop                 |     | 1.5  | 2.0  | v     | I <sub>C</sub> =8A, T <sub>J</sub> =150°C                    |

### Inverter Section Electrical Characteristics @ $T_J = 25^{\circ}C$

## Inverter Section Switching Characteristics @ $T_J = 25^{\circ}C$

| <b>č</b>         |                                      |     |          |      |       |                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|--------------------------------------|-----|----------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | Parameter                            | Min | Тур      | Max  | Units | Conditions                                                                                                                                                                                                                                                                                                                                                                                |
| Eon              | Turn-On Switching Loss               |     | 315      | 435  |       | $I_{c} = 8A, V^{+} = 400V$                                                                                                                                                                                                                                                                                                                                                                |
| E <sub>off</sub> | Turn-Off Switching Loss              |     | 150      | 180  | μJ    | $V_{DD}$ =15V, L=2mH                                                                                                                                                                                                                                                                                                                                                                      |
| E <sub>tot</sub> | Total Switching Loss                 |     | 465      | 615  |       | See CT1 T_=25°C                                                                                                                                                                                                                                                                                                                                                                           |
| Eon              | Turn-on Swtiching Loss               |     | 500      | 700  |       | T <sub>J</sub> =150°C                                                                                                                                                                                                                                                                                                                                                                     |
| E <sub>off</sub> | Turn-off Switching Loss              |     | 255      | 310  | μJ    | Energy losses include "tail" and                                                                                                                                                                                                                                                                                                                                                          |
| E <sub>tot</sub> | Total Switching Loss                 |     | 755      | 1010 |       | diode reverse recovery                                                                                                                                                                                                                                                                                                                                                                    |
| Erec             | Diode Reverse Recovery energy        |     | 45       | 95   | μ     | $T_J$ =150°C, V <sup>+</sup> =400V V <sub>DD</sub> =15V,<br>I <sub>E</sub> =8A, L=2mH                                                                                                                                                                                                                                                                                                     |
| t <sub>rr</sub>  | Diode Reverse Recovery time          |     | 105      | 145  | ns    | $I_F = \delta A$ , L=211H                                                                                                                                                                                                                                                                                                                                                                 |
| RBSOA            | Reverse Bias Safe Operating<br>Area  | FL  | JLL SQUA | RE   |       | $\begin{array}{l} T_{J}{=}150^{\circ}\text{C},\ I_{C}{=}8\text{A},\ V_{P}{=}600\text{V}\\ \text{V}^{+}{=}480\text{V},\ V_{DD}{=}{+}15\text{V}\ to\ 0\text{V}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$ |
| SCSOA            | Short Circuit Safe Operating<br>Area | 10  |          |      | μs    |                                                                                                                                                                                                                                                                                                                                                                                           |

#### Thermal Resistance

| Symbol               | Parameter                                                                 | Min | Тур | Мах | Units | Conditions                                                                  |
|----------------------|---------------------------------------------------------------------------|-----|-----|-----|-------|-----------------------------------------------------------------------------|
| $R_{th(J-C)}$        | Junction to case thermal resistance, each IGBT under inverter operation.  |     |     | 4.0 | °C/W  |                                                                             |
| R <sub>th(J-C)</sub> | Junction to case thermal resistance, each Diode under inverter operation. |     | 5   | 5.5 | °C/W  | Flat, greased surface.<br>Heatsink compound thermal<br>conductivity - 1W/mK |
| R <sub>th(C-S)</sub> | Thermal Resistance case to sink                                           |     | 0.1 |     | °C/W  |                                                                             |

www.irf.com

## IRAMX16UP60A



#### **Absolute Maximum Ratings Driver function**

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to  $V_{SS}$ . (Note 1)

| Symbol              | Definition                                  | Min  | Мах | Units |
|---------------------|---------------------------------------------|------|-----|-------|
| V <sub>S1,2,3</sub> | High Side offset voltage                    | -0.3 | 600 | V     |
| V <sub>B1,2,3</sub> | High Side floating supply voltage           | -0.3 | 20  | V     |
| V <sub>DD</sub>     | Low Side and logic fixed supply voltage     | -0.3 | 20  | V     |
| V <sub>IN</sub>     | Input voltage LIN, HIN, T/I <sub>TRIP</sub> | -0.3 | 7   | V     |
| TJ                  | Juction Temperature                         | -40  | 150 | °C    |

#### **Recommended Operating Conditions Driver Function**

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to  $V_{SS}$ . The  $V_S$  offset rating is tested with all supplies biased at 15V differential (Note 1). All input pin ( $V_{IN}$ ) and  $I_{ITRIP}$  are clamped with a 5.2V zener diode and pull-up resistor to  $V_{DD}$ 

| Symbol              | Definition                               |                    | Мах                | Units |
|---------------------|------------------------------------------|--------------------|--------------------|-------|
| V <sub>B1,2,3</sub> | High side floating supply voltage        | V <sub>S</sub> +12 | V <sub>s</sub> +20 | V     |
| V <sub>S1,2,3</sub> | High side floating supply offset voltage | Note 2             | 450                | v     |
| V <sub>DD</sub>     | Low side and logic fixed supply voltage  | 12                 | 20                 | V     |
| VITRIP              | T/I <sub>TRIP</sub> input voltage        | V <sub>ss</sub>    | $V_{SS} + 5$       | v     |
| V <sub>IN</sub>     | Logic input voltage LIN, HIN             | V <sub>SS</sub>    | $V_{SS}+5$         | V     |

#### **Static Electrical Characteristics Driver Function**

 $V_{BIAS}$  ( $V_{CC}$ ,  $V_{BS}1,2,3$ ) = 15V unless otherwise specified. The  $V_{IN}$  and  $I_{IN}$  parameters are referenced to  $V_{SS}$  and are applicable to all six channels. (Note 1)

| Symbol                                   | Definition                                                                          | Min  | Тур  | Мах  | Units |
|------------------------------------------|-------------------------------------------------------------------------------------|------|------|------|-------|
| $V_{IN,th+}$                             | Positive going input threshold                                                      |      |      | 3.0  | V     |
| V <sub>IN,th-</sub>                      | Negative going input threshold                                                      | 0.8  |      |      | V     |
| V <sub>CCUV+</sub><br>V <sub>BSUV+</sub> | V <sub>cc</sub> and V <sub>BS</sub> supply undervoltage<br>Positive going threshold |      | 11.1 | 11.6 | V     |
| V <sub>CCUV-</sub><br>V <sub>BSUV-</sub> | $V_{\text{CC}}$ and $V_{\text{BS}}$ supply undervoltage Negative going threshold    | 10.4 | 10.9 | 11.4 | V     |
| V <sub>CCUVH</sub><br>V <sub>BSUVH</sub> |                                                                                     |      | 0.2  |      | V     |
| I <sub>QBS</sub>                         | Quiescent V <sub>BS</sub> supply current                                            |      | 70   | 120  | μA    |
| Iacc                                     | Quiscent V <sub>cc</sub> supply current                                             |      | 1.6  | 2.3  | μA    |
| I <sub>LK</sub>                          | Offset Supply Leakage Current                                                       |      |      | 50   | μA    |
| I <sub>IN+</sub>                         | Input bias current (OUT=HI or OUT=LO)                                               |      | 120  |      | μA    |
| $V(T/I_{TRIP})$                          | T/I <sub>TRIP</sub> threshold Voltage (OUT=HI or OUT=LO) (Note 3)                   | 3.85 | 4.3  | 4.75 | V     |

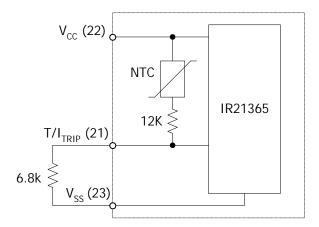


## IRAMX16UP60A

#### **Dynamic Electrical Characteristics**

 $V_{DD} = V_{BS} = V_{BIAS} = 15V, \ I_o = 1A, \ V_D = 9V$ , PWM<sub>in</sub>= 2kHz,  $V_{INON} = V_{IN,th+}, \ V_{INOFF} = V_{IN,th+}, \ T_A = 25^\circ C$  unless otherwise specified.

| Symbol              | Definition                                                               |   |     | Мах | Units |
|---------------------|--------------------------------------------------------------------------|---|-----|-----|-------|
| T <sub>ON</sub>     | Input to output propagation turn-on delay time (see fig.11)              | - | 470 | -   | ns    |
| T <sub>OFF</sub>    | Input to output propagation turn-off delay time (see fig. 11)            | - | 615 | -   | ns    |
| D <sub>T</sub>      | Dead Time                                                                | - | 300 | -   | ns    |
| I/T <sub>Trip</sub> | $T/I_{Trip}$ to six switch to turn-off propagation delay (see fig. 2)    | - | 750 | -   | ns    |
| T <sub>FCLTRL</sub> | Post I <sub>Trip</sub> to six switch to turn-off clear time (see fig. 2) | - | 9   | -   | ms    |


#### **Internal NTC - Thermistor Characteristics**

| Parameter                 |                      | Тур                     | Units | Conditions                         |
|---------------------------|----------------------|-------------------------|-------|------------------------------------|
| R <sub>25</sub>           | Resistance           | 100 +/- 5%              | kΩ    | $T_{\rm C} = 25^{\circ}{\rm C}$    |
| R <sub>125</sub>          | Resistance           | 2.522 + 17.3 % /- 14.9% | kΩ    | $T_c = 125^{\circ}C$               |
| В                         | B-constant (25-50°C) | 4250 +/- 3%             | k     | $R_2 = R_1 e^{[B(1/T_2 - 1/T_1)]}$ |
| Temperature Range         |                      | -40 / 125               | °C    |                                    |
| Typ. Dissipation constant |                      | 1                       | mW/°C | $T_{\rm C} = 25^{\circ}{\rm C}$    |

Note 1: For more details, see IR21365 data sheet

Note 2: Logic operational for Vs from COM-5V to COM+600V. Logic stata held for Vs from COM-5V to COM-VBS. (please refer to DT97-3 for more details)

#### Thermistor Built-in IRAMX16UP60A



Note 3: The Maximum recommended sense voltage at the  $T/I_{TRIP}$  terminal under normal operating conditions is 3.3V.