IMAKING SENSE OF PERFORMANCE

Formula E Racing: A Testbed for Developing New Technologies

By Paul Webb, Business Development Manager, DEUTSCH Autosport Group, TE Connectivity

AN ELECTRONICS-FIRST APPROACH IS CHANGING THE DESIGN OF RACE CARS

Today, Formula E racing—all-electric cars capable of 0 to 100 km/h acceleration in 3 seconds and top speeds of 225 km/h—are important platforms for developing battery technology and electric powertrains. But racing is not the only endeavor where these technologies can be applied. Engineers from the worlds' best solutions providers have developed partnerships with race teams to create synergies where technologies that help win on race day can be transferred to a broad range of applications. Military and commercial aerospace, military ground vehicles, industrial automation, appliances, and automotive are among the industries that will benefit from the lessons learned about withstanding harsh environments characterized by tremendous shock and vibration, extremes in temperatures, and chemical exposure.

As more sensors deliver more data to monitor, control, and communicate car performance, packaging and interconnection of electronics becomes ever more challenging. The harsh environment, coupled with the ever-present need to save weight and make efficient use of constrained space, makes autosport an ideal real-world platform for development engineering. Sensors measure just about everything on the car that can be measured: pressures, speeds, temperatures, displacements. A Formula E car can have 200 data channels providing information that must be collected and logged—creating gigabytes of data. The data is used three ways. Some is directed to the driver's display. Other data is sent by telemetry to the race team for real-time analysis that will allow adjustments to be made during pit stops. Finally, all the data will be analyzed after the race. The data forms a treasure trove of information about the car's performance to allow adjustments to the mechanical and aerodynamic setup. The sensors must be connected to the computers logging the data by cable assemblies.

SAVING WEIGHT IN INTERCONNECTIONS

Weight reduction is critical to competitive advantage. A few grams saved here and a few more saved there can add up to significant savings overall. There is also a developing trend toward high-density packaging of electronics parts. As the electronic content of cars increases, the natural drive is to miniaturize the package to gain maximum efficiency in the use of space.

The wiring harnesses and interconnection systems offer opportunities for weight and size reduction. The first requirement for connectors and cable is a rugged design that can withstand extreme temperatures, vibration, and exposure to fluids in general and brake cleaner in particular. The evolution of autosport specific connectors demonstrates how important miniaturization has become in the sport. Smaller connectors typically weigh less, so attention was paid to higher density connectors. Stainless steel shells gave way to lightweight aluminum, with even lighter composite versions available. Features like coupling rings became smaller as well.

Autosport connectors were originally developed from military counter parts, evolving to become smaller, lighter, and easier to handle. Today, a shift is occurring where autosport connectors are being adapted to military and

h

ы

commercial aerospace applications to solve similar challenges. Space and weight savings are increasingly important in aerospace, even as the use of electronics means more data being transmitted throughout the aircraft. As military applications move to using or adapting commercial off-the-shelf products, autosport connectors are being increasingly considered as alternatives to custom parts.

As connectors shrink in size, attention must also be given to usability issues, such as redesigned knurls to make it easy for a gloved technician to quickly and accurately connect and disconnect the connectors.

Composite-shell connectors offer an attractive alternative method for reducing weight. When the industry first looked at composite connectors, many did not live up to expectations for rugged performance in the autosport market. In particular, the composites did not withstand exposure to brake cleaner. As a result, designers moved away from their use. Composites, however, are evolving. They have improved dramatically, with the next generation believed to soon meet the needs of auto racing fully.

Composites deserve a fresh evaluation of their ability to save weight and meet the mechanical and environmental needs of autosport.

While both the commercial auto industry and the military are starting to use aluminum wire and cable for weight savings, they do not yet find widespread use in autosport. Aluminum wire is seen as hard to work with. Its bend radius is not as tight as copper's and there are concerns over reliably terminating it due to cold creep. Yet contacts that counteract cold creep to form a reliable, gas-tight connection are available. Aluminum has only 60 percent of the conductivity of copper so a larger conductor is needed to achieve the same current-carrying capacity. Even accounting for this, aluminum will be about half the weight.

TECHNOLOGY TRANSFER: APPLYING THE LESSONS LEARNED

While winning races is the primary goal for the engineering partnerships. Formula E racing makes a good testbed for transferable technologies. It is a fast evolving industry, where new things are tried and adopted if they work and discarded if they don't. Racing cannot tolerate the long development cycles found in industries such as the military. In addition, the harsh environment is a great proving ground for assessing reliability and ruggedness.

The obvious area in adapting autosport technology, is in the automotive industry in general and electric

powertrains in particular. On the horizon are autonomous vehicles, where sensors and data analysis will play an even bigger role than they currently do in driven cars. An autonomous car must not only monitor its own systems, but also needs to sense and react to the surrounding environment in real time. As car networks become more capable and sophisticated, interconnections must be able to handle the bandwidth requirements.

The autosport industry is looking at adding sensors to a driver's clothing. The hot, bumpy environment provides a platform for evaluating wearable technology. What we learn in the cockpit of a race car can have important implications for wearables in consumer, military, and industrial applications. Wearables need not only to offer small size and light weight, but also to accommodate the wearer's movements without restricting them.

THE INTERNET OF THINGS

Wearable electronics are a subset of the Internet of Things (IoT). In simplest terms, IoT is the migration of the Internet beyond people; IoT can function without human intervention. Autonomous cars, smart homes, wearable electronics, and factory automation are all examples of IoT. The key ingredient in IoT is the use of the Internet protocol (IP). IP is a communications protocol used by Ethernet and by the Internet to control the flow of information. Every attached device has an IP address. Every device with an IP address has the capability of communicating with every other IP device. (Of course, we have firewalls, passwords, and other security measures to control what devices can actually communicate with each other.)

One advantage to being part of the IoT ecosystem is that a device does not have to exist as a standalone system. Data sensed in an autonomous car can be used to control the vehicle's operation. But it can also communicate with a wider network, reporting about local traffic conditions to other vehicles and gathering information about remote traffic conditions. This interconnectedness will allow cars to reroute themselves to avoid traffic jams, road construction, and other hazards.

The electronic systems of Formula E cars, with their sensing, data gathering and logging, and telemetry capabilities are increasing our understanding of designing complex systems with sophisticated real-time interactions. And how to build them into challenging, space-constrained, weight-sensitive environments. Compared to a Formula E car, a passenger car is spacious.

Sensors are becoming smarter, with built-in intelligence that allows analysis to be done locally with results transmitted back to the computer. Sensor packages

LEARN MORE ABOUT HOW TE IS ENGINEERING FOR TOMORROW

www.everyconnectioncounts.com

with integrated electronics significantly lower the data load. For example, a temperature sensor can be set only to transmit data when the temperature rises above or falls below defined levels. An intelligent sensor can even become an IoT node with its own IP address.

Autosport is also driving the packaging of sensors: smaller, lighter, more rugged, and physically matched to the space. In other words, you don't have to design your space around the sensor. The sensor can be custom designed to fit the space. While autosport is a low-volume application that makes custom designs relative costly, high-volume consumer and automotive applications will benefit from the economies of scale. A custom design will, at high volumes, become an off-the-shelf item.

THE CUTTING EDGE SLICES BOTH WAYS

Formula race cars are at the forefront of technology. It's easy enough to think that the cars push the performance envelope only in speed. But there is a whole lot of cutting-edge technology behind that speed. Racing has long been a way for auto manufacturers to develop and prove new technologies.

Automakers use the insights gained through racing to design and build better cars. For engineering and solutions providers, a technology-development partnership can provide insights that will benefit most of the industries they serve. And with formula racing, the technology seems to evolve as fast as the cars move.

TE CONNECTIVITY (TE) AND ANDRETTI TECHNOLOGIES

TE Connectivity is proud to support the Andretti Formula E team and group of engineers in their quest to be the world's top electric race team. Insider every Andretti race car, and throughout the racing community, you'll find TE connectors, sensors and cables. But beyond helping electric cars reach new levels of speed, we're committed to sustainable, clean-energy innovations that will revolutionize how we live, work, play and learn. Our partnership with Andretti Technologies, the advanced engineering arm of Andretti Autosport, provides a unique platform to develop and test technologies in the harsh environment of racing that will help power the future of racing and industry applications.

Reprinted with permission from the September 2016 Issue of ECN

© 2016 TE Connectivity Ltd. family of companies. All Rights Reserved

TE Connectivity, TE, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. Other logos company or product names may be trademarks of their respective owners Andretti and Andretti (logo) are trademarks of Andretti Autosport Holding Company Inc. Michelin, Michelin (logo), Formula-E, and FIA Formula-E Championship are trademarks of their respective owners. 10/2016

